1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
|
%
% (c) The University of Glasgow 1992-2002
%
\section[Util]{Highly random utility functions}
\begin{code}
module Util (
-- general list processing
zipEqual, zipWithEqual, zipWith3Equal, zipWith4Equal,
zipLazy, stretchZipWith,
mapFst, mapSnd,
mapAndUnzip, mapAndUnzip3,
nOfThem, filterOut,
lengthExceeds, lengthIs, lengthAtLeast, listLengthCmp, atLength,
isSingleton, only, singleton,
notNull, snocView,
isIn, isn'tIn,
-- for-loop
nTimes,
-- sorting
sortLe, sortWith,
-- transitive closures
transitiveClosure,
-- accumulating
mapAccumL, mapAccumR, mapAccumB,
foldl2, count, all2,
takeList, dropList, splitAtList, split,
-- comparisons
isEqual, eqListBy, equalLength, compareLength,
thenCmp, cmpList, prefixMatch, suffixMatch, maybePrefixMatch,
removeSpaces,
-- strictness
foldl', seqList,
-- pairs
unzipWith,
global, consIORef,
-- module names
looksLikeModuleName,
toArgs,
-- Floating point stuff
readRational,
-- IO-ish utilities
createDirectoryHierarchy,
doesDirNameExist,
modificationTimeIfExists,
later, handleDyn, handle,
-- Filename utils
Suffix,
splitFilename, suffixOf, basenameOf, joinFileExt,
splitFilenameDir, joinFileName,
splitFilename3,
splitLongestPrefix,
replaceFilenameSuffix, directoryOf, filenameOf,
replaceFilenameDirectory,
escapeSpaces, isPathSeparator,
parseSearchPath,
normalisePath, platformPath, pgmPath,
) where
#include "HsVersions.h"
import Panic ( panic, trace )
import FastTypes
import EXCEPTION ( Exception(..), finally, throwDyn, catchDyn, throw )
import qualified EXCEPTION as Exception
import DYNAMIC ( Typeable )
import DATA_IOREF ( IORef, newIORef )
import UNSAFE_IO ( unsafePerformIO )
import DATA_IOREF ( readIORef, writeIORef )
import qualified List ( elem, notElem )
#ifndef DEBUG
import List ( zipWith4 )
#endif
import Monad ( when )
import IO ( catch, isDoesNotExistError )
import Directory ( doesDirectoryExist, createDirectory )
import Char ( isUpper, isAlphaNum, isSpace, ord, isDigit )
import Ratio ( (%) )
import Time ( ClockTime )
import Directory ( getModificationTime )
infixr 9 `thenCmp`
\end{code}
%************************************************************************
%* *
\subsection{The Eager monad}
%* *
%************************************************************************
The @Eager@ monad is just an encoding of continuation-passing style,
used to allow you to express "do this and then that", mainly to avoid
space leaks. It's done with a type synonym to save bureaucracy.
\begin{code}
#if NOT_USED
type Eager ans a = (a -> ans) -> ans
runEager :: Eager a a -> a
runEager m = m (\x -> x)
appEager :: Eager ans a -> (a -> ans) -> ans
appEager m cont = m cont
thenEager :: Eager ans a -> (a -> Eager ans b) -> Eager ans b
thenEager m k cont = m (\r -> k r cont)
returnEager :: a -> Eager ans a
returnEager v cont = cont v
mapEager :: (a -> Eager ans b) -> [a] -> Eager ans [b]
mapEager f [] = returnEager []
mapEager f (x:xs) = f x `thenEager` \ y ->
mapEager f xs `thenEager` \ ys ->
returnEager (y:ys)
#endif
\end{code}
%************************************************************************
%* *
\subsection{A for loop}
%* *
%************************************************************************
\begin{code}
-- Compose a function with itself n times. (nth rather than twice)
nTimes :: Int -> (a -> a) -> (a -> a)
nTimes 0 _ = id
nTimes 1 f = f
nTimes n f = f . nTimes (n-1) f
\end{code}
%************************************************************************
%* *
\subsection[Utils-lists]{General list processing}
%* *
%************************************************************************
\begin{code}
filterOut :: (a->Bool) -> [a] -> [a]
-- Like filter, only reverses the sense of the test
filterOut p [] = []
filterOut p (x:xs) | p x = filterOut p xs
| otherwise = x : filterOut p xs
\end{code}
A paranoid @zip@ (and some @zipWith@ friends) that checks the lists
are of equal length. Alastair Reid thinks this should only happen if
DEBUGging on; hey, why not?
