1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
|
%
% (c) The University of Glasgow 2006
%
\begin{code}
module Digraph(
-- At present the only one with a "nice" external interface
stronglyConnComp, stronglyConnCompR, SCC(..), flattenSCC, flattenSCCs,
Graph, Vertex,
graphFromEdges, graphFromEdges',
buildG, transposeG, reverseE, outdegree, indegree,
Tree(..), Forest,
showTree, showForest,
dfs, dff,
topSort,
components,
scc,
back, cross, forward,
reachable, path,
bcc
) where
-- XXX This define is a bit of a hack, and should be done more nicely
#define FAST_STRING_NOT_NEEDED 1
#include "HsVersions.h"
------------------------------------------------------------------------------
-- A version of the graph algorithms described in:
--
-- ``Lazy Depth-First Search and Linear Graph Algorithms in Haskell''
-- by David King and John Launchbury
--
-- Also included is some additional code for printing tree structures ...
------------------------------------------------------------------------------
import Util ( sortLe )
import Outputable
-- Extensions
import Control.Monad.ST
-- std interfaces
import Data.Maybe
import Data.Array
import Data.List
#if !defined(__GLASGOW_HASKELL__) || __GLASGOW_HASKELL__ > 604
import Data.Array.ST
#else
import Data.Array.ST hiding ( indices, bounds )
#endif
\end{code}
%************************************************************************
%* *
%* External interface
%* *
%************************************************************************
\begin{code}
data SCC vertex = AcyclicSCC vertex
| CyclicSCC [vertex]
flattenSCCs :: [SCC a] -> [a]
flattenSCCs = concatMap flattenSCC
flattenSCC :: SCC a -> [a]
flattenSCC (AcyclicSCC v) = [v]
flattenSCC (CyclicSCC vs) = vs
instance Outputable a => Outputable (SCC a) where
ppr (AcyclicSCC v) = text "NONREC" $$ (nest 3 (ppr v))
ppr (CyclicSCC vs) = text "REC" $$ (nest 3 (vcat (map ppr vs)))
\end{code}
Note [Nodes, keys, vertices]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~
* A 'node' is a big blob of client-stuff
* Each 'node' has a unique (client) 'key', but the latter
is in Ord and has fast comparison
* Digraph then maps each 'key' to a Vertex (Int) which is
arranged densely in 0.n
\begin{code}
stronglyConnComp
:: Ord key
=> [(node, key, [key])] -- The graph; its ok for the
-- out-list to contain keys which arent
-- a vertex key, they are ignored
-> [SCC node] -- Returned in topologically sorted order
-- Later components depend on earlier ones, but not vice versa
stronglyConnComp edges
= map get_node (stronglyConnCompR edges)
where
get_node (AcyclicSCC (n, _, _)) = AcyclicSCC n
get_node (CyclicSCC triples) = CyclicSCC [n | (n,_,_) <- triples]
-- The "R" interface is used when you expect to apply SCC to
-- the (some of) the result of SCC, so you dont want to lose the dependency info
stronglyConnCompR
:: Ord key
=> [(node, key, [key])] -- The graph; its ok for the
-- out-list to contain keys which arent
-- a vertex key, they are ignored
-> [SCC (node, key, [key])] -- Topologically sorted
stronglyConnCompR [] = [] -- added to avoid creating empty array in graphFromEdges -- SOF
stronglyConnCompR edges
= map decode forest
where
(graph, vertex_fn) = {-# SCC "graphFromEdges" #-} graphFromEdges edges
forest = {-# SCC "Digraph.scc" #-} scc graph
decode (Node v []) | mentions_itself v = CyclicSCC [vertex_fn v]
| otherwise = AcyclicSCC (vertex_fn v)
decode other = CyclicSCC (dec other [])
where
dec (Node v ts) vs = vertex_fn v : foldr dec vs ts
mentions_itself v = v `elem` (graph ! v)
\end{code}
%************************************************************************
%* *
%* Graphs
%* *
%************************************************************************
\begin{code}
type Vertex = Int
type Table a = Array Vertex a
type Graph = Table [Vertex]
type Bounds = (Vertex, Vertex)
type Edge = (Vertex, Vertex)
\end{code}
\begin{code}
vertices :: Graph -> [Vertex]
vertices = indices
edges :: Graph -> [Edge]
edges g = [ (v, w) | v <- vertices g, w <- g!v ]
mapT :: (Vertex -> a -> b) -> Table a -> Table b
mapT f t = array (bounds t) [ (v, f v (t ! v)) | v <- indices t ]
buildG :: Bounds -> [Edge] -> Graph
