summaryrefslogtreecommitdiff
path: root/compiler/utils/FastString.hs
blob: b1024bd41bf82fb4dd17f3785db0876fff2f1e82 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
-- (c) The University of Glasgow, 1997-2006

{-# LANGUAGE BangPatterns, CPP, MagicHash, UnboxedTuples,
    GeneralizedNewtypeDeriving, RecordWildCards, BangPatterns #-}
{-# OPTIONS_GHC -O2 -funbox-strict-fields #-}
-- We always optimise this, otherwise performance of a non-optimised
-- compiler is severely affected

-- |
-- There are two principal string types used internally by GHC:
--
-- ['FastString']
--
--   * A compact, hash-consed, representation of character strings.
--   * Comparison is O(1), and you can get a 'Unique.Unique' from them.
--   * Generated by 'fsLit'.
--   * Turn into 'Outputable.SDoc' with 'Outputable.ftext'.
--
-- ['PtrString']
--
--   * Pointer and size of a Latin-1 encoded string.
--   * Practically no operations.
--   * Outputing them is fast.
--   * Generated by 'sLit'.
--   * Turn into 'Outputable.SDoc' with 'Outputable.ptext'
--   * Requires manual memory management.
--     Improper use may lead to memory leaks or dangling pointers.
--   * It assumes Latin-1 as the encoding, therefore it cannot represent
--     arbitrary Unicode strings.
--
-- Use 'PtrString' unless you want the facilities of 'FastString'.
module FastString
       (
        -- * ByteString
        bytesFS,            -- :: FastString -> ByteString
        fastStringToByteString, -- = bytesFS (kept for haddock)
        mkFastStringByteString,
        fastZStringToByteString,
        unsafeMkByteString,

        -- * FastZString
        FastZString,
        hPutFZS,
        zString,
        lengthFZS,

        -- * FastStrings
        FastString,     -- not abstract, for now.

        -- ** Construction
        fsLit,
        mkFastString,
        mkFastStringBytes,
        mkFastStringByteList,
        mkFastString#,

        -- ** Deconstruction
        unpackFS,           -- :: FastString -> String

        -- ** Encoding
        zEncodeFS,

        -- ** Operations
        lengthFS,
        nullFS,
        appendFS,
        headFS,
        tailFS,
        concatFS,
        consFS,
        nilFS,
        isUnderscoreFS,

        -- ** Class
        HasFastString(..),

        -- ** Outputing
        hPutFS,

        -- ** Internal
        getFastStringTable,
        fastStringGcCounter,
        uniqueOfFS,
        gcTable,
        FastStringTable(..),
        FastStringTableSegment(..),

        stringTable,

        -- * PtrStrings
        PtrString (..),

        -- ** Construction
        sLit,
        mkPtrString#,
        mkPtrString,

        -- ** Deconstruction
        unpackPtrString,

        -- ** Operations
        lengthPS
       ) where

#include "HsVersions.h"

import GhcPrelude as Prelude

import Encoding
import FastFunctions
import PlainPanic
import Util
import GHC.Prim
import GHC.ST

import Control.Concurrent.MVar
import Control.DeepSeq
import Control.Monad
import Data.ByteString (ByteString)
import Data.ByteString.Short.Internal (ShortByteString(..))
import qualified Data.ByteString          as BS
import qualified Data.ByteString.Char8    as BSC
import qualified Data.ByteString.Internal as BS
import qualified Data.ByteString.Unsafe   as BS
import qualified Data.ByteString.Short    as BSS
import Foreign.C
import GHC.Exts
import System.IO
import Data.Data
import Data.IORef
import Data.Char
import Data.Semigroup as Semi

import System.Mem.Weak

import GHC.IO

import Foreign

#if STAGE >= 2
import GHC.Conc.Sync    (sharedCAF)
#endif

import GHC.Base         ( unpackCString#, unpackNBytes# )
import GHC.ForeignPtr
import GHC.Weak
import System.Mem
import MonadUtils


-- | Gives the UTF-8 encoded bytes corresponding to a 'FastString'
bytesFS :: FastString -> ByteString
bytesFS (FastString f) = BSS.fromShort f