\begin{code}
zipEqual :: String -> [a] -> [b] -> [(a,b)]
zipWithEqual :: String -> (a->b->c) -> [a]->[b]->[c]
zipWith3Equal :: String -> (a->b->c->d) -> [a]->[b]->[c]->[d]
zipWith4Equal :: String -> (a->b->c->d->e) -> [a]->[b]->[c]->[d]->[e]
#ifndef DEBUG
zipEqual _ = zip
zipWithEqual _ = zipWith
zipWith3Equal _ = zipWith3
zipWith4Equal _ = zipWith4
#else
zipEqual msg [] [] = []
zipEqual msg (a:as) (b:bs) = (a,b) : zipEqual msg as bs
zipEqual msg as bs = panic ("zipEqual: unequal lists:"++msg)
zipWithEqual msg z (a:as) (b:bs)= z a b : zipWithEqual msg z as bs
zipWithEqual msg _ [] [] = []
zipWithEqual msg _ _ _ = panic ("zipWithEqual: unequal lists:"++msg)
zipWith3Equal msg z (a:as) (b:bs) (c:cs)
= z a b c : zipWith3Equal msg z as bs cs
zipWith3Equal msg _ [] [] [] = []
zipWith3Equal msg _ _ _ _ = panic ("zipWith3Equal: unequal lists:"++msg)
zipWith4Equal msg z (a:as) (b:bs) (c:cs) (d:ds)
= z a b c d : zipWith4Equal msg z as bs cs ds
zipWith4Equal msg _ [] [] [] [] = []
zipWith4Equal msg _ _ _ _ _ = panic ("zipWith4Equal: unequal lists:"++msg)
#endif
\end{code}
\begin{code}
-- zipLazy is lazy in the second list (observe the ~)
zipLazy :: [a] -> [b] -> [(a,b)]
zipLazy [] ys = []
zipLazy (x:xs) ~(y:ys) = (x,y) : zipLazy xs ys
\end{code}
\begin{code}
stretchZipWith :: (a -> Bool) -> b -> (a->b->c) -> [a] -> [b] -> [c]
-- (stretchZipWith p z f xs ys) stretches ys by inserting z in
-- the places where p returns *True*
stretchZipWith p z f [] ys = []
stretchZipWith p z f (x:xs) ys
| p x = f x z : stretchZipWith p z f xs ys
| otherwise = case ys of
[] -> []
(y:ys) -> f x y : stretchZipWith p z f xs ys
\end{code}
\begin{code}
mapFst :: (a->c) -> [(a,b)] -> [(c,b)]
mapSnd :: (b->c) -> [(a,b)] -> [(a,c)]
mapFst f xys = [(f x, y) | (x,y) <- xys]
mapSnd f xys = [(x, f y) | (x,y) <- xys]
mapAndUnzip :: (a -> (b, c)) -> [a] -> ([b], [c])
mapAndUnzip f [] = ([],[])
mapAndUnzip f (x:xs)
= let
(r1, r2) = f x
(rs1, rs2) = mapAndUnzip f xs
in
(r1:rs1, r2:rs2)
mapAndUnzip3 :: (a -> (b, c, d)) -> [a] -> ([b], [c], [d])
mapAndUnzip3 f [] = ([],[],[])
mapAndUnzip3 f (x:xs)
= let
(r1, r2, r3) = f x
(rs1, rs2, rs3) = mapAndUnzip3 f xs
in
(r1:rs1, r2:rs2, r3:rs3)
\end{code}
\begin{code}
nOfThem :: Int -> a -> [a]
nOfThem n thing = replicate n thing
-- 'atLength atLen atEnd ls n' unravels list 'ls' to position 'n';
-- specification:
--
-- atLength atLenPred atEndPred ls n
-- | n < 0 = atLenPred n
-- | length ls < n = atEndPred (n - length ls)
-- | otherwise = atLenPred (drop n ls)
--
atLength :: ([a] -> b)
-> (Int -> b)
-> [a]
-> Int
-> b
atLength atLenPred atEndPred ls n
| n < 0 = atEndPred n
| otherwise = go n ls
where
go n [] = atEndPred n
go 0 ls = atLenPred ls
go n (_:xs) = go (n-1) xs
-- special cases.
