1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
|
{-# LANGUAGE RankNTypes, BangPatterns, FlexibleContexts, Strict #-}
{- |
Module : Dominators
Copyright : (c) Matt Morrow 2009
License : BSD3
Maintainer : <morrow@moonpatio.com>
Stability : experimental
Portability : portable
Taken from the dom-lt package.
The Lengauer-Tarjan graph dominators algorithm.
\[1\] Lengauer, Tarjan,
/A Fast Algorithm for Finding Dominators in a Flowgraph/, 1979.
\[2\] Muchnick,
/Advanced Compiler Design and Implementation/, 1997.
\[3\] Brisk, Sarrafzadeh,
/Interference Graphs for Procedures in Static Single/
/Information Form are Interval Graphs/, 2007.
Originally taken from the dom-lt package.
-}
module Dominators (
Node,Path,Edge
,Graph,Rooted
,idom,ipdom
,domTree,pdomTree
,dom,pdom
,pddfs,rpddfs
,fromAdj,fromEdges
,toAdj,toEdges
,asTree,asGraph
,parents,ancestors
) where
import GhcPrelude
import Data.Bifunctor
import Data.Tuple (swap)
import Data.Tree
import Data.IntMap(IntMap)
import Data.IntSet(IntSet)
import qualified Data.IntMap.Strict as IM
import qualified Data.IntSet as IS
import Control.Monad
import Control.Monad.ST.Strict
import Data.Array.ST
import Data.Array.Base hiding ((!))
-- (unsafeNewArray_
-- ,unsafeWrite,unsafeRead
-- ,readArray,writeArray)
import Util (debugIsOn)
-----------------------------------------------------------------------------
type Node = Int
type Path = [Node]
type Edge = (Node,Node)
type Graph = IntMap IntSet
type Rooted = (Node, Graph)
-----------------------------------------------------------------------------
-- | /Dominators/.
-- Complexity as for @idom@
dom :: Rooted -> [(Node, Path)]
dom = ancestors . domTree
-- | /Post-dominators/.
-- Complexity as for @idom@.
pdom :: Rooted -> [(Node, Path)]
pdom = ancestors . pdomTree
-- | /Dominator tree/.
-- Complexity as for @idom@.
domTree :: Rooted -> Tree Node
domTree a@(r,_) =
let is = filter ((/=r).fst) (idom a)
tg = fromEdges (fmap swap is)
in asTree (r,tg)
-- | /Post-dominator tree/.
-- Complexity as for @idom@.
pdomTree :: Rooted -> Tree Node
pdomTree a@(r,_) =
let is = filter ((/=r).fst) (ipdom a)
tg = fromEdges (fmap swap is)
in asTree (r,tg)
-- | /Immediate dominators/.
-- /O(|E|*alpha(|E|,|V|))/, where /alpha(m,n)/ is
-- \"a functional inverse of Ackermann's function\".
--
-- This Complexity bound assumes /O(1)/ indexing. Since we're
-- using @IntMap@, it has an additional /lg |V|/ factor
-- somewhere in there. I'm not sure where.
idom :: Rooted -> [(Node,Node)]
idom rg = runST (evalS idomM =<< initEnv (pruneReach rg))
-- | /Immediate post-dominators/.
-- Complexity as for @idom@.
ipdom :: Rooted -> [(Node,Node)]
ipdom rg = runST (evalS idomM =<< initEnv (pruneReach (second predG rg)))
-----------------------------------------------------------------------------
-- | /Post-dominated depth-first search/.
pddfs :: Rooted -> [Node]
pddfs = reverse . rpddfs
-- | /Reverse post-dominated depth-first search/.