{-# DEPRECATED fastStringToByteString "Use `bytesFS` instead" #-}
fastStringToByteString :: FastString -> ByteString
fastStringToByteString = bytesFS

fastZStringToByteString :: FastZString -> ByteString
fastZStringToByteString (FastZString bs) = bs

-- This will drop information if any character > '\xFF'
unsafeMkByteString :: String -> ByteString
unsafeMkByteString = BSC.pack

hashFastString :: FastString -> Int
hashFastString (FastString bs)
    = hashStr bs (BSS.length bs)

-- -----------------------------------------------------------------------------

newtype FastZString = FastZString ByteString
  deriving NFData

hPutFZS :: Handle -> FastZString -> IO ()
hPutFZS handle (FastZString bs) = BS.hPut handle bs

zString :: FastZString -> String
zString (FastZString bs) =
    inlinePerformIO $ BS.unsafeUseAsCStringLen bs peekCAStringLen

lengthFZS :: FastZString -> Int
lengthFZS (FastZString bs) = BS.length bs

mkFastZStringString :: String -> FastZString
mkFastZStringString str = FastZString (BSC.pack str)

-- -----------------------------------------------------------------------------

class HasFastString a where
  getFastString :: a -> FastString

instance HasFastString FastString where
  getFastString = id

{-|
A 'FastString' is an array of bytes, hashed to support fast O(1)
comparison.  It is also associated with a character encoding, so that
we know how to convert a 'FastString' to the local encoding, or to the
Z-encoding used by the compiler internally.

'FastString's support a memoized conversion to the Z-encoding via zEncodeFS.
-}

newtype FastString = FastString {
      -- A pinned ByteArray#
      fs_bs   :: ShortByteString
  }

-- It is sufficient to test pointer equality as we guarantee that
-- each string is uniquely allocated.
instance Eq FastString where
  (FastString (SBS ba)) == (FastString (SBS ba'))  =
    case reallyUnsafePtrEquality# (unsafeCoerce# ba) (unsafeCoerce# ba') of
      0# -> False
      1# -> True
      _  -> panic "FastString Eq"
  {-# NOINLINE (==) #-}


instance Ord FastString where
    -- Compares lexicographically, not by unique
    a <= b = case cmpFS a b of { LT -> True;  EQ -> True;  GT -> False }
    a <  b = case cmpFS a b of { LT -> True;  EQ -> False; GT -> False }
    a >= b = case cmpFS a b of { LT -> False; EQ -> True;  GT -> True  }
    a >  b = case cmpFS a b of { LT -> False; EQ -> False; GT -> True  }
    max x y | x >= y    =  x
            | otherwise =  y
    min x y | x <= y    =  x
            | otherwise =  y
    compare a b = cmpFS a b

instance IsString FastString where
    fromString = fsLit

instance Semi.Semigroup FastString where
    (<>) = appendFS

instance Monoid FastString where
    mempty = nilFS
    mappend = (Semi.<>)
    mconcat = concatFS

instance Show FastString where
   show fs = show (unpackFS fs)

instance Data FastString where
  -- don't traverse?
  toConstr _   = abstractConstr "FastString"
  gunfold _ _  = error "gunfold"
  dataTypeOf _ = mkNoRepType "FastString"

cmpFS :: FastString -> FastString -> Ordering
cmpFS f1@(FastString u1) f2@(FastString u2) =
  if f1 == f2 then EQ else
  compare u1 u2

-- -----------------------------------------------------------------------------
-- Construction

{-
Internally, the compiler will maintain a fast string symbol table, providing
sharing and fast comparison. Creation of new @FastString@s then covertly does a
lookup, re-using the @FastString@ if there was a hit.

The design of the FastString hash table allows for lockless concurrent reads
and updates to multiple buckets with low synchronization overhead.

