1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
|
{-# LANGUAGE DeriveDataTypeable, DeriveFunctor, DeriveFoldable,
DeriveTraversable #-}
--------------------------------------------------------------------------------
-- | Boolean formulas without quantifiers and without negation.
-- Such a formula consists of variables, conjunctions (and), and disjunctions (or).
--
-- This module is used to represent minimal complete definitions for classes.
--
module BooleanFormula (
BooleanFormula(..), LBooleanFormula,
mkFalse, mkTrue, mkAnd, mkOr, mkVar,
isFalse, isTrue,
eval, simplify, isUnsatisfied,
implies, impliesAtom,
pprBooleanFormula, pprBooleanFormulaNice
) where
import Data.List ( nub, intersperse )
import Data.Data
import MonadUtils
import Outputable
import Binary
import SrcLoc
----------------------------------------------------------------------
-- Boolean formula type and smart constructors
----------------------------------------------------------------------
type LBooleanFormula a = Located (BooleanFormula a)
data BooleanFormula a = Var a | And [LBooleanFormula a] | Or [LBooleanFormula a]
| Parens (LBooleanFormula a)
deriving (Eq, Data, Functor, Foldable, Traversable)
mkVar :: a -> BooleanFormula a
mkVar = Var
mkFalse, mkTrue :: BooleanFormula a
mkFalse = Or []
mkTrue = And []
-- Convert a Bool to a BooleanFormula
mkBool :: Bool -> BooleanFormula a
mkBool False = mkFalse
mkBool True = mkTrue
-- Make a conjunction, and try to simplify
mkAnd :: Eq a => [LBooleanFormula a] -> BooleanFormula a
mkAnd = maybe mkFalse (mkAnd' . nub) . concatMapM fromAnd
where
-- See Note [Simplification of BooleanFormulas]
fromAnd :: LBooleanFormula a -> Maybe [LBooleanFormula a]
fromAnd (L _ (And xs)) = Just xs
-- assume that xs are already simplified
-- otherwise we would need: fromAnd (And xs) = concat <$> traverse fromAnd xs
fromAnd (L _ (Or [])) = Nothing
-- in case of False we bail out, And [..,mkFalse,..] == mkFalse
fromAnd x = Just [x]
mkAnd' [x] = unLoc x
mkAnd' xs = And xs
mkOr :: Eq a => [LBooleanFormula a] -> BooleanFormula a
mkOr = maybe mkTrue (mkOr' . nub) . concatMapM fromOr
where
-- See Note [Simplification of BooleanFormulas]
fromOr (L _ (Or xs)) = Just xs
fromOr (L _ (And [])) = Nothing
fromOr x = Just [x]
mkOr' [x] = unLoc x
mkOr' xs = Or xs
{-
Note [Simplification of BooleanFormulas]
~~~~~~~~~~~~~~~~~~~~~~
The smart constructors (`mkAnd` and `mkOr`) do some attempt to simplify expressions. In particular,
1. Collapsing nested ands and ors, so
`(mkAnd [x, And [y,z]]`
is represented as
`And [x,y,z]`
Implemented by `fromAnd`/`fromOr`
2. Collapsing trivial ands and ors, so
`mkAnd [x]` becomes just `x`.
Implemented by mkAnd' / mkOr'
3. Conjunction with false, disjunction with true is simplified, i.e.
`mkAnd [mkFalse,x]` becomes `mkFalse`.
4. Common subexpresion elimination:
`mkAnd [x,x,y]` is reduced to just `mkAnd [x,y]`.
This simplification is not exhaustive, in the sense that it will not produce
the smallest possible equivalent expression. For example,
`Or [And [x,y], And [x]]` could be simplified to `And [x]`, but it currently
is not. A general simplifier would need to use something like BDDs.
The reason behind the (crude) simplifier is to make for more user friendly
error messages. E.g. for the code
> class Foo a where
> {-# MINIMAL bar, (foo, baq | foo, quux) #-}
> instance Foo Int where
> bar = ...
> baz = ...
> quux = ...
We don't show a ridiculous error message like
Implement () and (either (`foo' and ()) or (`foo' and ()))
-}
----------------------------------------------------------------------
-- Evaluation and simplification
----------------------------------------------------------------------
isFalse :: BooleanFormula a -> Bool
isFalse (Or []) = True
isFalse _ = False
isTrue :: BooleanFormula a -> Bool
isTrue (And []) = True
isTrue _ = False
eval :: (a -> Bool) -> BooleanFormula a -> Bool
eval f (Var x) = f x
eval f (And xs) = all (eval f . unLoc) xs
eval f (Or xs) = any (eval f . unLoc) xs
eval f (Parens x) = eval f (unLoc x)
-- Simplify a boolean formula.