lengthExceeds :: [a] -> Int -> Bool
-- (lengthExceeds xs n) = (length xs > n)
lengthExceeds = atLength notNull (const False)
lengthAtLeast :: [a] -> Int -> Bool
lengthAtLeast = atLength notNull (== 0)
lengthIs :: [a] -> Int -> Bool
lengthIs = atLength null (==0)
listLengthCmp :: [a] -> Int -> Ordering
listLengthCmp = atLength atLen atEnd
where
atEnd 0 = EQ
atEnd x
| x > 0 = LT -- not yet seen 'n' elts, so list length is < n.
| otherwise = GT
atLen [] = EQ
atLen _ = GT
singleton :: a -> [a]
singleton x = [x]
isSingleton :: [a] -> Bool
isSingleton [x] = True
isSingleton _ = False
notNull :: [a] -> Bool
notNull [] = False
notNull _ = True
snocView :: [a] -> Maybe ([a],a)
-- Split off the last element
snocView [] = Nothing
snocView xs = go [] xs
where
-- Invariant: second arg is non-empty
go acc [x] = Just (reverse acc, x)
go acc (x:xs) = go (x:acc) xs
only :: [a] -> a
#ifdef DEBUG
only [a] = a
#else
only (a:_) = a
#endif
\end{code}
Debugging/specialising versions of \tr{elem} and \tr{notElem}
\begin{code}
isIn, isn'tIn :: (Eq a) => String -> a -> [a] -> Bool
# ifndef DEBUG
isIn msg x ys = elem__ x ys
isn'tIn msg x ys = notElem__ x ys
--these are here to be SPECIALIZEd (automagically)
elem__ _ [] = False
elem__ x (y:ys) = x==y || elem__ x ys
notElem__ x [] = True
notElem__ x (y:ys) = x /= y && notElem__ x ys
# else /* DEBUG */
isIn msg x ys
= elem (_ILIT 0) x ys
where
elem i _ [] = False
elem i x (y:ys)
| i ># _ILIT 100 = trace ("Over-long elem in " ++ msg) $
x `List.elem` (y:ys)
| otherwise = x == y || elem (i +# _ILIT(1)) x ys
isn'tIn msg x ys
= notElem (_ILIT 0) x ys
where
notElem i x [] = True
notElem i x (y:ys)
| i ># _ILIT 100 = trace ("Over-long notElem in " ++ msg) $
x `List.notElem` (y:ys)
| otherwise = x /= y && notElem (i +# _ILIT(1)) x ys
# endif /* DEBUG */
\end{code}
%************************************************************************
%* *
\subsubsection[Utils-Carsten-mergesort]{A mergesort from Carsten}
%* *
%************************************************************************
\begin{display}
Date: Mon, 3 May 93 20:45:23 +0200
From: Carsten Kehler Holst <kehler@cs.chalmers.se>
To: partain@dcs.gla.ac.uk
Subject: natural merge sort beats quick sort [ and it is prettier ]
Here is a piece of Haskell code that I'm rather fond of. See it as an
attempt to get rid of the ridiculous quick-sort routine. group is
quite useful by itself I think it was John's idea originally though I
believe the lazy version is due to me [surprisingly complicated].
gamma [used to be called] is called gamma because I got inspired by
the Gamma calculus. It is not very close to the calculus but does
behave less sequentially than both foldr and foldl. One could imagine
a version of gamma that took a unit element as well thereby avoiding
the problem with empty lists.