See Note [Updating the FastString table] on how it's updated.
-}
data FastStringTable = FastStringTable
  {-# UNPACK #-} !(IORef Int) -- the unique ID counter shared with all buckets
  (Array# (IORef FastStringTableSegment)) -- concurrent segments

data FastStringTableSegment = FastStringTableSegment
  {-# UNPACK #-} !(MVar ()) -- the lock for write in each segment
  {-# UNPACK #-} !(IORef Int) -- the number of elements
  (MutableArray# RealWorld [Either FastString (Weak FastString)]) -- buckets in this segment

{-
Following parameters are determined based on:

* Benchmark based on testsuite/tests/utils/should_run/T14854.hs
* Stats of @echo :browse | ghc --interactive -dfaststring-stats >/dev/null@:
  on 2018-10-24, we have 13920 entries.
-}
segmentBits, numSegments, segmentMask, initialNumBuckets :: Int
segmentBits = 8
numSegments = 256   -- bit segmentBits
segmentMask = 0xff  -- bit segmentBits - 1
initialNumBuckets = 64

hashToSegment# :: Int# -> Int#
hashToSegment# hash# = hash# `andI#` segmentMask#
  where
    !(I# segmentMask#) = segmentMask

hashToIndex# :: MutableArray# RealWorld [Either FastString (Weak FastString)] -> Int# -> Int#
hashToIndex# buckets# hash# =
  (hash# `uncheckedIShiftRL#` segmentBits#) `remInt#` size#
  where
    !(I# segmentBits#) = segmentBits
    size# = sizeofMutableArray# buckets#


mkWeakFS :: FastString -> IO (Weak FastString)
mkWeakFS !fs = IO $ \s ->
  case mkWeak# fpc fs fin s of
    (# s1, w #) -> (# s1, Weak w #)

  where
    (IO fin) = atomicModifyIORef' fastStringGcCounter (\x -> (x +1, ()))
    fpc = case fs of
            (FastString (SBS ba)) -> ba

unweakFS :: Weak FastString -> IO (Maybe FastString)
unweakFS x  = do
 w <- deRefWeak x
 case w of
   Just fs -> return (Just fs)
   Nothing -> print "GC" >> return Nothing

gcTable :: IO ()
gcTable = do
  forM_ [0 .. (I# sz) - 1] $ \(I# i#) -> do
    let (# iref #) = indexArray# segments# i#
    gcSegment iref
  performGC
  forM_ [0 .. (I# sz) - 1] $ \(I# i#) -> do
    let (# iref #) = indexArray# segments# i#
    collectSegment iref

  where
    !(FastStringTable _uid segments#) = stringTable
    sz = sizeofArray# segments#

gcSegment :: IORef FastStringTableSegment -> IO ()
gcSegment segmentRef = do
  (FastStringTableSegment _lock _counter old#) <- readIORef segmentRef
  let size# = sizeofMutableArray# old#
  forM_ [0 .. (I# size#) - 1] $ \(I# i#) -> do
    fsList <- IO $ readArray# old# i#
    new_list <- mapM (fmap Right . either mkWeakFS return) fsList
    IO $ \s -> case writeArray# old# i# new_list s of
                  s2# -> (# s2#, () #)

collectSegment :: IORef FastStringTableSegment -> IO ()
collectSegment segmentRef = do
  (FastStringTableSegment _lock _counter old#) <- readIORef segmentRef
  let size# = sizeofMutableArray# old#
  forM_ [0 .. (I# size#) - 1] $ \(I# i#) -> do
    fsList <- IO $ readArray# old# i#
    new_fs_list <- map Left <$> mapMaybeM (either (return . Just) unweakFS) fsList
    IO $ \s -> case writeArray# old# i# new_fs_list s of
                  s3# -> (# s3#, () #)



