1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
|
{-
(c) The University of Glasgow 2006
(c) The AQUA Project, Glasgow University, 1994-1998
UniqFM: Specialised finite maps, for things with @Uniques@.
Basically, the things need to be in class @Uniquable@, and we use the
@getUnique@ method to grab their @Uniques@.
(A similar thing to @UniqSet@, as opposed to @Set@.)
The interface is based on @FiniteMap@s, but the implementation uses
@Data.IntMap@, which is both maintained and faster than the past
implementation (see commit log).
The @UniqFM@ interface maps directly to Data.IntMap, only
``Data.IntMap.union'' is left-biased and ``plusUFM'' right-biased
and ``addToUFM\_C'' and ``Data.IntMap.insertWith'' differ in the order
of arguments of combining function.
-}
{-# LANGUAGE DeriveDataTypeable #-}
{-# LANGUAGE GeneralizedNewtypeDeriving #-}
{-# OPTIONS_GHC -Wall #-}
module UniqFM (
-- * Unique-keyed mappings
UniqFM, -- abstract type
NonDetUniqFM(..), -- wrapper for opting into nondeterminism
-- ** Manipulating those mappings
emptyUFM,
unitUFM,
unitDirectlyUFM,
listToUFM,
listToUFM_Directly,
listToUFM_C,
addToUFM,addToUFM_C,addToUFM_Acc,
addListToUFM,addListToUFM_C,
addToUFM_Directly,
addListToUFM_Directly,
adjustUFM, alterUFM,
adjustUFM_Directly,
delFromUFM,
delFromUFM_Directly,
delListFromUFM,
delListFromUFM_Directly,
plusUFM,
plusUFM_C,
plusUFM_CD,
plusMaybeUFM_C,
plusUFMList,
minusUFM,
intersectUFM,
intersectUFM_C,
disjointUFM,
equalKeysUFM,
nonDetFoldUFM, foldUFM, nonDetFoldUFM_Directly,
anyUFM, allUFM, seqEltsUFM,
mapUFM, mapUFM_Directly,
elemUFM, elemUFM_Directly,
filterUFM, filterUFM_Directly, partitionUFM,
sizeUFM,
isNullUFM,
lookupUFM, lookupUFM_Directly,
lookupWithDefaultUFM, lookupWithDefaultUFM_Directly,
nonDetEltsUFM, eltsUFM, nonDetKeysUFM,
ufmToSet_Directly,
nonDetUFMToList, ufmToIntMap,
pprUniqFM, pprUFM, pprUFMWithKeys, pluralUFM
) where
import GhcPrelude
import Unique ( Uniquable(..), Unique, getKey )
import Outputable
import qualified Data.IntMap as M
import qualified Data.IntSet as S
import Data.Data
import qualified Data.Semigroup as Semi
import Data.Functor.Classes (Eq1 (..))
newtype UniqFM ele = UFM (M.IntMap ele)
deriving (Data, Eq, Functor)
-- Nondeterministic Foldable and Traversable instances are accessible through
-- use of the 'NonDetUniqFM' wrapper.
-- See Note [Deterministic UniqFM] in UniqDFM to learn about determinism.
emptyUFM :: UniqFM elt
emptyUFM = UFM M.empty
isNullUFM :: UniqFM elt -> Bool
isNullUFM (UFM m) = M.null m
unitUFM :: Uniquable key => key -> elt -> UniqFM elt
unitUFM k v = UFM (M.singleton (getKey $ getUnique k) v)
-- when you've got the Unique already
unitDirectlyUFM :: Unique -> elt -> UniqFM elt
unitDirectlyUFM u v = UFM (M.singleton (getKey u) v)
listToUFM :: Uniquable key => [(key,elt)] -> UniqFM elt
listToUFM = foldl' (\m (k, v) -> addToUFM m k v) emptyUFM
listToUFM_Directly :: [(Unique, elt)] -> UniqFM elt
listToUFM_Directly = foldl' (\m (u, v) -> addToUFM_Directly m u v) emptyUFM
listToUFM_C
:: Uniquable key
=> (elt -> elt -> elt)
-> [(key, elt)]
-> UniqFM elt
listToUFM_C f = foldl' (\m (k, v) -> addToUFM_C f m k v) emptyUFM
addToUFM :: Uniquable key => UniqFM elt -> key -> elt -> UniqFM elt
addToUFM (UFM m) k v = UFM (M.insert (getKey $ getUnique k) v m)
addListToUFM :: Uniquable key => UniqFM elt -> [(key,elt)] -> UniqFM elt
addListToUFM = foldl' (\m (k, v) -> addToUFM m k v)
addListToUFM_Directly :: UniqFM elt -> [(Unique,elt)] -> UniqFM elt
addListToUFM_Directly = foldl' (\m (k, v) -> addToUFM_Directly m k v)
addToUFM_Directly :: UniqFM elt -> Unique -> elt -> UniqFM elt
addToUFM_Directly (UFM m) u v = UFM (M.insert (getKey u) v m)
addToUFM_C
:: Uniquable key
=> (elt -> elt -> elt) -- old -> new -> result
-> UniqFM elt -- old
-> key -> elt -- new
-> UniqFM elt -- result
-- Arguments of combining function of M.insertWith and addToUFM_C are flipped.