I've tried this code against
1) insertion sort - as provided by haskell
2) the normal implementation of quick sort
3) a deforested version of quick sort due to Jan Sparud
4) a super-optimized-quick-sort of Lennart's
If the list is partially sorted both merge sort and in particular
natural merge sort wins. If the list is random [ average length of
rising subsequences = approx 2 ] mergesort still wins and natural
merge sort is marginally beaten by Lennart's soqs. The space
consumption of merge sort is a bit worse than Lennart's quick sort
approx a factor of 2. And a lot worse if Sparud's bug-fix [see his
fpca article ] isn't used because of group.
have fun
Carsten
\end{display}
\begin{code}
group :: (a -> a -> Bool) -> [a] -> [[a]]
-- Given a <= function, group finds maximal contiguous up-runs
-- or down-runs in the input list.
-- It's stable, in the sense that it never re-orders equal elements
--
-- Date: Mon, 12 Feb 1996 15:09:41 +0000
-- From: Andy Gill <andy@dcs.gla.ac.uk>
-- Here is a `better' definition of group.
group p [] = []
group p (x:xs) = group' xs x x (x :)
where
group' [] _ _ s = [s []]
group' (x:xs) x_min x_max s
| x_max `p` x = group' xs x_min x (s . (x :))
| not (x_min `p` x) = group' xs x x_max ((x :) . s)
| otherwise = s [] : group' xs x x (x :)
-- NB: the 'not' is essential for stablity
-- x `p` x_min would reverse equal elements
generalMerge :: (a -> a -> Bool) -> [a] -> [a] -> [a]
generalMerge p xs [] = xs
generalMerge p [] ys = ys
generalMerge p (x:xs) (y:ys) | x `p` y = x : generalMerge p xs (y:ys)
| otherwise = y : generalMerge p (x:xs) ys
-- gamma is now called balancedFold
balancedFold :: (a -> a -> a) -> [a] -> a
balancedFold f [] = error "can't reduce an empty list using balancedFold"
balancedFold f [x] = x
balancedFold f l = balancedFold f (balancedFold' f l)
balancedFold' :: (a -> a -> a) -> [a] -> [a]
balancedFold' f (x:y:xs) = f x y : balancedFold' f xs
balancedFold' f xs = xs
generalNaturalMergeSort p [] = []
generalNaturalMergeSort p xs = (balancedFold (generalMerge p) . group p) xs
#if NOT_USED
generalMergeSort p [] = []
generalMergeSort p xs = (balancedFold (generalMerge p) . map (: [])) xs
mergeSort, naturalMergeSort :: Ord a => [a] -> [a]
mergeSort = generalMergeSort (<=)
naturalMergeSort = generalNaturalMergeSort (<=)
mergeSortLe le = generalMergeSort le
#endif
sortLe :: (a->a->Bool) -> [a] -> [a]
sortLe le = generalNaturalMergeSort le
sortWith :: Ord b => (a->b) -> [a] -> [a]
sortWith get_key xs = sortLe le xs
where
x `le` y = get_key x < get_key y
\end{code}
%************************************************************************
%* *
\subsection[Utils-transitive-closure]{Transitive closure}
%* *
%************************************************************************
This algorithm for transitive closure is straightforward, albeit quadratic.
\begin{code}
transitiveClosure :: (a -> [a]) -- Successor function
-> (a -> a -> Bool) -- Equality predicate
-> [a]
-> [a] -- The transitive closure
transitiveClosure succ eq xs
= go [] xs
where
go done [] = done
go done (x:xs) | x `is_in` done = go done xs
| otherwise = go (x:done) (succ x ++ xs)
x `is_in` [] = False
x `is_in` (y:ys) | eq x y = True
| otherwise = x `is_in` ys
\end{code}
%************************************************************************
%* *
\subsection[Utils-accum]{Accumulating}
%* *
%************************************************************************
@mapAccumL@ behaves like a combination
of @map@ and @foldl@;
it applies a function to each element of a list, passing an accumulating
parameter from left to right, and returning a final value of this
accumulator together with the new list.