maybeResizeSegment :: IORef FastStringTableSegment -> IO FastStringTableSegment
maybeResizeSegment segmentRef = do
  segment@(FastStringTableSegment lock counter old#) <- readIORef segmentRef
  let oldSize# = sizeofMutableArray# old#
      newSize# = oldSize# *# 2#
  (I# n#) <- readIORef counter
  if isTrue# (n# <# newSize#) -- maximum load of 1
  then return segment
  else do
    resizedSegment@(FastStringTableSegment _ _ new#) <- IO $ \s1# ->
      case newArray# newSize# [] s1# of
        (# s2#, arr# #) -> (# s2#, FastStringTableSegment lock counter arr# #)
    forM_ [0 .. (I# oldSize#) - 1] $ \(I# i#) -> do
      fsList <- IO $ readArray# old# i#
      forM_ fsList $ \wfs -> do
        mfs <- either (return . Just) deRefWeak wfs
        case mfs of
          Just fs -> do
            let -- Shall we store in hash value in FastString instead?
              !(I# hash#) = hashFastString fs
              idx# = hashToIndex# new# hash#
            IO $ \s1# ->
              case readArray# new# idx# s1# of
                (# s2#, bucket #) -> case writeArray# new# idx# (wfs: bucket) s2# of
                  s3# -> (# s3#, () #)
          -- WeakPTRs get GCd on resize
          Nothing -> return ()
    writeIORef segmentRef resizedSegment
    return resizedSegment

{-# NOINLINE stringTable #-}
stringTable :: FastStringTable
stringTable = unsafePerformIO $ do
  let !(I# numSegments#) = numSegments
      !(I# initialNumBuckets#) = initialNumBuckets
      loop a# i# s1#
        | isTrue# (i# ==# numSegments#) = s1#
        | otherwise = case newMVar () `unIO` s1# of
            (# s2#, lock #) -> case newIORef 0 `unIO` s2# of
              (# s3#, counter #) -> case newArray# initialNumBuckets# [] s3# of
                (# s4#, buckets# #) -> case newIORef
                    (FastStringTableSegment lock counter buckets#) `unIO` s4# of
                  (# s5#, segment #) -> case writeArray# a# i# segment s5# of
                    s6# -> loop a# (i# +# 1#) s6#
  uid <- newIORef 603979776 -- ord '$' * 0x01000000
  tab <- IO $ \s1# ->
    case newArray# numSegments# (panic "string_table") s1# of
      (# s2#, arr# #) -> case loop arr# 0# s2# of
        s3# -> case unsafeFreezeArray# arr# s3# of
          (# s4#, segments# #) -> (# s4#, FastStringTable uid segments# #)

  -- use the support wired into the RTS to share this CAF among all images of
  -- libHSghc
#if STAGE < 2
  return tab
#else
  sharedCAF tab getOrSetLibHSghcFastStringTable

-- from the RTS; thus we cannot use this mechanism when STAGE<2; the previous
-- RTS might not have this symbol
foreign import ccall unsafe "getOrSetLibHSghcFastStringTable"
  getOrSetLibHSghcFastStringTable :: Ptr a -> IO (Ptr a)
#endif

{-

We include the FastString table in the `sharedCAF` mechanism because we'd like
FastStrings created by a Core plugin to have the same uniques as corresponding
strings created by the host compiler itself.  For example, this allows plugins
to lookup known names (eg `mkTcOcc "MySpecialType"`) in the GlobalRdrEnv or
even re-invoke the parser.

In particular, the following little sanity test was failing in a plugin
prototyping safe newtype-coercions: GHC.NT.Type.NT was imported, but could not
be looked up /by the plugin/.

   let rdrName = mkModuleName "GHC.NT.Type" `mkRdrQual` mkTcOcc "NT"
   putMsgS $ showSDoc dflags $ ppr $ lookupGRE_RdrName rdrName $ mg_rdr_env guts

`mkTcOcc` involves the lookup (or creation) of a FastString.  Since the
plugin's FastString.string_table is empty, constructing the RdrName also
allocates new uniques for the FastStrings "GHC.NT.Type" and "NT".  These
uniques are almost certainly unequal to the ones that the host compiler
originally assigned to those FastStrings.  Thus the lookup fails since the
domain of the GlobalRdrEnv is affected by the RdrName's OccName's FastString's
unique.

Maintaining synchronization of the two instances of this global is rather
difficult because of the uses of `unsafePerformIO` in this module.  Not
synchronizing them risks breaking the rather major invariant that two
FastStrings with the same unique have the same string. Thus we use the
lower-level `sharedCAF` mechanism that relies on Globals.c.

