1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
|
%
% (c) The University of Glasgow 2006
% (c) The GRASP/AQUA Project, Glasgow University, 1992-1998
%
Bag: an unordered collection with duplicates
\begin{code}
{-# OPTIONS_GHC -w #-}
-- The above warning supression flag is a temporary kludge.
-- While working on this module you are encouraged to remove it and fix
-- any warnings in the module. See
-- http://hackage.haskell.org/trac/ghc/wiki/WorkingConventions#Warnings
-- for details
module Bag (
Bag, -- abstract type
emptyBag, unitBag, unionBags, unionManyBags,
mapBag,
elemBag,
filterBag, partitionBag, concatBag, foldBag, foldrBag, foldlBag,
isEmptyBag, isSingletonBag, consBag, snocBag, anyBag,
listToBag, bagToList,
mapBagM, mapAndUnzipBagM
) where
#include "HsVersions.h"
import Outputable
import Util ( isSingleton )
import Data.List ( partition )
\end{code}
\begin{code}
data Bag a
= EmptyBag
| UnitBag a
| TwoBags (Bag a) (Bag a) -- INVARIANT: neither branch is empty
| ListBag [a] -- INVARIANT: the list is non-empty
emptyBag = EmptyBag
unitBag = UnitBag
elemBag :: Eq a => a -> Bag a -> Bool
elemBag x EmptyBag = False
elemBag x (UnitBag y) = x==y
elemBag x (TwoBags b1 b2) = x `elemBag` b1 || x `elemBag` b2
elemBag x (ListBag ys) = any (x ==) ys
unionManyBags :: [Bag a] -> Bag a
unionManyBags xs = foldr unionBags EmptyBag xs
-- This one is a bit stricter! The bag will get completely evaluated.
unionBags :: Bag a -> Bag a -> Bag a
unionBags EmptyBag b = b
unionBags b EmptyBag = b
unionBags b1 b2 = TwoBags b1 b2
consBag :: a -> Bag a -> Bag a
snocBag :: Bag a -> a -> Bag a
consBag elt bag = (unitBag elt) `unionBags` bag
snocBag bag elt = bag `unionBags` (unitBag elt)
isEmptyBag EmptyBag = True
isEmptyBag other = False -- NB invariants
isSingletonBag :: Bag a -> Bool
isSingletonBag EmptyBag = False
isSingletonBag (UnitBag x) = True
isSingletonBag (TwoBags b1 b2) = False -- Neither is empty
isSingletonBag (ListBag xs) = isSingleton xs
filterBag :: (a -> Bool) -> Bag a -> Bag a
filterBag pred EmptyBag = EmptyBag
filterBag pred b@(UnitBag val) = if pred val then b else EmptyBag
filterBag pred (TwoBags b1 b2) = sat1 `unionBags` sat2
where
sat1 = filterBag pred b1
sat2 = filterBag pred b2
filterBag pred (ListBag vs) = listToBag (filter pred vs)
anyBag :: (a -> Bool) -> Bag a -> Bool
anyBag p EmptyBag = False
anyBag p (UnitBag v) = p v
anyBag p (TwoBags b1 b2) = anyBag p b1 || anyBag p b2
anyBag p (ListBag xs) = any p xs
concatBag :: Bag (Bag a) -> Bag a
concatBag EmptyBag = EmptyBag
concatBag (UnitBag b) = b
concatBag (TwoBags b1 b2) = concatBag b1 `unionBags` concatBag b2
concatBag (ListBag bs) = unionManyBags bs
partitionBag :: (a -> Bool) -> Bag a -> (Bag a {- Satisfy predictate -},
Bag a {- Don't -})
partitionBag pred EmptyBag = (EmptyBag, EmptyBag)
partitionBag pred b@(UnitBag val) = if pred val then (b, EmptyBag) else (EmptyBag, b)
partitionBag pred (TwoBags b1 b2) = (sat1 `unionBags` sat2, fail1 `unionBags` fail2)
where
(sat1,fail1) = partitionBag pred b1
(sat2,fail2) = partitionBag pred b2
partitionBag pred (ListBag vs) = (listToBag sats, listToBag fails)
where
(sats,fails) = partition pred vs
foldBag :: (r -> r -> r) -- Replace TwoBags with this; should be associative
-> (a -> r) -- Replace UnitBag with this
-> r -- Replace EmptyBag with this
-> Bag a
-> r
{- Standard definition
foldBag t u e EmptyBag = e
foldBag t u e (UnitBag x) = u x
foldBag t u e (TwoBags b1 b2) = (foldBag t u e b1) `t` (foldBag t u e b2)
foldBag t u e (ListBag xs) = foldr (t.u) e xs
-}
-- More tail-recursive definition, exploiting associativity of "t"
foldBag t u e EmptyBag = e
foldBag t u e (UnitBag x) = u x `t` e
foldBag t u e (TwoBags b1 b2) = foldBag t u (foldBag t u e b2) b1
foldBag t u e (ListBag xs) = foldr (t.u) e xs
foldrBag :: (a -> r -> r) -> r
-> Bag a
-> r
foldrBag k z EmptyBag = z
foldrBag k z (UnitBag x) = k x z
foldrBag k z (TwoBags b1 b2) = foldrBag k (foldrBag k z b2) b1
foldrBag k z (ListBag xs) = foldr k z xs
foldlBag :: (r -> a -> r) -> r
-> Bag a
-> r
foldlBag k z EmptyBag = z
foldlBag k z (UnitBag x) = k z x
foldlBag k z (TwoBags b1 b2) = foldlBag k (foldlBag k z b1) b2
foldlBag k z (ListBag xs) = foldl k z xs
mapBag :: (a -> b) -> Bag a -> Bag b
mapBag f EmptyBag = EmptyBag
mapBag f (UnitBag x) = UnitBag (f x)
mapBag f (TwoBags b1 b2) = TwoBags (mapBag f b1) (mapBag f b2)
mapBag f (ListBag xs) = ListBag (map f xs)
mapBagM :: Monad m => (a -> m b) -> Bag a -> m (Bag b)
mapBagM f EmptyBag = return EmptyBag
mapBagM f (UnitBag x) = do { r <- f x; return (UnitBag r) }
mapBagM f (TwoBags b1 b2) = do { r1 <- mapBagM f b1; r2 <- mapBagM f b2; return (TwoBags r1 r2) }
mapBagM f (ListBag xs) = do { rs <- mapM f xs; return (ListBag rs) }
mapAndUnzipBagM :: Monad m => (a -> m (b,c)) -> Bag a -> m (Bag b, Bag c)
mapAndUnzipBagM f EmptyBag = return (EmptyBag, EmptyBag)
mapAndUnzipBagM f (UnitBag x) = do { (r,s) <- f x; return (UnitBag r, UnitBag s) }
mapAndUnzipBagM f (TwoBags b1 b2) = do { (r1,s1) <- mapAndUnzipBagM f b1
; (r2,s2) <- mapAndUnzipBagM f b2
; return (TwoBags r1 r2, TwoBags s1 s2) }
mapAndUnzipBagM f (ListBag xs) = do { ts <- mapM f xs
; let (rs,ss) = unzip ts
; return (ListBag rs, ListBag ss) }
listToBag :: [a] -> Bag a
listToBag [] = EmptyBag
listToBag vs = ListBag vs
bagToList :: Bag a -> [a]
bagToList b = foldrBag (:) [] b
\end{code}
\begin{code}
instance (Outputable a) => Outputable (Bag a) where
ppr bag = char '<' <> pprWithCommas ppr (bagToList bag) <> char '>'
\end{code}
|