\begin{code}
mapAccumL :: (acc -> x -> (acc, y)) -- Function of elt of input list
-- and accumulator, returning new
-- accumulator and elt of result list
-> acc -- Initial accumulator
-> [x] -- Input list
-> (acc, [y]) -- Final accumulator and result list
mapAccumL f b [] = (b, [])
mapAccumL f b (x:xs) = (b'', x':xs') where
(b', x') = f b x
(b'', xs') = mapAccumL f b' xs
\end{code}
@mapAccumR@ does the same, but working from right to left instead. Its type is
the same as @mapAccumL@, though.
\begin{code}
mapAccumR :: (acc -> x -> (acc, y)) -- Function of elt of input list
-- and accumulator, returning new
-- accumulator and elt of result list
-> acc -- Initial accumulator
-> [x] -- Input list
-> (acc, [y]) -- Final accumulator and result list
mapAccumR f b [] = (b, [])
mapAccumR f b (x:xs) = (b'', x':xs') where
(b'', x') = f b' x
(b', xs') = mapAccumR f b xs
\end{code}
Here is the bi-directional version, that works from both left and right.
\begin{code}
mapAccumB :: (accl -> accr -> x -> (accl, accr,y))
-- Function of elt of input list
-- and accumulator, returning new
-- accumulator and elt of result list
-> accl -- Initial accumulator from left
-> accr -- Initial accumulator from right
-> [x] -- Input list
-> (accl, accr, [y]) -- Final accumulators and result list
mapAccumB f a b [] = (a,b,[])
mapAccumB f a b (x:xs) = (a'',b'',y:ys)
where
(a',b'',y) = f a b' x
(a'',b',ys) = mapAccumB f a' b xs
\end{code}
A strict version of foldl.
\begin{code}
foldl' :: (a -> b -> a) -> a -> [b] -> a
foldl' f z xs = lgo z xs
where
lgo z [] = z
lgo z (x:xs) = (lgo $! (f z x)) xs
\end{code}
A combination of foldl with zip. It works with equal length lists.
\begin{code}
foldl2 :: (acc -> a -> b -> acc) -> acc -> [a] -> [b] -> acc
foldl2 k z [] [] = z
foldl2 k z (a:as) (b:bs) = foldl2 k (k z a b) as bs
all2 :: (a -> b -> Bool) -> [a] -> [b] -> Bool
-- True if the lists are the same length, and
-- all corresponding elements satisfy the predicate
all2 p [] [] = True
all2 p (x:xs) (y:ys) = p x y && all2 p xs ys
all2 p xs ys = False
\end{code}
Count the number of times a predicate is true
\begin{code}
count :: (a -> Bool) -> [a] -> Int
count p [] = 0
count p (x:xs) | p x = 1 + count p xs
| otherwise = count p xs
\end{code}
@splitAt@, @take@, and @drop@ but with length of another
list giving the break-off point:
\begin{code}
takeList :: [b] -> [a] -> [a]
takeList [] _ = []
takeList (_:xs) ls =
case ls of
[] -> []
(y:ys) -> y : takeList xs ys
dropList :: [b] -> [a] -> [a]
dropList [] xs = xs
dropList _ xs@[] = xs
dropList (_:xs) (_:ys) = dropList xs ys
splitAtList :: [b] -> [a] -> ([a], [a])
splitAtList [] xs = ([], xs)
splitAtList _ xs@[] = (xs, xs)
splitAtList (_:xs) (y:ys) = (y:ys', ys'')
where
(ys', ys'') = splitAtList xs ys
split :: Char -> String -> [String]
split c s = case rest of
[] -> [chunk]
_:rest -> chunk : split c rest
where (chunk, rest) = break (==c) s
\end{code}
%************************************************************************
%* *
\subsection[Utils-comparison]{Comparisons}
%* *
%************************************************************************
\begin{code}
isEqual :: Ordering -> Bool
-- Often used in (isEqual (a `compare` b))
isEqual GT = False
isEqual EQ = True
isEqual LT = False
thenCmp :: Ordering -> Ordering -> Ordering