rpddfs :: Rooted -> [Node]
rpddfs = concat . levels . pdomTree
-----------------------------------------------------------------------------
type Dom s a = S s (Env s) a
type NodeSet = IntSet
type NodeMap a = IntMap a
data Env s = Env
{succE :: !Graph
,predE :: !Graph
,bucketE :: !Graph
,dfsE :: {-# UNPACK #-}!Int
,zeroE :: {-# UNPACK #-}!Node
,rootE :: {-# UNPACK #-}!Node
,labelE :: {-# UNPACK #-}!(Arr s Node)
,parentE :: {-# UNPACK #-}!(Arr s Node)
,ancestorE :: {-# UNPACK #-}!(Arr s Node)
,childE :: {-# UNPACK #-}!(Arr s Node)
,ndfsE :: {-# UNPACK #-}!(Arr s Node)
,dfnE :: {-# UNPACK #-}!(Arr s Int)
,sdnoE :: {-# UNPACK #-}!(Arr s Int)
,sizeE :: {-# UNPACK #-}!(Arr s Int)
,domE :: {-# UNPACK #-}!(Arr s Node)
,rnE :: {-# UNPACK #-}!(Arr s Node)}
-----------------------------------------------------------------------------
idomM :: Dom s [(Node,Node)]
idomM = do
dfsDom =<< rootM
n <- gets dfsE
forM_ [n,n-1..1] (\i-> do
w <- ndfsM i
sw <- sdnoM w
ps <- predsM w
forM_ ps (\v-> do
u <- eval v
su <- sdnoM u
when (su < sw)
(store sdnoE w su))
z <- ndfsM =<< sdnoM w
modify(\e->e{bucketE=IM.adjust
(w`IS.insert`)
z (bucketE e)})
pw <- parentM w
link pw w
bps <- bucketM pw
forM_ bps (\v-> do
u <- eval v
su <- sdnoM u
sv <- sdnoM v
let dv = case su < sv of
True-> u
False-> pw
store domE v dv))
forM_ [1..n] (\i-> do
w <- ndfsM i
j <- sdnoM w
z <- ndfsM j
dw <- domM w
when (dw /= z)
(do ddw <- domM dw
store domE w ddw))
fromEnv
-----------------------------------------------------------------------------
eval :: Node -> Dom s Node
eval v = do
n0 <- zeroM
a <- ancestorM v
case a==n0 of
True-> labelM v
False-> do
compress v
a <- ancestorM v
l <- labelM v
la <- labelM a
sl <- sdnoM l
sla <- sdnoM la
case sl <= sla of
True-> return l
False-> return la
compress :: Node -> Dom s ()
compress v = do
n0 <- zeroM
a <- ancestorM v
aa <- ancestorM a
when (aa /= n0) (do
compress a
a <- ancestorM v
aa <- ancestorM a
l <- labelM v
la <- labelM a
sl <- sdnoM l
sla <- sdnoM la
when (sla < sl)
(store labelE v la)
store ancestorE v aa)
-----------------------------------------------------------------------------
link :: Node -> Node -> Dom s ()
link v w = do
n0 <- zeroM
lw <- labelM w
slw <- sdnoM lw
let balance s = do
c <- childM s
lc <- labelM c
slc <- sdnoM lc
case slw < slc of
False-> return s
True-> do
zs <- sizeM s
zc <- sizeM c
cc <- childM c
zcc <- sizeM cc
case 2*zc <= zs+zcc of
True-> do
store ancestorE c s
store childE s cc
balance s
False-> do
store sizeE c zs
store ancestorE s c
balance c
s <- balance w
lw <- labelM w
zw <- sizeM w
store labelE s lw
store sizeE v . (+zw) =<< sizeM v
let follow s = do
when (s /= n0) (do
store ancestorE s v
follow =<< childM s)
zv <- sizeM v
follow =<< case zv < 2*zw of
False-> return s
True-> do
cv <- childM v
store childE v s
return cv
-----------------------------------------------------------------------------
dfsDom :: Node -> Dom s ()
dfsDom i = do
_ <- go i
n0 <- zeroM
r <- rootM
store parentE r n0
where go i = do
n <- nextM
store dfnE i n
store sdnoE i n
store ndfsE n i
store labelE i i
ss <- succsM i
forM_ ss (\j-> do
s <- sdnoM j
case s==0 of
False-> return()
True-> do
store parentE j i
go j)
-----------------------------------------------------------------------------
initEnv :: Rooted -> ST s (Env s)
initEnv (r0,g0) = do
let (g,rnmap) = renum 1 g0
pred = predG g
r = rnmap IM.! r0
n = IM.size g
ns = [0..n]
m = n+1
let bucket = IM.fromList
(zip ns (repeat mempty))
rna <- newI m
writes rna (fmap swap
(IM.toList rnmap))
doms <- newI m
sdno <- newI m
size <- newI m
parent <- newI m
ancestor <- newI m
child <- newI m
label <- newI m
ndfs <- newI m
dfn <- newI m
forM_ [0..n] (doms.=0)
forM_ [0..n] (sdno.=0)
forM_ [1..n] (size.=1)
forM_ [0..n] (ancestor.=0)
forM_ [0..n] (child.=0)
(doms.=r) r
(size.=0) 0
(label.=0) 0
return (Env
{rnE = rna
,dfsE = 0
,zeroE = 0
,rootE = r
,labelE = label
,parentE = parent
,ancestorE = ancestor
,childE = child
,ndfsE = ndfs
,dfnE = dfn
,sdnoE = sdno
,sizeE = size