buildG bounds edges = accumArray (flip (:)) [] bounds edges
transposeG :: Graph -> Graph
transposeG g = buildG (bounds g) (reverseE g)
reverseE :: Graph -> [Edge]
reverseE g = [ (w, v) | (v, w) <- edges g ]
outdegree :: Graph -> Table Int
outdegree = mapT numEdges
where numEdges _ ws = length ws
indegree :: Graph -> Table Int
indegree = outdegree . transposeG
\end{code}
\begin{code}
graphFromEdges
:: Ord key
=> [(node, key, [key])]
-> (Graph, Vertex -> (node, key, [key]))
graphFromEdges edges =
case graphFromEdges' edges of (graph, vertex_fn, _) -> (graph, vertex_fn)
graphFromEdges'
:: Ord key
=> [(node, key, [key])]
-> (Graph, Vertex -> (node, key, [key]), key -> Maybe Vertex)
graphFromEdges' edges
= (graph, \v -> vertex_map ! v, key_vertex)
where
max_v = length edges - 1
bounds = (0,max_v) :: (Vertex, Vertex)
sorted_edges = let
(_,k1,_) `le` (_,k2,_) = (k1 `compare` k2) /= GT
in
sortLe le edges
edges1 = zipWith (,) [0..] sorted_edges
graph = array bounds [ (v, mapMaybe key_vertex ks)
| (v, (_, _, ks)) <- edges1]
key_map = array bounds [ (v, k)
| (v, (_, k, _ )) <- edges1]
vertex_map = array bounds edges1
-- key_vertex :: key -> Maybe Vertex
-- returns Nothing for non-interesting vertices
key_vertex k = find 0 max_v
where
find a b | a > b
= Nothing
find a b = case compare k (key_map ! mid) of
LT -> find a (mid-1)
EQ -> Just mid
GT -> find (mid+1) b
where
mid = (a + b) `div` 2
\end{code}
%************************************************************************
%* *
%* Trees and forests
%* *
%************************************************************************
\begin{code}
data Tree a = Node a (Forest a)
type Forest a = [Tree a]
mapTree :: (a -> b) -> (Tree a -> Tree b)
mapTree f (Node x ts) = Node (f x) (map (mapTree f) ts)
\end{code}
\begin{code}
instance Show a => Show (Tree a) where
showsPrec _ t s = showTree t ++ s
showTree :: Show a => Tree a -> String
showTree = drawTree . mapTree show
showForest :: Show a => Forest a -> String
showForest = unlines . map showTree
drawTree :: Tree String -> String
drawTree = unlines . draw
draw :: Tree String -> [String]
draw (Node x ts) = grp this (space (length this)) (stLoop ts)
where this = s1 ++ x ++ " "
space n = replicate n ' '
stLoop [] = [""]
stLoop [t] = grp s2 " " (draw t)
stLoop (t:ts) = grp s3 s4 (draw t) ++ [s4] ++ rsLoop ts
rsLoop [] = []
rsLoop [t] = grp s5 " " (draw t)
rsLoop (t:ts) = grp s6 s4 (draw t) ++ [s4] ++ rsLoop ts
grp fst rst = zipWith (++) (fst:repeat rst)
[s1,s2,s3,s4,s5,s6] = ["- ", "--", "-+", " |", " `", " +"]
\end{code}
%************************************************************************
%* *
%* Depth first search
%* *
%************************************************************************
\begin{code}
type Set s = STArray s Vertex Bool
mkEmpty :: Bounds -> ST s (Set s)
mkEmpty bnds = newArray bnds False
contains :: Set s -> Vertex -> ST s Bool
contains m v = readArray m v
include :: Set s -> Vertex -> ST s ()
include m v = writeArray m v True
\end{code}
\begin{code}
dff :: Graph -> Forest Vertex
dff g = dfs g (vertices g)
dfs :: Graph -> [Vertex] -> Forest Vertex
dfs g vs = prune (bounds g) (map (generate g) vs)
generate :: Graph -> Vertex -> Tree Vertex
generate g v = Node v (map (generate g) (g!v))
prune :: Bounds -> Forest Vertex -> Forest Vertex
prune bnds ts = runST (mkEmpty bnds >>= \m ->
chop m ts)
chop :: Set s -> Forest Vertex -> ST s (Forest Vertex)
chop _ [] = return []
chop m (Node v ts : us)
= contains m v >>= \visited ->
if visited then
chop m us
else
include m v >>= \_ ->
chop m ts >>= \as ->
chop m us >>= \bs ->
return (Node v as : bs)
\end{code}
%************************************************************************
%* *
%* Algorithms
%* *
%************************************************************************
------------------------------------------------------------
-- Algorithm 1: depth first search numbering
------------------------------------------------------------
\begin{code}
preorder :: Tree a -> [a]
preorder (Node a ts) = a : preorderF ts
preorderF :: Forest a -> [a]
preorderF ts = concat (map preorder ts)
tabulate :: Bounds -> [Vertex] -> Table Int
tabulate bnds vs = array bnds (zipWith (,) vs [1..])