addToUFM_C f (UFM m) k v =
UFM (M.insertWith (flip f) (getKey $ getUnique k) v m)
addToUFM_Acc
:: Uniquable key
=> (elt -> elts -> elts) -- Add to existing
-> (elt -> elts) -- New element
-> UniqFM elts -- old
-> key -> elt -- new
-> UniqFM elts -- result
addToUFM_Acc exi new (UFM m) k v =
UFM (M.insertWith (\_new old -> exi v old) (getKey $ getUnique k) (new v) m)
alterUFM
:: Uniquable key
=> (Maybe elt -> Maybe elt) -- How to adjust
-> UniqFM elt -- old
-> key -- new
-> UniqFM elt -- result
alterUFM f (UFM m) k = UFM (M.alter f (getKey $ getUnique k) m)
addListToUFM_C
:: Uniquable key
=> (elt -> elt -> elt)
-> UniqFM elt -> [(key,elt)]
-> UniqFM elt
addListToUFM_C f = foldl' (\m (k, v) -> addToUFM_C f m k v)
adjustUFM :: Uniquable key => (elt -> elt) -> UniqFM elt -> key -> UniqFM elt
adjustUFM f (UFM m) k = UFM (M.adjust f (getKey $ getUnique k) m)
adjustUFM_Directly :: (elt -> elt) -> UniqFM elt -> Unique -> UniqFM elt
adjustUFM_Directly f (UFM m) u = UFM (M.adjust f (getKey u) m)
delFromUFM :: Uniquable key => UniqFM elt -> key -> UniqFM elt
delFromUFM (UFM m) k = UFM (M.delete (getKey $ getUnique k) m)
delListFromUFM :: Uniquable key => UniqFM elt -> [key] -> UniqFM elt
delListFromUFM = foldl' delFromUFM
delListFromUFM_Directly :: UniqFM elt -> [Unique] -> UniqFM elt
delListFromUFM_Directly = foldl' delFromUFM_Directly
delFromUFM_Directly :: UniqFM elt -> Unique -> UniqFM elt
delFromUFM_Directly (UFM m) u = UFM (M.delete (getKey u) m)
-- Bindings in right argument shadow those in the left
plusUFM :: UniqFM elt -> UniqFM elt -> UniqFM elt
-- M.union is left-biased, plusUFM should be right-biased.
plusUFM (UFM x) (UFM y) = UFM (M.union y x)
-- Note (M.union y x), with arguments flipped
-- M.union is left-biased, plusUFM should be right-biased.
plusUFM_C :: (elt -> elt -> elt) -> UniqFM elt -> UniqFM elt -> UniqFM elt
plusUFM_C f (UFM x) (UFM y) = UFM (M.unionWith f x y)
-- | `plusUFM_CD f m1 d1 m2 d2` merges the maps using `f` as the
-- combinding function and `d1` resp. `d2` as the default value if
-- there is no entry in `m1` reps. `m2`. The domain is the union of
-- the domains of `m1` and `m2`.