,succE = g
,predE = pred
,bucketE = bucket
,domE = doms})
fromEnv :: Dom s [(Node,Node)]
fromEnv = do
dom <- gets domE
rn <- gets rnE
-- r <- gets rootE
(_,n) <- st (getBounds dom)
forM [1..n] (\i-> do
j <- st(rn!:i)
d <- st(dom!:i)
k <- st(rn!:d)
return (j,k))
-----------------------------------------------------------------------------
zeroM :: Dom s Node
zeroM = gets zeroE
domM :: Node -> Dom s Node
domM = fetch domE
rootM :: Dom s Node
rootM = gets rootE
succsM :: Node -> Dom s [Node]
succsM i = gets (IS.toList . (! i) . succE)
predsM :: Node -> Dom s [Node]
predsM i = gets (IS.toList . (! i) . predE)
bucketM :: Node -> Dom s [Node]
bucketM i = gets (IS.toList . (! i) . bucketE)
sizeM :: Node -> Dom s Int
sizeM = fetch sizeE
sdnoM :: Node -> Dom s Int
sdnoM = fetch sdnoE
-- dfnM :: Node -> Dom s Int
-- dfnM = fetch dfnE
ndfsM :: Int -> Dom s Node
ndfsM = fetch ndfsE
childM :: Node -> Dom s Node
childM = fetch childE
ancestorM :: Node -> Dom s Node
ancestorM = fetch ancestorE
parentM :: Node -> Dom s Node
parentM = fetch parentE
labelM :: Node -> Dom s Node
labelM = fetch labelE
nextM :: Dom s Int
nextM = do
n <- gets dfsE
let n' = n+1
modify(\e->e{dfsE=n'})
return n'
-----------------------------------------------------------------------------
type A = STUArray
type Arr s a = A s Int a
infixl 9 !:
infixr 2 .=
(.=) :: (MArray (A s) a (ST s))
=> Arr s a -> a -> Int -> ST s ()
(v .= x) i
| debugIsOn = writeArray v i x
| otherwise = unsafeWrite v i x
(!:) :: (MArray (A s) a (ST s))
=> A s Int a -> Int -> ST s a
a !: i
| debugIsOn = do
o <- readArray a i
return $! o
| otherwise = do
o <- unsafeRead a i
return $! o
new :: (MArray (A s) a (ST s))
=> Int -> ST s (Arr s a)
new n = unsafeNewArray_ (0,n-1)
newI :: Int -> ST s (Arr s Int)
newI = new
-- newD :: Int -> ST s (Arr s Double)
-- newD = new
-- dump :: (MArray (A s) a (ST s)) => Arr s a -> ST s [a]
-- dump a = do
-- (m,n) <- getBounds a
-- forM [m..n] (\i -> a!:i)
writes :: (MArray (A s) a (ST s))
=> Arr s a -> [(Int,a)] -> ST s ()
writes a xs = forM_ xs (\(i,x) -> (a.=x) i)
-- arr :: (MArray (A s) a (ST s)) => [a] -> ST s (Arr s a)
-- arr xs = do
-- let n = length xs
-- a <- new n
-- go a n 0 xs
-- return a
-- where go _ _ _ [] = return ()
-- go a n i (x:xs)
-- | i <= n = (a.=x) i >> go a n (i+1) xs
-- | otherwise = return ()
-----------------------------------------------------------------------------
(!) :: Monoid a => IntMap a -> Int -> a
(!) g n = maybe mempty id (IM.lookup n g)
fromAdj :: [(Node, [Node])] -> Graph
fromAdj = IM.fromList . fmap (second IS.fromList)
fromEdges :: [Edge] -> Graph
fromEdges = collectI IS.union fst (IS.singleton . snd)
toAdj :: Graph -> [(Node, [Node])]
toAdj = fmap (second IS.toList) . IM.toList
toEdges :: Graph -> [Edge]
toEdges = concatMap (uncurry (fmap . (,))) . toAdj
predG :: Graph -> Graph
predG g = IM.unionWith IS.union (go g) g0
where g0 = fmap (const mempty) g
f :: IntMap IntSet -> Int -> IntSet -> IntMap IntSet
f m i a = foldl' (\m p -> IM.insertWith mappend p
(IS.singleton i) m)
m
(IS.toList a)
go :: IntMap IntSet -> IntMap IntSet
go = flip IM.foldlWithKey' mempty f
pruneReach :: Rooted -> Rooted
pruneReach (r,g) = (r,g2)
where is = reachable
(maybe mempty id
. flip IM.lookup g) $ r
g2 = IM.fromList
. fmap (second (IS.filter (`IS.member`is)))
. filter ((`IS.member`is) . fst)
. IM.toList $ g
tip :: Tree a -> (a, [Tree a])
tip (Node a ts) = (a, ts)
parents :: Tree a -> [(a, a)]
parents (Node i xs) = p i xs
++ concatMap parents xs
where p i = fmap (flip (,) i . rootLabel)
ancestors :: Tree a -> [(a, [a])]
ancestors = go []
where go acc (Node i xs)
= let acc' = i:acc
in p acc' xs ++ concatMap (go acc') xs
p is = fmap (flip (,) is . rootLabel)
asGraph :: Tree Node -> Rooted
asGraph t@(Node a _) = let g = go t in (a, fromAdj g)
where go (Node a ts) = let as = (fst . unzip . fmap tip) ts
in (a, as) : concatMap go ts
asTree :: Rooted -> Tree Node
asTree (r,g) = let go a = Node a (fmap go ((IS.toList . f) a))
f = (g !)