{-# INLINE thenCmp #-}
thenCmp EQ any = any
thenCmp other any = other
eqListBy :: (a->a->Bool) -> [a] -> [a] -> Bool
eqListBy eq [] [] = True
eqListBy eq (x:xs) (y:ys) = eq x y && eqListBy eq xs ys
eqListBy eq xs ys = False
equalLength :: [a] -> [b] -> Bool
equalLength [] [] = True
equalLength (_:xs) (_:ys) = equalLength xs ys
equalLength xs ys = False
compareLength :: [a] -> [b] -> Ordering
compareLength [] [] = EQ
compareLength (_:xs) (_:ys) = compareLength xs ys
compareLength [] _ys = LT
compareLength _xs [] = GT
cmpList :: (a -> a -> Ordering) -> [a] -> [a] -> Ordering
-- `cmpList' uses a user-specified comparer
cmpList cmp [] [] = EQ
cmpList cmp [] _ = LT
cmpList cmp _ [] = GT
cmpList cmp (a:as) (b:bs)
= case cmp a b of { EQ -> cmpList cmp as bs; xxx -> xxx }
\end{code}
\begin{code}
prefixMatch :: Eq a => [a] -> [a] -> Bool
prefixMatch [] _str = True
prefixMatch _pat [] = False
prefixMatch (p:ps) (s:ss) | p == s = prefixMatch ps ss
| otherwise = False
maybePrefixMatch :: String -> String -> Maybe String
maybePrefixMatch [] rest = Just rest
maybePrefixMatch (_:_) [] = Nothing
maybePrefixMatch (p:pat) (r:rest)
| p == r = maybePrefixMatch pat rest
| otherwise = Nothing
suffixMatch :: Eq a => [a] -> [a] -> Bool
suffixMatch pat str = prefixMatch (reverse pat) (reverse str)
removeSpaces :: String -> String
removeSpaces = reverse . dropWhile isSpace . reverse . dropWhile isSpace
\end{code}
%************************************************************************
%* *
\subsection[Utils-pairs]{Pairs}
%* *
%************************************************************************
The following are curried versions of @fst@ and @snd@.
\begin{code}
#if NOT_USED
cfst :: a -> b -> a -- stranal-sem only (Note)
cfst x y = x
#endif
\end{code}
The following provide us higher order functions that, when applied
to a function, operate on pairs.
\begin{code}
#if NOT_USED
applyToPair :: ((a -> c),(b -> d)) -> (a,b) -> (c,d)
applyToPair (f,g) (x,y) = (f x, g y)
applyToFst :: (a -> c) -> (a,b)-> (c,b)
applyToFst f (x,y) = (f x,y)
applyToSnd :: (b -> d) -> (a,b) -> (a,d)
applyToSnd f (x,y) = (x,f y)
#endif
\end{code}
\begin{code}
unzipWith :: (a -> b -> c) -> [(a, b)] -> [c]
unzipWith f pairs = map ( \ (a, b) -> f a b ) pairs
\end{code}
\begin{code}
seqList :: [a] -> b -> b
seqList [] b = b
seqList (x:xs) b = x `seq` seqList xs b
\end{code}
Global variables:
\begin{code}
global :: a -> IORef a
global a = unsafePerformIO (newIORef a)
\end{code}
\begin{code}
consIORef :: IORef [a] -> a -> IO ()
consIORef var x = do
xs <- readIORef var
writeIORef var (x:xs)
\end{code}
Module names:
\begin{code}
looksLikeModuleName [] = False
looksLikeModuleName (c:cs) = isUpper c && go cs
where go [] = True
go ('.':cs) = looksLikeModuleName cs
go (c:cs) = (isAlphaNum c || c == '_') && go cs
\end{code}
Akin to @Prelude.words@, but sensitive to dquoted entities treating
them as single words.
\begin{code}
toArgs :: String -> [String]
toArgs "" = []
toArgs s =
case break (\ ch -> isSpace ch || ch == '"') (dropWhile isSpace s) of -- "
(w,aft) ->
(\ ws -> if null w then ws else w : ws) $
case aft of
[] -> []
(x:xs)
| x /= '"' -> toArgs xs
| otherwise ->
case lex aft of
((str,rs):_) -> stripQuotes str : toArgs rs
_ -> [aft]
where
-- strip away dquotes; assume first and last chars contain quotes.