--
-- Representative example:
--
-- @
-- plusUFM_CD f {A: 1, B: 2} 23 {B: 3, C: 4} 42
-- == {A: f 1 42, B: f 2 3, C: f 23 4 }
-- @
plusUFM_CD
:: (elt -> elt -> elt)
-> UniqFM elt -- map X
-> elt -- default for X
-> UniqFM elt -- map Y
-> elt -- default for Y
-> UniqFM elt
plusUFM_CD f (UFM xm) dx (UFM ym) dy
= UFM $ M.mergeWithKey
(\_ x y -> Just (x `f` y))
(M.map (\x -> x `f` dy))
(M.map (\y -> dx `f` y))
xm ym
plusMaybeUFM_C :: (elt -> elt -> Maybe elt)
-> UniqFM elt -> UniqFM elt -> UniqFM elt
plusMaybeUFM_C f (UFM xm) (UFM ym)
= UFM $ M.mergeWithKey
(\_ x y -> x `f` y)
id
id
xm ym
plusUFMList :: [UniqFM elt] -> UniqFM elt
plusUFMList = foldl' plusUFM emptyUFM
minusUFM :: UniqFM elt1 -> UniqFM elt2 -> UniqFM elt1
minusUFM (UFM x) (UFM y) = UFM (M.difference x y)
intersectUFM :: UniqFM elt1 -> UniqFM elt2 -> UniqFM elt1
intersectUFM (UFM x) (UFM y) = UFM (M.intersection x y)
intersectUFM_C
:: (elt1 -> elt2 -> elt3)
-> UniqFM elt1
-> UniqFM elt2
-> UniqFM elt3
intersectUFM_C f (UFM x) (UFM y) = UFM (M.intersectionWith f x y)
disjointUFM :: UniqFM elt1 -> UniqFM elt2 -> Bool
disjointUFM (UFM x) (UFM y) = M.null (M.intersection x y)
foldUFM :: (elt -> a -> a) -> a -> UniqFM elt -> a
foldUFM k z (UFM m) = M.foldr k z m
mapUFM :: (elt1 -> elt2) -> UniqFM elt1 -> UniqFM elt2
mapUFM f (UFM m) = UFM (M.map f m)
mapUFM_Directly :: (Unique -> elt1 -> elt2) -> UniqFM elt1 -> UniqFM elt2
mapUFM_Directly f (UFM m) = UFM (M.mapWithKey (f . getUnique) m)
filterUFM :: (elt -> Bool) -> UniqFM elt -> UniqFM elt
filterUFM p (UFM m) = UFM (M.filter p m)
filterUFM_Directly :: (Unique -> elt -> Bool) -> UniqFM elt -> UniqFM elt
filterUFM_Directly p (UFM m) = UFM (M.filterWithKey (p . getUnique) m)
partitionUFM :: (elt -> Bool) -> UniqFM elt -> (UniqFM elt, UniqFM elt)
partitionUFM p (UFM m) =
case M.partition p m of
(left, right) -> (UFM left, UFM right)
sizeUFM :: UniqFM elt -> Int
sizeUFM (UFM m) = M.size m
elemUFM :: Uniquable key => key -> UniqFM elt -> Bool
elemUFM k (UFM m) = M.member (getKey $ getUnique k) m
elemUFM_Directly :: Unique -> UniqFM elt -> Bool
elemUFM_Directly u (UFM m) = M.member (getKey u) m
lookupUFM :: Uniquable key => UniqFM elt -> key -> Maybe elt
lookupUFM (UFM m) k = M.lookup (getKey $ getUnique k) m
-- when you've got the Unique already
lookupUFM_Directly :: UniqFM elt -> Unique -> Maybe elt
lookupUFM_Directly (UFM m) u = M.lookup (getKey u) m
lookupWithDefaultUFM :: Uniquable key => UniqFM elt -> elt -> key -> elt
lookupWithDefaultUFM (UFM m) v k = M.findWithDefault v (getKey $ getUnique k) m
lookupWithDefaultUFM_Directly :: UniqFM elt -> elt -> Unique -> elt
lookupWithDefaultUFM_Directly (UFM m) v u = M.findWithDefault v (getKey u) m
eltsUFM :: UniqFM elt -> [elt]
eltsUFM (UFM m) = M.elems m
ufmToSet_Directly :: UniqFM elt -> S.IntSet
ufmToSet_Directly (UFM m) = M.keysSet m
anyUFM :: (elt -> Bool) -> UniqFM elt -> Bool
anyUFM p (UFM m) = M.foldr ((||) . p) False m
allUFM :: (elt -> Bool) -> UniqFM elt -> Bool
allUFM p (UFM m) = M.foldr ((&&) . p) True m
seqEltsUFM :: ([elt] -> ()) -> UniqFM elt -> ()
seqEltsUFM seqList = seqList . nonDetEltsUFM
-- It's OK to use nonDetEltsUFM here because the type guarantees that
-- the only interesting thing this function can do is to force the
-- elements.
-- See Note [Deterministic UniqFM] to learn about nondeterminism.
-- If you use this please provide a justification why it doesn't introduce
-- nondeterminism.
nonDetEltsUFM :: UniqFM elt -> [elt]
nonDetEltsUFM (UFM m) = M.elems m
-- See Note [Deterministic UniqFM] to learn about nondeterminism.
-- If you use this please provide a justification why it doesn't introduce
-- nondeterminism.
nonDetKeysUFM :: UniqFM elt -> [Unique]
nonDetKeysUFM (UFM m) = map getUnique $ M.keys m
-- See Note [Deterministic UniqFM] to learn about nondeterminism.