-}

mkFastString# :: Addr# -> FastString
mkFastString# a# = mkFastStringBytes ptr (ptrStrLength ptr)
  where ptr = Ptr a#

fastStringGcCounter :: IORef Int
fastStringGcCounter = unsafePerformIO $ newIORef 0
{-# NOINLINE fastStringGcCounter #-}

{- Note [Updating the FastString table]

We use a concurrent hashtable which contains multiple segments, each hash value
always maps to the same segment. Read is lock-free, write to the a segment
should acquire a lock for that segment to avoid race condition, writes to
different segments are independent.

The procedure goes like this:

1. Find out which segment to operate on based on the hash value
2. Read the relevant bucket and perform a look up of the string.
3. If it exists, return it.
4. Otherwise grab a unique ID, create a new FastString and atomically attempt
   to update the relevant segment with this FastString:

   * Resize the segment by doubling the number of buckets when the number of
     FastStrings in this segment grows beyond the threshold.
   * Double check that the string is not in the bucket. Another thread may have
     inserted it while we were creating our string.
   * Return the existing FastString if it exists. The one we preemptively
     created will get GCed.
   * Otherwise, insert and return the string we created.
-}

mkFastStringWith :: ShortByteString -> IO FastString
mkFastStringWith sbs = do
  FastStringTableSegment lock _ buckets# <- readIORef segmentRef
  let idx# = hashToIndex# buckets# hash#
  bucket <- IO $ readArray# buckets# idx#
  res <- bucket_match bucket len sbs
  case res of
    Just found -> return found
    Nothing -> do
      -- The withMVar below is not dupable. It can lead to deadlock if it is
      -- only run partially and putMVar is not called after takeMVar.
      noDuplicate
      withMVar lock $ \_ -> insert (FastString sbs)
  where
    len = BSS.length sbs
    !(FastStringTable _uid segments#) = stringTable

    !(I# hash#) = hashStr sbs len
    (# segmentRef #) = indexArray# segments# (hashToSegment# hash#)
    insert !fs = do
      FastStringTableSegment _ counter buckets# <- maybeResizeSegment segmentRef
      let idx# = hashToIndex# buckets# hash#
      bucket <- IO $ readArray# buckets# idx#
      res <- bucket_match bucket len sbs
      case res of
        -- The FastString was added by another thread after previous read and
        -- before we acquired the write lock.
        Just found -> return found
        Nothing -> do
--          print $ "NOT FOUND:" <> (show fs)
--          let !(BS.PS (ForeignPtr fptr _) _ _) = fs_bs fs
          v <- mkWeakFS fs
          IO $ \s1# ->
            case writeArray# buckets# idx# (Right v: bucket) s1# of
              s2# -> (# s2#, () #)
          modifyIORef' counter succ
          return fs
          {-
    delete_fs :: Int -> IO ()
    delete_fs fs = do
      FastStringTableSegment _ _ buckets# <- readIORef segmentRef
      let idx# = hashToIndex# buckets# hash#
      bucket <- IO $ readArray# buckets# idx#
      IO $ \s1# -> do
        case writeArray# buckets# idx# (filter ((/= fs) . uniqueOfFS) bucket) s1# of
              s2# -> (# s2#, () #)
              -}

bucket_match :: [Either FastString (Weak FastString)] -> Int
             -> ShortByteString
             -> IO (Maybe FastString)
bucket_match [] _ _ = return Nothing
bucket_match (v:ls) len sbs = do
  mv <- either (return . Just) deRefWeak v
  case mv of
    Just fs@(FastString hbs) ->
      if hbs == sbs
        then return (Just fs)
        else bucket_match ls len sbs
    Nothing -> bucket_match ls len sbs

data MBA a = MBA (MutableByteArray# a)

newPinnedByteArray :: Int -> ST s (MBA s)
newPinnedByteArray (I# len#) =
    ST $ \s -> case newPinnedByteArray# len# s of
                 (# s, mba# #) -> (# s, MBA mba# #)

toShort :: ByteString -> ShortByteString
toShort !bs = unsafeDupablePerformIO (toShortIO bs)

