1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
|
{-
(c) Bartosz Nitka, Facebook, 2015
UniqDFM: Specialised deterministic finite maps, for things with @Uniques@.
Basically, the things need to be in class @Uniquable@, and we use the
@getUnique@ method to grab their @Uniques@.
This is very similar to @UniqFM@, the major difference being that the order of
folding is not dependent on @Unique@ ordering, giving determinism.
Currently the ordering is determined by insertion order.
See Note [Unique Determinism] in Unique for explanation why @Unique@ ordering
is not deterministic.
-}
{-# LANGUAGE DeriveDataTypeable #-}
{-# LANGUAGE DeriveFunctor #-}
{-# LANGUAGE FlexibleContexts #-}
{-# OPTIONS_GHC -Wall #-}
module UniqDFM (
-- * Unique-keyed deterministic mappings
UniqDFM, -- abstract type
-- ** Manipulating those mappings
emptyUDFM,
unitUDFM,
addToUDFM,
addToUDFM_C,
addListToUDFM,
delFromUDFM,
delListFromUDFM,
adjustUDFM,
alterUDFM,
mapUDFM,
plusUDFM,
plusUDFM_C,
lookupUDFM, lookupUDFM_Directly,
elemUDFM,
foldUDFM,
eltsUDFM,
filterUDFM,
isNullUDFM,
sizeUDFM,
intersectUDFM, udfmIntersectUFM,
intersectsUDFM,
disjointUDFM, disjointUdfmUfm,
minusUDFM,
listToUDFM,
udfmMinusUFM,
partitionUDFM,
anyUDFM, allUDFM,
pprUDFM,
udfmToList,
udfmToUfm,
nonDetFoldUDFM,
alwaysUnsafeUfmToUdfm,
) where
import Unique ( Uniquable(..), Unique, getKey )
import Outputable
import qualified Data.IntMap as M
import Data.Data
import Data.List (sortBy)
import Data.Function (on)
import UniqFM (UniqFM, listToUFM_Directly, ufmToList, ufmToIntMap)
-- Note [Deterministic UniqFM]
-- ~~~~~~~~~~~~~~~~~~~~~~~~~~~
-- A @UniqDFM@ is just like @UniqFM@ with the following additional
-- property: the function `udfmToList` returns the elements in some
-- deterministic order not depending on the Unique key for those elements.
--
-- If the client of the map performs operations on the map in deterministic
-- order then `udfmToList` returns them in deterministic order.
--
-- There is an implementation cost: each element is given a serial number
-- as it is added, and `udfmToList` sorts it's result by this serial
-- number. So you should only use `UniqDFM` if you need the deterministic
-- property.
--
-- `foldUDFM` also preserves determinism.
--
-- Normal @UniqFM@ when you turn it into a list will use
-- Data.IntMap.toList function that returns the elements in the order of
-- the keys. The keys in @UniqFM@ are always @Uniques@, so you end up with
-- with a list ordered by @Uniques@.
-- The order of @Uniques@ is known to be not stable across rebuilds.
-- See Note [Unique Determinism] in Unique.
--
--
-- There's more than one way to implement this. The implementation here tags
-- every value with the insertion time that can later be used to sort the
-- values when asked to convert to a list.
--
-- An alternative would be to have
--
-- data UniqDFM ele = UDFM (M.IntMap ele) [ele]
--
-- where the list determines the order. This makes deletion tricky as we'd
-- only accumulate elements in that list, but makes merging easier as you
-- can just merge both structures independently.
-- Deletion can probably be done in amortized fashion when the size of the
-- list is twice the size of the set.
-- | A type of values tagged with insertion time
data TaggedVal val =
TaggedVal
val
{-# UNPACK #-} !Int -- ^ insertion time
deriving Data
taggedFst :: TaggedVal val -> val
taggedFst (TaggedVal v _) = v
taggedSnd :: TaggedVal val -> Int
taggedSnd (TaggedVal _ i) = i
instance Eq val => Eq (TaggedVal val) where
(TaggedVal v1 _) == (TaggedVal v2 _) = v1 == v2
instance Functor TaggedVal where
fmap f (TaggedVal val i) = TaggedVal (f val) i
-- | Type of unique deterministic finite maps
data UniqDFM ele =
UDFM
!(M.IntMap (TaggedVal ele)) -- A map where keys are Unique's values and
-- values are tagged with insertion time.