-- If you use this please provide a justification why it doesn't introduce
-- nondeterminism.
nonDetFoldUFM :: (elt -> a -> a) -> a -> UniqFM elt -> a
nonDetFoldUFM k z (UFM m) = M.foldr k z m
-- See Note [Deterministic UniqFM] to learn about nondeterminism.
-- If you use this please provide a justification why it doesn't introduce
-- nondeterminism.
nonDetFoldUFM_Directly:: (Unique -> elt -> a -> a) -> a -> UniqFM elt -> a
nonDetFoldUFM_Directly k z (UFM m) = M.foldrWithKey (k . getUnique) z m
-- See Note [Deterministic UniqFM] to learn about nondeterminism.
-- If you use this please provide a justification why it doesn't introduce
-- nondeterminism.
nonDetUFMToList :: UniqFM elt -> [(Unique, elt)]
nonDetUFMToList (UFM m) = map (\(k, v) -> (getUnique k, v)) $ M.toList m
-- | A wrapper around 'UniqFM' with the sole purpose of informing call sites
-- that the provided 'Foldable' and 'Traversable' instances are
-- nondeterministic.
-- If you use this please provide a justification why it doesn't introduce
-- nondeterminism.
-- See Note [Deterministic UniqFM] in UniqDFM to learn about determinism.
newtype NonDetUniqFM ele = NonDetUniqFM { getNonDet :: UniqFM ele }
deriving (Functor)
-- | Inherently nondeterministic.
-- If you use this please provide a justification why it doesn't introduce
-- nondeterminism.
-- See Note [Deterministic UniqFM] in UniqDFM to learn about determinism.
instance Foldable NonDetUniqFM where
foldr f z (NonDetUniqFM (UFM m)) = foldr f z m
-- | Inherently nondeterministic.
-- If you use this please provide a justification why it doesn't introduce
-- nondeterminism.
-- See Note [Deterministic UniqFM] in UniqDFM to learn about determinism.
instance Traversable NonDetUniqFM where
traverse f (NonDetUniqFM (UFM m)) = NonDetUniqFM . UFM <$> traverse f m
ufmToIntMap :: UniqFM elt -> M.IntMap elt
ufmToIntMap (UFM m) = m
-- Determines whether two 'UniqFM's contain the same keys.
equalKeysUFM :: UniqFM a -> UniqFM b -> Bool
equalKeysUFM (UFM m1) (UFM m2) = liftEq (\_ _ -> True) m1 m2
-- Instances
instance Semi.Semigroup (UniqFM a) where
(<>) = plusUFM
instance Monoid (UniqFM a) where
mempty = emptyUFM
mappend = (Semi.<>)
-- Output-ery
instance Outputable a => Outputable (UniqFM a) where
ppr ufm = pprUniqFM ppr ufm
pprUniqFM :: (a -> SDoc) -> UniqFM a -> SDoc
pprUniqFM ppr_elt ufm
= brackets $ fsep $ punctuate comma $
[ ppr uq <+> text ":->" <+> ppr_elt elt
| (uq, elt) <- nonDetUFMToList ufm ]
-- It's OK to use nonDetUFMToList here because we only use it for
-- pretty-printing.
-- | Pretty-print a non-deterministic set.
-- The order of variables is non-deterministic and for pretty-printing that
-- shouldn't be a problem.
-- Having this function helps contain the non-determinism created with
-- nonDetEltsUFM.
pprUFM :: UniqFM a -- ^ The things to be pretty printed
-> ([a] -> SDoc) -- ^ The pretty printing function to use on the elements
-> SDoc -- ^ 'SDoc' where the things have been pretty
-- printed
pprUFM ufm pp = pp (nonDetEltsUFM ufm)
-- | Pretty-print a non-deterministic set.
-- The order of variables is non-deterministic and for pretty-printing that
-- shouldn't be a problem.
-- Having this function helps contain the non-determinism created with
-- nonDetUFMToList.
pprUFMWithKeys
:: UniqFM a -- ^ The things to be pretty printed
-> ([(Unique, a)] -> SDoc) -- ^ The pretty printing function to use on the elements
-> SDoc -- ^ 'SDoc' where the things have been pretty
-- printed
pprUFMWithKeys ufm pp = pp (nonDetUFMToList ufm)
-- | Determines the pluralisation suffix appropriate for the length of a set
-- in the same way that plural from Outputable does for lists.
pluralUFM :: UniqFM a -> SDoc
pluralUFM ufm
| sizeUFM ufm == 1 = empty
| otherwise = char 's'
|