in go r
reachable :: (Node -> NodeSet) -> (Node -> NodeSet)
reachable f a = go (IS.singleton a) a
where go seen a = let s = f a
as = IS.toList (s `IS.difference` seen)
in foldl' go (s `IS.union` seen) as
collectI :: (c -> c -> c)
-> (a -> Int) -> (a -> c) -> [a] -> IntMap c
collectI (<>) f g
= foldl' (\m a -> IM.insertWith (<>)
(f a)
(g a) m) mempty
-- collect :: (Ord b) => (c -> c -> c)
-- -> (a -> b) -> (a -> c) -> [a] -> Map b c
-- collect (<>) f g
-- = foldl' (\m a -> SM.insertWith (<>)
-- (f a)
-- (g a) m) mempty
-- (renamed, old -> new)
renum :: Int -> Graph -> (Graph, NodeMap Node)
renum from = (\(_,m,g)->(g,m))
. IM.foldlWithKey'
f (from,mempty,mempty)
where
f :: (Int, NodeMap Node, IntMap IntSet) -> Node -> IntSet
-> (Int, NodeMap Node, IntMap IntSet)
f (!n,!env,!new) i ss =
let (j,n2,env2) = go n env i
(n3,env3,ss2) = IS.fold
(\k (!n,!env,!new)->
case go n env k of
(l,n2,env2)-> (n2,env2,l `IS.insert` new))
(n2,env2,mempty) ss
new2 = IM.insertWith IS.union j ss2 new
in (n3,env3,new2)
go :: Int
-> NodeMap Node
-> Node
-> (Node,Int,NodeMap Node)
go !n !env i =
case IM.lookup i env of
Just j -> (j,n,env)
Nothing -> (n,n+1,IM.insert i n env)
-----------------------------------------------------------------------------
newtype S z s a = S {unS :: forall o. (a -> s -> ST z o) -> s -> ST z o}
instance Functor (S z s) where
fmap f (S g) = S (\k -> g (k . f))
instance Monad (S z s) where
return = pure
S g >>= f = S (\k -> g (\a -> unS (f a) k))
instance Applicative (S z s) where
pure a = S (\k -> k a)
(<*>) = ap
-- get :: S z s s
-- get = S (\k s -> k s s)
gets :: (s -> a) -> S z s a
gets f = S (\k s -> k (f s) s)
-- set :: s -> S z s ()
-- set s = S (\k _ -> k () s)
modify :: (s -> s) -> S z s ()
modify f = S (\k -> k () . f)
-- runS :: S z s a -> s -> ST z (a, s)
-- runS (S g) = g (\a s -> return (a,s))
evalS :: S z s a -> s -> ST z a
evalS (S g) = g ((return .) . const)
-- execS :: S z s a -> s -> ST z s
-- execS (S g) = g ((return .) . flip const)
st :: ST z a -> S z s a
st m = S (\k s-> do
a <- m
k a s)
store :: (MArray (A z) a (ST z))
=> (s -> Arr z a) -> Int -> a -> S z s ()
store f i x = do
a <- gets f
st ((a.=x) i)
fetch :: (MArray (A z) a (ST z))
=> (s -> Arr z a) -> Int -> S z s a
fetch f i = do
a <- gets f
st (a!:i)
|