-- The invariant is that all the tags will
-- be distinct within a single map
{-# UNPACK #-} !Int -- Upper bound on the values' insertion
-- time. See Note [Overflow on plusUDFM]
deriving (Data, Functor)
emptyUDFM :: UniqDFM elt
emptyUDFM = UDFM M.empty 0
unitUDFM :: Uniquable key => key -> elt -> UniqDFM elt
unitUDFM k v = UDFM (M.singleton (getKey $ getUnique k) (TaggedVal v 0)) 1
addToUDFM :: Uniquable key => UniqDFM elt -> key -> elt -> UniqDFM elt
addToUDFM (UDFM m i) k v =
UDFM (M.insert (getKey $ getUnique k) (TaggedVal v i) m) (i + 1)
addToUDFM_Directly :: UniqDFM elt -> Unique -> elt -> UniqDFM elt
addToUDFM_Directly (UDFM m i) u v =
UDFM (M.insert (getKey u) (TaggedVal v i) m) (i + 1)
addToUDFM_Directly_C
:: (elt -> elt -> elt) -> UniqDFM elt -> Unique -> elt -> UniqDFM elt
addToUDFM_Directly_C f (UDFM m i) u v =
UDFM (M.insertWith tf (getKey u) (TaggedVal v i) m) (i + 1)
where
tf (TaggedVal a j) (TaggedVal b _) = TaggedVal (f a b) j
addListToUDFM :: Uniquable key => UniqDFM elt -> [(key,elt)] -> UniqDFM elt
addListToUDFM = foldl (\m (k, v) -> addToUDFM m k v)
addToUDFM_C
:: Uniquable key => (elt -> elt -> elt) -- old -> new -> result
-> UniqDFM elt -- old
-> key -> elt -- new
-> UniqDFM elt -- result
addToUDFM_C f (UDFM m i) k v =
UDFM (M.insertWith tf (getKey $ getUnique k) (TaggedVal v i) m) (i + 1)
where
tf (TaggedVal a j) (TaggedVal b _) = TaggedVal (f b a) j
-- Flip the arguments, just like
-- addToUFM_C does.
addListToUDFM_Directly :: UniqDFM elt -> [(Unique,elt)] -> UniqDFM elt
addListToUDFM_Directly = foldl (\m (k, v) -> addToUDFM_Directly m k v)
addListToUDFM_Directly_C
:: (elt -> elt -> elt) -> UniqDFM elt -> [(Unique,elt)] -> UniqDFM elt
addListToUDFM_Directly_C f = foldl (\m (k, v) -> addToUDFM_Directly_C f m k v)
delFromUDFM :: Uniquable key => UniqDFM elt -> key -> UniqDFM elt
delFromUDFM (UDFM m i) k = UDFM (M.delete (getKey $ getUnique k) m) i
plusUDFM_C :: (elt -> elt -> elt) -> UniqDFM elt -> UniqDFM elt -> UniqDFM elt
plusUDFM_C f udfml@(UDFM _ i) udfmr@(UDFM _ j)
-- we will use the upper bound on the tag as a proxy for the set size,
-- to insert the smaller one into the bigger one
| i > j = insertUDFMIntoLeft_C f udfml udfmr
| otherwise = insertUDFMIntoLeft_C f udfmr udfml
-- Note [Overflow on plusUDFM]
-- ~~~~~~~~~~~~~~~~~~~~~~~~~~~
-- There are multiple ways of implementing plusUDFM.
-- The main problem that needs to be solved is overlap on times of
-- insertion between different keys in two maps.
-- Consider:
--
-- A = fromList [(a, (x, 1))]
-- B = fromList [(b, (y, 1))]
--
-- If you merge them naively you end up with:
--
-- C = fromList [(a, (x, 1)), (b, (y, 1))]
--
-- Which loses information about ordering and brings us back into
-- non-deterministic world.
--
-- The solution I considered before would increment the tags on one of the
-- sets by the upper bound of the other set. The problem with this approach
-- is that you'll run out of tags for some merge patterns.
-- Say you start with A with upper bound 1, you merge A with A to get A' and
-- the upper bound becomes 2. You merge A' with A' and the upper bound
-- doubles again. After 64 merges you overflow.
-- This solution would have the same time complexity as plusUFM, namely O(n+m).
--
-- The solution I ended up with has time complexity of
-- O(m log m + m * min (n+m, W)) where m is the smaller set.
