1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
|
-- | Utilities related to Monad and Applicative classes
-- Mostly for backwards compatability.
module MonadUtils
( Applicative(..)
, (<$>)
, MonadFix(..)
, MonadIO(..)
, liftIO1, liftIO2, liftIO3, liftIO4
, zipWith3M, zipWith3M_, zipWithAndUnzipM
, mapAndUnzipM, mapAndUnzip3M, mapAndUnzip4M
, mapAccumLM
, mapSndM
, concatMapM
, mapMaybeM
, fmapMaybeM, fmapEitherM
, anyM, allM, orM
, foldlM, foldlM_, foldrM
, maybeMapM
, whenM
) where
-------------------------------------------------------------------------------
-- Imports
-------------------------------------------------------------------------------
import Maybes
import Control.Applicative
import Control.Monad
import Control.Monad.Fix
import Control.Monad.IO.Class
import Prelude -- avoid redundant import warning due to AMP
-------------------------------------------------------------------------------
-- Lift combinators
-- These are used throughout the compiler
-------------------------------------------------------------------------------
-- | Lift an 'IO' operation with 1 argument into another monad
liftIO1 :: MonadIO m => (a -> IO b) -> a -> m b
liftIO1 = (.) liftIO
-- | Lift an 'IO' operation with 2 arguments into another monad
liftIO2 :: MonadIO m => (a -> b -> IO c) -> a -> b -> m c
liftIO2 = ((.).(.)) liftIO
-- | Lift an 'IO' operation with 3 arguments into another monad
liftIO3 :: MonadIO m => (a -> b -> c -> IO d) -> a -> b -> c -> m d
liftIO3 = ((.).((.).(.))) liftIO
-- | Lift an 'IO' operation with 4 arguments into another monad
liftIO4 :: MonadIO m => (a -> b -> c -> d -> IO e) -> a -> b -> c -> d -> m e
liftIO4 = (((.).(.)).((.).(.))) liftIO
-------------------------------------------------------------------------------
-- Common functions
-- These are used throughout the compiler
-------------------------------------------------------------------------------
zipWith3M :: Monad m => (a -> b -> c -> m d) -> [a] -> [b] -> [c] -> m [d]
zipWith3M _ [] _ _ = return []
zipWith3M _ _ [] _ = return []
zipWith3M _ _ _ [] = return []
zipWith3M f (x:xs) (y:ys) (z:zs)
= do { r <- f x y z
; rs <- zipWith3M f xs ys zs
; return $ r:rs
}
zipWith3M_ :: Monad m => (a -> b -> c -> m d) -> [a] -> [b] -> [c] -> m ()
zipWith3M_ f as bs cs = do { _ <- zipWith3M f as bs cs
; return () }
zipWithAndUnzipM :: Monad m
=> (a -> b -> m (c, d)) -> [a] -> [b] -> m ([c], [d])
{-# INLINE zipWithAndUnzipM #-}
-- See Note [flatten_many performance] in TcFlatten for why this
-- pragma is essential.
zipWithAndUnzipM f (x:xs) (y:ys)
= do { (c, d) <- f x y
; (cs, ds) <- zipWithAndUnzipM f xs ys
; return (c:cs, d:ds) }
zipWithAndUnzipM _ _ _ = return ([], [])
-- | mapAndUnzipM for triples
mapAndUnzip3M :: Monad m => (a -> m (b,c,d)) -> [a] -> m ([b],[c],[d])
mapAndUnzip3M _ [] = return ([],[],[])
mapAndUnzip3M f (x:xs) = do
(r1, r2, r3) <- f x
(rs1, rs2, rs3) <- mapAndUnzip3M f xs
return (r1:rs1, r2:rs2, r3:rs3)
mapAndUnzip4M :: Monad m => (a -> m (b,c,d,e)) -> [a] -> m ([b],[c],[d],[e])
mapAndUnzip4M _ [] = return ([],[],[],[])
mapAndUnzip4M f (x:xs) = do
(r1, r2, r3, r4) <- f x
(rs1, rs2, rs3, rs4) <- mapAndUnzip4M f xs
return (r1:rs1, r2:rs2, r3:rs3, r4:rs4)
-- | Monadic version of mapAccumL
mapAccumLM :: Monad m
=> (acc -> x -> m (acc, y)) -- ^ combining funcction
-> acc -- ^ initial state
-> [x] -- ^ inputs
-> m (acc, [y]) -- ^ final state, outputs
mapAccumLM _ s [] = return (s, [])
mapAccumLM f s (x:xs) = do
(s1, x') <- f s x
(s2, xs') <- mapAccumLM f s1 xs
return (s2, x' : xs')
-- | Monadic version of mapSnd
mapSndM :: Monad m => (b -> m c) -> [(a,b)] -> m [(a,c)]
mapSndM _ [] = return []
mapSndM f ((a,b):xs) = do { c <- f b; rs <- mapSndM f xs; return ((a,c):rs) }
-- | Monadic version of concatMap
concatMapM :: Monad m => (a -> m [b]) -> [a] -> m [b]
concatMapM f xs = liftM concat (mapM f xs)
-- | Monadic version of mapMaybe
mapMaybeM :: (Monad m) => (a -> m (Maybe b)) -> [a] -> m [b]
mapMaybeM f = liftM catMaybes . mapM f
-- | Monadic version of fmap
fmapMaybeM :: (Monad m) => (a -> m b) -> Maybe a -> m (Maybe b)
fmapMaybeM _ Nothing = return Nothing
fmapMaybeM f (Just x) = f x >>= (return . Just)
-- | Monadic version of fmap
fmapEitherM :: Monad m => (a -> m b) -> (c -> m d) -> Either a c -> m (Either b d)
fmapEitherM fl _ (Left a) = fl a >>= (return . Left)
fmapEitherM _ fr (Right b) = fr b >>= (return . Right)
-- | Monadic version of 'any', aborts the computation at the first @True@ value
anyM :: Monad m => (a -> m Bool) -> [a] -> m Bool
anyM _ [] = return False
anyM f (x:xs) = do b <- f x
if b then return True
else anyM f xs
-- | Monad version of 'all', aborts the computation at the first @False@ value
allM :: Monad m => (a -> m Bool) -> [a] -> m Bool
allM _ [] = return True
allM f (b:bs) = (f b) >>= (\bv -> if bv then allM f bs else return False)
-- | Monadic version of or
orM :: Monad m => m Bool -> m Bool -> m Bool
orM m1 m2 = m1 >>= \x -> if x then return True else m2
-- | Monadic version of foldl
foldlM :: (Monad m) => (a -> b -> m a) -> a -> [b] -> m a
foldlM = foldM
-- | Monadic version of foldl that discards its result
foldlM_ :: (Monad m) => (a -> b -> m a) -> a -> [b] -> m ()
foldlM_ = foldM_
-- | Monadic version of foldr
foldrM :: (Monad m) => (b -> a -> m a) -> a -> [b] -> m a
foldrM _ z [] = return z
foldrM k z (x:xs) = do { r <- foldrM k z xs; k x r }
-- | Monadic version of fmap specialised for Maybe
maybeMapM :: Monad m => (a -> m b) -> (Maybe a -> m (Maybe b))
maybeMapM _ Nothing = return Nothing
maybeMapM m (Just x) = liftM Just $ m x
-- | Monadic version of @when@, taking the condition in the monad
whenM :: Monad m => m Bool -> m () -> m ()
whenM mb thing = do { b <- mb
; when b thing }
|