-- The argument function should give the truth of the atoms, or Nothing if undecided.
simplify :: Eq a => (a -> Maybe Bool) -> BooleanFormula a -> BooleanFormula a
simplify f (Var a) = case f a of
Nothing -> Var a
Just b -> mkBool b
simplify f (And xs) = mkAnd (map (\(L l x) -> L l (simplify f x)) xs)
simplify f (Or xs) = mkOr (map (\(L l x) -> L l (simplify f x)) xs)
simplify f (Parens x) = simplify f (unLoc x)
-- Test if a boolean formula is satisfied when the given values are assigned to the atoms
-- if it is, returns Nothing
-- if it is not, return (Just remainder)
isUnsatisfied :: Eq a => (a -> Bool) -> BooleanFormula a -> Maybe (BooleanFormula a)
isUnsatisfied f bf
| isTrue bf' = Nothing
| otherwise = Just bf'
where
f' x = if f x then Just True else Nothing
bf' = simplify f' bf
-- prop_simplify:
-- eval f x == True <==> isTrue (simplify (Just . f) x)
-- eval f x == False <==> isFalse (simplify (Just . f) x)
-- If the boolean formula holds, does that mean that the given atom is always true?
impliesAtom :: Eq a => BooleanFormula a -> a -> Bool
Var x `impliesAtom` y = x == y
And xs `impliesAtom` y = any (\x -> (unLoc x) `impliesAtom` y) xs
-- we have all of xs, so one of them implying y is enough
Or xs `impliesAtom` y = all (\x -> (unLoc x) `impliesAtom` y) xs
Parens x `impliesAtom` y = (unLoc x) `impliesAtom` y
implies :: Eq a => BooleanFormula a -> BooleanFormula a -> Bool
x `implies` Var y = x `impliesAtom` y
x `implies` And ys = all (implies x . unLoc) ys
x `implies` Or ys = any (implies x . unLoc) ys
x `implies` Parens y = x `implies` (unLoc y)
----------------------------------------------------------------------
-- Pretty printing
----------------------------------------------------------------------
-- Pretty print a BooleanFormula,
-- using the arguments as pretty printers for Var, And and Or respectively
pprBooleanFormula' :: (Rational -> a -> SDoc)
-> (Rational -> [SDoc] -> SDoc)
-> (Rational -> [SDoc] -> SDoc)
-> Rational -> BooleanFormula a -> SDoc
pprBooleanFormula' pprVar pprAnd pprOr = go
where
go p (Var x) = pprVar p x
go p (And []) = cparen (p > 0) $ empty
go p (And xs) = pprAnd p (map (go 3 . unLoc) xs)
go _ (Or []) = keyword $ text "FALSE"
go p (Or xs) = pprOr p (map (go 2 . unLoc) xs)
go p (Parens x) = go p (unLoc x)
-- Pretty print in source syntax, "a | b | c,d,e"
pprBooleanFormula :: (Rational -> a -> SDoc) -> Rational -> BooleanFormula a -> SDoc
pprBooleanFormula pprVar = pprBooleanFormula' pprVar pprAnd pprOr
where
pprAnd p = cparen (p > 3) . fsep . punctuate comma
pprOr p = cparen (p > 2) . fsep . intersperse vbar
-- Pretty print human in readable format, "either `a' or `b' or (`c', `d' and `e')"?
pprBooleanFormulaNice :: Outputable a => BooleanFormula a -> SDoc
pprBooleanFormulaNice = pprBooleanFormula' pprVar pprAnd pprOr 0
where
pprVar _ = quotes . ppr
pprAnd p = cparen (p > 1) . pprAnd'
pprAnd' [] = empty
pprAnd' [x,y] = x <+> text "and" <+> y
pprAnd' xs@(_:_) = fsep (punctuate comma (init xs)) <> text ", and" <+> last xs
pprOr p xs = cparen (p > 1) $ text "either" <+> sep (intersperse (text "or") xs)
instance Outputable a => Outputable (BooleanFormula a) where
pprPrec = pprBooleanFormula pprPrec
----------------------------------------------------------------------
-- Binary
----------------------------------------------------------------------
instance Binary a => Binary (BooleanFormula a) where
put_ bh (Var x) = putByte bh 0 >> put_ bh x
put_ bh (And xs) = putByte bh 1 >> put_ bh xs
put_ bh (Or xs) = putByte bh 2 >> put_ bh xs
put_ bh (Parens x) = putByte bh 3 >> put_ bh x
get bh = do
h <- getByte bh
case h of
0 -> Var <$> get bh
1 -> And <$> get bh
2 -> Or <$> get bh
_ -> Parens <$> get bh
|