preArr :: Bounds -> Forest Vertex -> Table Int
preArr bnds = tabulate bnds . preorderF
\end{code}
------------------------------------------------------------
-- Algorithm 2: topological sorting
------------------------------------------------------------
\begin{code}
postorder :: Tree a -> [a] -> [a]
postorder (Node a ts) = postorderF ts . (a :)
postorderF :: Forest a -> [a] -> [a]
postorderF ts = foldr (.) id $ map postorder ts
postOrd :: Graph -> [Vertex]
postOrd g = postorderF (dff g) []
topSort :: Graph -> [Vertex]
topSort = reverse . postOrd
\end{code}
------------------------------------------------------------
-- Algorithm 3: connected components
------------------------------------------------------------
\begin{code}
components :: Graph -> Forest Vertex
components = dff . undirected
undirected :: Graph -> Graph
undirected g = buildG (bounds g) (edges g ++ reverseE g)
\end{code}
-- Algorithm 4: strongly connected components
\begin{code}
scc :: Graph -> Forest Vertex
scc g = dfs g (reverse (postOrd (transposeG g)))
\end{code}
------------------------------------------------------------
-- Algorithm 5: Classifying edges
------------------------------------------------------------
\begin{code}
back :: Graph -> Table Int -> Graph
back g post = mapT select g
where select v ws = [ w | w <- ws, post!v < post!w ]
cross :: Graph -> Table Int -> Table Int -> Graph
cross g pre post = mapT select g
where select v ws = [ w | w <- ws, post!v > post!w, pre!v > pre!w ]
forward :: Graph -> Graph -> Table Int -> Graph
forward g tree pre = mapT select g
where select v ws = [ w | w <- ws, pre!v < pre!w ] \\ tree!v
\end{code}
------------------------------------------------------------
-- Algorithm 6: Finding reachable vertices
------------------------------------------------------------
\begin{code}
reachable :: Graph -> Vertex -> [Vertex]
reachable g v = preorderF (dfs g [v])
path :: Graph -> Vertex -> Vertex -> Bool
path g v w = w `elem` (reachable g v)
\end{code}
------------------------------------------------------------
-- Algorithm 7: Biconnected components
------------------------------------------------------------
\begin{code}
bcc :: Graph -> Forest [Vertex]
bcc g = (concat . map bicomps . map (do_label g dnum)) forest
where forest = dff g
dnum = preArr (bounds g) forest
do_label :: Graph -> Table Int -> Tree Vertex -> Tree (Vertex,Int,Int)
do_label g dnum (Node v ts) = Node (v,dnum!v,lv) us
where us = map (do_label g dnum) ts
lv = minimum ([dnum!v] ++ [dnum!w | w <- g!v]
++ [lu | Node (_,_,lu) _ <- us])
bicomps :: Tree (Vertex,Int,Int) -> Forest [Vertex]
bicomps (Node (v,_,_) ts)
= [ Node (v:vs) us | (_,Node vs us) <- map collect ts]
collect :: Tree (Vertex,Int,Int) -> (Int, Tree [Vertex])
collect (Node (v,dv,lv) ts) = (lv, Node (v:vs) cs)
where collected = map collect ts
vs = concat [ ws | (lw, Node ws _) <- collected, lw<dv]
cs = concat [ if lw<dv then us else [Node (v:ws) us]
| (lw, Node ws us) <- collected ]
\end{code}
|