-- It simply inserts the elements of the smaller set into the larger
-- set in the order that they were inserted into the smaller set. That's
-- O(m log m) for extracting the elements from the smaller set in the
-- insertion order and O(m * min(n+m, W)) to insert them into the bigger
-- set.
plusUDFM :: UniqDFM elt -> UniqDFM elt -> UniqDFM elt
plusUDFM udfml@(UDFM _ i) udfmr@(UDFM _ j)
-- we will use the upper bound on the tag as a proxy for the set size,
-- to insert the smaller one into the bigger one
| i > j = insertUDFMIntoLeft udfml udfmr
| otherwise = insertUDFMIntoLeft udfmr udfml
insertUDFMIntoLeft :: UniqDFM elt -> UniqDFM elt -> UniqDFM elt
insertUDFMIntoLeft udfml udfmr = addListToUDFM_Directly udfml $ udfmToList udfmr
insertUDFMIntoLeft_C
:: (elt -> elt -> elt) -> UniqDFM elt -> UniqDFM elt -> UniqDFM elt
insertUDFMIntoLeft_C f udfml udfmr =
addListToUDFM_Directly_C f udfml $ udfmToList udfmr
lookupUDFM :: Uniquable key => UniqDFM elt -> key -> Maybe elt
lookupUDFM (UDFM m _i) k = taggedFst `fmap` M.lookup (getKey $ getUnique k) m
lookupUDFM_Directly :: UniqDFM elt -> Unique -> Maybe elt
lookupUDFM_Directly (UDFM m _i) k = taggedFst `fmap` M.lookup (getKey k) m
elemUDFM :: Uniquable key => key -> UniqDFM elt -> Bool
elemUDFM k (UDFM m _i) = M.member (getKey $ getUnique k) m
-- | Performs a deterministic fold over the UniqDFM.
-- It's O(n log n) while the corresponding function on `UniqFM` is O(n).
foldUDFM :: (elt -> a -> a) -> a -> UniqDFM elt -> a
foldUDFM k z m = foldr k z (eltsUDFM m)
-- | Performs a nondeterministic fold over the UniqDFM.
-- It's O(n), same as the corresponding function on `UniqFM`.
-- If you use this please provide a justification why it doesn't introduce
-- nondeterminism.
nonDetFoldUDFM :: (elt -> a -> a) -> a -> UniqDFM elt -> a
nonDetFoldUDFM k z (UDFM m _i) = foldr k z $ map taggedFst $ M.elems m
eltsUDFM :: UniqDFM elt -> [elt]
eltsUDFM (UDFM m _i) =
map taggedFst $ sortBy (compare `on` taggedSnd) $ M.elems m
filterUDFM :: (elt -> Bool) -> UniqDFM elt -> UniqDFM elt
filterUDFM p (UDFM m i) = UDFM (M.filter (\(TaggedVal v _) -> p v) m) i
-- | Converts `UniqDFM` to a list, with elements in deterministic order.
-- It's O(n log n) while the corresponding function on `UniqFM` is O(n).
udfmToList :: UniqDFM elt -> [(Unique, elt)]
udfmToList (UDFM m _i) =
[ (getUnique k, taggedFst v)
| (k, v) <- sortBy (compare `on` (taggedSnd . snd)) $ M.toList m ]
isNullUDFM :: UniqDFM elt -> Bool
isNullUDFM (UDFM m _) = M.null m
sizeUDFM :: UniqDFM elt -> Int
sizeUDFM (UDFM m _i) = M.size m
intersectUDFM :: UniqDFM elt -> UniqDFM elt -> UniqDFM elt
intersectUDFM (UDFM x i) (UDFM y _j) = UDFM (M.intersection x y) i
-- M.intersection is left biased, that means the result will only have
-- a subset of elements from the left set, so `i` is a good upper bound.
udfmIntersectUFM :: UniqDFM elt -> UniqFM elt -> UniqDFM elt
udfmIntersectUFM (UDFM x i) y = UDFM (M.intersection x (ufmToIntMap y)) i
-- M.intersection is left biased, that means the result will only have
-- a subset of elements from the left set, so `i` is a good upper bound.
intersectsUDFM :: UniqDFM elt -> UniqDFM elt -> Bool
intersectsUDFM x y = isNullUDFM (x `intersectUDFM` y)
disjointUDFM :: UniqDFM elt -> UniqDFM elt -> Bool
disjointUDFM (UDFM x _i) (UDFM y _j) = M.null (M.intersection x y)
disjointUdfmUfm :: UniqDFM elt -> UniqFM elt2 -> Bool
disjointUdfmUfm (UDFM x _i) y = M.null (M.intersection x (ufmToIntMap y))
minusUDFM :: UniqDFM elt1 -> UniqDFM elt2 -> UniqDFM elt1
minusUDFM (UDFM x i) (UDFM y _j) = UDFM (M.difference x y) i
-- M.difference returns a subset of a left set, so `i` is a good upper
-- bound.
udfmMinusUFM :: UniqDFM elt1 -> UniqFM elt2 -> UniqDFM elt1
udfmMinusUFM (UDFM x i) y = UDFM (M.difference x (ufmToIntMap y)) i
-- M.difference returns a subset of a left set, so `i` is a good upper
-- bound.