stripQuotes :: String -> String
stripQuotes ('"':xs) = init xs
stripQuotes xs = xs
\end{code}
-- -----------------------------------------------------------------------------
-- Floats
\begin{code}
readRational__ :: ReadS Rational -- NB: doesn't handle leading "-"
readRational__ r = do
(n,d,s) <- readFix r
(k,t) <- readExp s
return ((n%1)*10^^(k-d), t)
where
readFix r = do
(ds,s) <- lexDecDigits r
(ds',t) <- lexDotDigits s
return (read (ds++ds'), length ds', t)
readExp (e:s) | e `elem` "eE" = readExp' s
readExp s = return (0,s)
readExp' ('+':s) = readDec s
readExp' ('-':s) = do
(k,t) <- readDec s
return (-k,t)
readExp' s = readDec s
readDec s = do
(ds,r) <- nonnull isDigit s
return (foldl1 (\n d -> n * 10 + d) [ ord d - ord '0' | d <- ds ],
r)
lexDecDigits = nonnull isDigit
lexDotDigits ('.':s) = return (span isDigit s)
lexDotDigits s = return ("",s)
nonnull p s = do (cs@(_:_),t) <- return (span p s)
return (cs,t)
readRational :: String -> Rational -- NB: *does* handle a leading "-"
readRational top_s
= case top_s of
'-' : xs -> - (read_me xs)
xs -> read_me xs
where
read_me s
= case (do { (x,"") <- readRational__ s ; return x }) of
[x] -> x
[] -> error ("readRational: no parse:" ++ top_s)
_ -> error ("readRational: ambiguous parse:" ++ top_s)
-----------------------------------------------------------------------------
-- Create a hierarchy of directories
createDirectoryHierarchy :: FilePath -> IO ()
createDirectoryHierarchy dir = do
b <- doesDirectoryExist dir
when (not b) $ do
createDirectoryHierarchy (directoryOf dir)
createDirectory dir
-----------------------------------------------------------------------------
-- Verify that the 'dirname' portion of a FilePath exists.
--
doesDirNameExist :: FilePath -> IO Bool
doesDirNameExist fpath = doesDirectoryExist (directoryOf fpath)
-- -----------------------------------------------------------------------------
-- Exception utils
later = flip finally
handleDyn :: Typeable ex => (ex -> IO a) -> IO a -> IO a
handleDyn = flip catchDyn
handle :: (Exception -> IO a) -> IO a -> IO a
#if __GLASGOW_HASKELL__ < 501
handle = flip Exception.catchAllIO
#else
handle h f = f `Exception.catch` \e -> case e of
ExitException _ -> throw e
_ -> h e
#endif
-- --------------------------------------------------------------
-- check existence & modification time at the same time
modificationTimeIfExists :: FilePath -> IO (Maybe ClockTime)
modificationTimeIfExists f = do
(do t <- getModificationTime f; return (Just t))
`IO.catch` \e -> if isDoesNotExistError e
then return Nothing
else ioError e
-- --------------------------------------------------------------
-- Filename manipulation
-- Filenames are kept "normalised" inside GHC, using '/' as the path
-- separator. On Windows these functions will also recognise '\\' as
-- the path separator, but will generally construct paths using '/'.
type Suffix = String
splitFilename :: String -> (String,Suffix)
splitFilename f = splitLongestPrefix f (=='.')
basenameOf :: FilePath -> String
basenameOf = fst . splitFilename
suffixOf :: FilePath -> Suffix
suffixOf = snd . splitFilename
joinFileExt :: String -> String -> FilePath
joinFileExt path "" = path
joinFileExt path ext = path ++ '.':ext
-- "foo/bar/xyzzy.ext" -> ("foo/bar", "xyzzy.ext")
splitFilenameDir :: String -> (String,String)
splitFilenameDir str
= let (dir, rest) = splitLongestPrefix str isPathSeparator
(dir', rest') | null rest = (".", dir)
| otherwise = (dir, rest)
in (dir', rest')
-- "foo/bar/xyzzy.ext" -> ("foo/bar", "xyzzy", ".ext")
splitFilename3 :: String -> (String,String,Suffix)
splitFilename3 str
= let (dir, rest) = splitFilenameDir str
(name, ext) = splitFilename rest
in (dir, name, ext)
joinFileName :: String -> String -> FilePath
joinFileName "" fname = fname
joinFileName "." fname = fname
joinFileName dir "" = dir
joinFileName dir fname = dir ++ '/':fname
-- split a string at the last character where 'pred' is True,
-- returning a pair of strings. The first component holds the string
-- up (but not including) the last character for which 'pred' returned
-- True, the second whatever comes after (but also not including the
-- last character).