toShortIO :: ByteString -> IO ShortByteString
toShortIO (BS.PS fptr off len) = do
    m@(MBA mba) <- stToIO (newPinnedByteArray len)
    let ptr = unsafeForeignPtrToPtr fptr
    stToIO (copyAddrToByteArray (ptr `plusPtr` off) m 0 len)
    touchForeignPtr fptr
    ba <- IO $ \s -> case unsafeFreezeByteArray# mba s of
                 (# s, ba# #) -> (# s, SBS ba# #)
    return ba



copyAddrToByteArray :: Ptr a -> MBA s -> Int -> Int -> ST s ()
copyAddrToByteArray (Ptr src#) (MBA dst#) (I# dst_off#) (I# len#) =
    ST $ \s -> case copyAddrToByteArray# src# dst# dst_off# len# s of
                 s -> (# s, () #)

createFromPtr :: Ptr a   -- ^ source data
              -> Int     -- ^ number of bytes to copy
              -> IO ShortByteString
createFromPtr !ptr len = do
    stToIO $ do
      m@(MBA mba) <- newPinnedByteArray len
      copyAddrToByteArray ptr m 0 len
      ST $ \s -> case unsafeFreezeByteArray# mba s of
                  (# s, ba# #) -> (# s, SBS ba# #)

mkFastStringBytes :: Ptr Word8 -> Int -> FastString
mkFastStringBytes !ptr !len =
    -- NB: Might as well use unsafeDupablePerformIO, since mkFastStringWith is
    -- idempotent.
    unsafeDupablePerformIO $
        mkFastStringWith =<< createFromPtr ptr len

-- | Create a 'FastString' from an existing 'ForeignPtr'; the difference
-- between this and 'mkFastStringBytes' is that we don't have to copy
-- the bytes if the string is new to the table.
mkFastStringByteString :: ByteString -> FastString
mkFastStringByteString bs = unsafeDupablePerformIO $ mkFastStringWith (toShort bs)

-- Need to convert to a pinned array
mkFastStringShortByteString :: ShortByteString -> FastString
mkFastStringShortByteString sbs = unsafeDupablePerformIO $ mkFastStringWith (toShort $ BSS.fromShort sbs)

-- | Creates a UTF-8 encoded 'FastString' from a 'String'
mkFastString :: String -> FastString
mkFastString str =
  unsafeDupablePerformIO $ do
    let l = utf8EncodedLength str
    buf <- mallocForeignPtrBytes l
    withForeignPtr buf $ \ptr -> do
      utf8EncodeString ptr str
      return $ mkFastStringBytes ptr l

-- | Creates a 'FastString' from a UTF-8 encoded @[Word8]@
mkFastStringByteList :: [Word8] -> FastString
mkFastStringByteList str = mkFastStringByteString (BS.pack str)

-- | Creates a Z-encoded 'FastString' from a 'String'
mkZFastString :: String -> FastZString
mkZFastString = mkFastZStringString

hashStr  :: ShortByteString -> Int -> Int
 -- use the Addr to produce a hash value between 0 & m (inclusive)
hashStr (SBS ba#) (I# len#) = loop 0# 0#
   where
    loop h n | isTrue# (n ==# len#) = I# h
             | otherwise  = loop h2 (n +# 1#)
          where
            !c = ord# (indexCharArray# ba# n)
            !h2 = (h *# 16777619#) `xorI#` c

-- -----------------------------------------------------------------------------
-- Operations

-- | Returns the length of the 'FastString' in characters
lengthFS :: FastString -> Int
lengthFS (FastString fs) = BSS.length fs

-- | Returns @True@ if the 'FastString' is empty
nullFS :: FastString -> Bool
nullFS f = BSS.null (fs_bs f)

-- | Unpacks and decodes the FastString
unpackFS :: FastString -> String
unpackFS fs = utf8DecodeByteString (bytesFS fs)

zEncodeFS :: FastString -> FastZString
zEncodeFS fs = mkZFastString (zEncodeString (unpackFS fs))

appendFS :: FastString -> FastString -> FastString
appendFS fs1 fs2 = mkFastStringShortByteString
                 $ mappend (fs_bs fs1) (fs_bs fs2)

concatFS :: [FastString] -> FastString
concatFS = mkFastStringShortByteString . mconcat . map fs_bs

headFS :: FastString -> Char
headFS fs = head $ unpackFS fs

tailFS :: FastString -> FastString
tailFS fs = mkFastString (tail $ unpackFS fs)

consFS :: Char -> FastString -> FastString
consFS c fs = mkFastString (c : unpackFS fs)