-- | Partition UniqDFM into two UniqDFMs according to the predicate
partitionUDFM :: (elt -> Bool) -> UniqDFM elt -> (UniqDFM elt, UniqDFM elt)
partitionUDFM p (UDFM m i) =
case M.partition (p . taggedFst) m of
(left, right) -> (UDFM left i, UDFM right i)
-- | Delete a list of elements from a UniqDFM
delListFromUDFM :: Uniquable key => UniqDFM elt -> [key] -> UniqDFM elt
delListFromUDFM = foldl delFromUDFM
-- | This allows for lossy conversion from UniqDFM to UniqFM
udfmToUfm :: UniqDFM elt -> UniqFM elt
udfmToUfm (UDFM m _i) =
listToUFM_Directly [(getUnique k, taggedFst tv) | (k, tv) <- M.toList m]
listToUDFM :: Uniquable key => [(key,elt)] -> UniqDFM elt
listToUDFM = foldl (\m (k, v) -> addToUDFM m k v) emptyUDFM
listToUDFM_Directly :: [(Unique, elt)] -> UniqDFM elt
listToUDFM_Directly = foldl (\m (u, v) -> addToUDFM_Directly m u v) emptyUDFM
-- | Apply a function to a particular element
adjustUDFM :: Uniquable key => (elt -> elt) -> UniqDFM elt -> key -> UniqDFM elt
adjustUDFM f (UDFM m i) k = UDFM (M.adjust (fmap f) (getKey $ getUnique k) m) i
-- | The expression (alterUDFM f k map) alters value x at k, or absence
-- thereof. alterUDFM can be used to insert, delete, or update a value in
-- UniqDFM. Use addToUDFM, delFromUDFM or adjustUDFM when possible, they are
-- more efficient.
alterUDFM
:: Uniquable key
=> (Maybe elt -> Maybe elt) -- How to adjust
-> UniqDFM elt -- old
-> key -- new
-> UniqDFM elt -- result
alterUDFM f (UDFM m i) k =
UDFM (M.alter alterf (getKey $ getUnique k) m) (i + 1)
where
alterf Nothing = inject $ f Nothing
alterf (Just (TaggedVal v _)) = inject $ f (Just v)
inject Nothing = Nothing
inject (Just v) = Just $ TaggedVal v i
-- | Map a function over every value in a UniqDFM
mapUDFM :: (elt1 -> elt2) -> UniqDFM elt1 -> UniqDFM elt2
mapUDFM f (UDFM m i) = UDFM (M.map (fmap f) m) i
anyUDFM :: (elt -> Bool) -> UniqDFM elt -> Bool
anyUDFM p (UDFM m _i) = M.fold ((||) . p . taggedFst) False m
allUDFM :: (elt -> Bool) -> UniqDFM elt -> Bool
allUDFM p (UDFM m _i) = M.fold ((&&) . p . taggedFst) True m
instance Monoid (UniqDFM a) where
mempty = emptyUDFM
mappend = plusUDFM
-- This should not be used in commited code, provided for convenience to
-- make ad-hoc conversions when developing
alwaysUnsafeUfmToUdfm :: UniqFM elt -> UniqDFM elt
alwaysUnsafeUfmToUdfm = listToUDFM_Directly . ufmToList
-- Output-ery
instance Outputable a => Outputable (UniqDFM a) where
ppr ufm = pprUniqDFM ppr ufm
pprUniqDFM :: (a -> SDoc) -> UniqDFM a -> SDoc
pprUniqDFM ppr_elt ufm
= brackets $ fsep $ punctuate comma $
[ ppr uq <+> text ":->" <+> ppr_elt elt
| (uq, elt) <- udfmToList ufm ]
pprUDFM :: UniqDFM a -- ^ The things to be pretty printed
-> ([a] -> SDoc) -- ^ The pretty printing function to use on the elements
-> SDoc -- ^ 'SDoc' where the things have been pretty
-- printed
pprUDFM ufm pp = pp (eltsUDFM ufm)
|