--
-- If 'pred' returns False for all characters in the string, the original
-- string is returned in the first component (and the second one is just
-- empty).
splitLongestPrefix :: String -> (Char -> Bool) -> (String,String)
splitLongestPrefix str pred
| null r_pre = (str, [])
| otherwise = (reverse (tail r_pre), reverse r_suf)
-- 'tail' drops the char satisfying 'pred'
where
(r_suf, r_pre) = break pred (reverse str)
replaceFilenameSuffix :: FilePath -> Suffix -> FilePath
replaceFilenameSuffix file suf = basenameOf file `joinFileExt` suf
-- directoryOf strips the filename off the input string, returning
-- the directory.
directoryOf :: FilePath -> String
directoryOf = fst . splitFilenameDir
-- filenameOf strips the directory off the input string, returning
-- the filename.
filenameOf :: FilePath -> String
filenameOf = snd . splitFilenameDir
replaceFilenameDirectory :: FilePath -> String -> FilePath
replaceFilenameDirectory path dir = dir `joinFileName` filenameOf path
escapeSpaces :: String -> String
escapeSpaces = foldr (\c s -> if isSpace c then '\\':c:s else c:s) ""
isPathSeparator :: Char -> Bool
isPathSeparator ch =
#ifdef mingw32_TARGET_OS
ch == '/' || ch == '\\'
#else
ch == '/'
#endif
--------------------------------------------------------------
-- * Search path
--------------------------------------------------------------
-- | The function splits the given string to substrings
-- using the 'searchPathSeparator'.
parseSearchPath :: String -> [FilePath]
parseSearchPath path = split path
where
split :: String -> [String]
split s =
case rest' of
[] -> [chunk]
_:rest -> chunk : split rest
where
chunk =
case chunk' of
#ifdef mingw32_HOST_OS
('\"':xs@(_:_)) | last xs == '\"' -> init xs
#endif
_ -> chunk'
(chunk', rest') = break (==searchPathSeparator) s
-- | A platform-specific character used to separate search path strings in
-- environment variables. The separator is a colon (\":\") on Unix and Macintosh,
-- and a semicolon (\";\") on the Windows operating system.
searchPathSeparator :: Char
#if mingw32_HOST_OS || mingw32_TARGET_OS
searchPathSeparator = ';'
#else
searchPathSeparator = ':'
#endif
-----------------------------------------------------------------------------
-- Convert filepath into platform / MSDOS form.
-- We maintain path names in Unix form ('/'-separated) right until
-- the last moment. On Windows we dos-ify them just before passing them
-- to the Windows command.
--
-- The alternative, of using '/' consistently on Unix and '\' on Windows,
-- proved quite awkward. There were a lot more calls to platformPath,
-- and even on Windows we might invoke a unix-like utility (eg 'sh'), which
-- interpreted a command line 'foo\baz' as 'foobaz'.
normalisePath :: String -> String
-- Just changes '\' to '/'
pgmPath :: String -- Directory string in Unix format
-> String -- Program name with no directory separators
-- (e.g. copy /y)
-> String -- Program invocation string in native format
#if defined(mingw32_HOST_OS)
--------------------- Windows version ------------------
normalisePath xs = subst '\\' '/' xs
pgmPath dir pgm = platformPath dir ++ '\\' : pgm
platformPath p = subst '/' '\\' p
subst a b ls = map (\ x -> if x == a then b else x) ls
#else
--------------------- Non-Windows version --------------
normalisePath xs = xs
pgmPath dir pgm = dir ++ '/' : pgm
platformPath stuff = stuff
--------------------------------------------------------
#endif
\end{code}
|