-- MP: I think this is safe because the bytestring will take up
-- the start position + (length * words) space, so adding the offset will
-- still be a memory position within the bytestring
uniqueOfFS :: FastString -> Int
uniqueOfFS (FastString (SBS ba#)) =
  (I# (addr2Int# (byteArrayContents# ba#)))

nilFS :: FastString
nilFS = mkFastString ""

isUnderscoreFS :: FastString -> Bool
isUnderscoreFS fs = fs == fsLit "_"

-- -----------------------------------------------------------------------------
-- Stats

getFastStringTable :: IO [[[Either FastString (Weak FastString)]]]
getFastStringTable =
  forM [0 .. numSegments - 1] $ \(I# i#) -> do
    let (# segmentRef #) = indexArray# segments# i#
    FastStringTableSegment _ _ buckets# <- readIORef segmentRef
    let bucketSize = I# (sizeofMutableArray# buckets#)
    forM [0 .. bucketSize - 1] $ \(I# j#) ->
      IO $ readArray# buckets# j#
  where
    !(FastStringTable _ segments#) = stringTable

-- -----------------------------------------------------------------------------
-- Outputting 'FastString's

-- |Outputs a 'FastString' with /no decoding at all/, that is, you
-- get the actual bytes in the 'FastString' written to the 'Handle'.
hPutFS :: Handle -> FastString -> IO ()
hPutFS handle fs = BS.hPut handle $ bytesFS fs

-- ToDo: we'll probably want an hPutFSLocal, or something, to output
-- in the current locale's encoding (for error messages and suchlike).

-- -----------------------------------------------------------------------------
-- PtrStrings, here for convenience only.

-- | A 'PtrString' is a pointer to some array of Latin-1 encoded chars.
data PtrString = PtrString !(Ptr Word8) !Int

-- | Wrap an unboxed address into a 'PtrString'.
mkPtrString# :: Addr# -> PtrString
mkPtrString# a# = PtrString (Ptr a#) (ptrStrLength (Ptr a#))

-- | Encode a 'String' into a newly allocated 'PtrString' using Latin-1
-- encoding.  The original string must not contain non-Latin-1 characters
-- (above codepoint @0xff@).
{-# INLINE mkPtrString #-}
mkPtrString :: String -> PtrString
mkPtrString s =
 -- we don't use `unsafeDupablePerformIO` here to avoid potential memory leaks
 -- and because someone might be using `eqAddr#` to check for string equality.
 unsafePerformIO (do
   let len = length s
   p <- mallocBytes len
   let
     loop :: Int -> String -> IO ()
     loop !_ []    = return ()
     loop n (c:cs) = do
        pokeByteOff p n (fromIntegral (ord c) :: Word8)
        loop (1+n) cs
   loop 0 s
   return (PtrString p len)
 )

-- | Decode a 'PtrString' back into a 'String' using Latin-1 encoding.
-- This does not free the memory associated with 'PtrString'.
unpackPtrString :: PtrString -> String
unpackPtrString (PtrString (Ptr p#) (I# n#)) = unpackNBytes# p# n#

-- | Return the length of a 'PtrString'
lengthPS :: PtrString -> Int
lengthPS (PtrString _ n) = n

-- -----------------------------------------------------------------------------
-- under the carpet

foreign import ccall unsafe "strlen"
  ptrStrLength :: Ptr Word8 -> Int

{-# NOINLINE sLit #-}
sLit :: String -> PtrString
sLit x  = mkPtrString x

{-# NOINLINE fsLit #-}
fsLit :: String -> FastString
fsLit x = mkFastString x

{-# RULES "slit"
    forall x . sLit  (unpackCString# x) = mkPtrString#  x #-}
{-# RULES "fslit"
    forall x . fsLit (unpackCString# x) = mkFastString# x #-}