1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
|
%
% (c) The University of Glasgow 2006
% (c) The University of Glasgow 1992-2002
%
\begin{code}
-- | Highly random utility functions
module Util (
-- * Flags dependent on the compiler build
ghciSupported, debugIsOn, ghciTablesNextToCode, isDynamicGhcLib,
isWindowsHost, isWindowsTarget, isDarwinTarget,
-- * General list processing
zipEqual, zipWithEqual, zipWith3Equal, zipWith4Equal,
zipLazy, stretchZipWith,
unzipWith,
mapFst, mapSnd,
mapAndUnzip, mapAndUnzip3,
nOfThem, filterOut, partitionWith, splitEithers,
foldl1', foldl2, count, all2,
lengthExceeds, lengthIs, lengthAtLeast,
listLengthCmp, atLength, equalLength, compareLength,
isSingleton, only, singleton,
notNull, snocView,
isIn, isn'tIn,
-- * Tuples
fstOf3, sndOf3, thirdOf3,
-- * List operations controlled by another list
takeList, dropList, splitAtList, split,
dropTail,
-- * For loop
nTimes,
-- * Sorting
sortLe, sortWith, on,
-- * Comparisons
isEqual, eqListBy,
thenCmp, cmpList,
removeSpaces,
-- * Edit distance
fuzzyMatch, fuzzyLookup,
-- * Transitive closures
transitiveClosure,
-- * Strictness
seqList,
-- * Module names
looksLikeModuleName,
-- * Argument processing
getCmd, toCmdArgs, toArgs,
-- * Floating point
readRational,
-- * read helpers
maybeReadFuzzy,
-- * IO-ish utilities
createDirectoryHierarchy,
doesDirNameExist,
modificationTimeIfExists,
global, consIORef, globalMVar, globalEmptyMVar,
-- * Filenames and paths
Suffix,
splitLongestPrefix,
escapeSpaces,
parseSearchPath,
Direction(..), reslash,
-- * Utils for defining Data instances
abstractConstr, abstractDataType, mkNoRepType,
-- * Utils for printing C code
charToC
) where
#include "HsVersions.h"
import Exception
import Panic
import Data.Data
import Data.IORef ( IORef, newIORef, atomicModifyIORef )
import System.IO.Unsafe ( unsafePerformIO )
import Data.List hiding (group)
import Control.Concurrent.MVar ( MVar, newMVar, newEmptyMVar )
#ifdef DEBUG
import FastTypes
#endif
import Control.Monad ( unless )
import System.IO.Error as IO ( isDoesNotExistError )
import System.Directory ( doesDirectoryExist, createDirectory,
getModificationTime )
import System.FilePath
import System.Time ( ClockTime )
import Data.Char ( isUpper, isAlphaNum, isSpace, chr, ord, isDigit )
import Data.Ratio ( (%) )
import Data.Ord ( comparing )
import Data.Bits
import Data.Word
import qualified Data.IntMap as IM
infixr 9 `thenCmp`
\end{code}
%************************************************************************
%* *
\subsection{Is DEBUG on, are we on Windows, etc?}
%* *
%************************************************************************
These booleans are global constants, set by CPP flags. They allow us to
recompile a single module (this one) to change whether or not debug output
appears. They sometimes let us avoid even running CPP elsewhere.
It's important that the flags are literal constants (True/False). Then,
with -0, tests of the flags in other modules will simplify to the correct
branch of the conditional, thereby dropping debug code altogether when
the flags are off.
\begin{code}
ghciSupported :: Bool
#ifdef GHCI
ghciSupported = True
#else
ghciSupported = False
#endif
debugIsOn :: Bool
#ifdef DEBUG
debugIsOn = True
#else
debugIsOn = False
#endif
ghciTablesNextToCode :: Bool
#ifdef GHCI_TABLES_NEXT_TO_CODE
ghciTablesNextToCode = True
#else
ghciTablesNextToCode = False
#endif
isDynamicGhcLib :: Bool
#ifdef DYNAMIC
isDynamicGhcLib = True
#else
isDynamicGhcLib = False
#endif
isWindowsHost :: Bool
#ifdef mingw32_HOST_OS
isWindowsHost = True
#else
isWindowsHost = False
#endif
isWindowsTarget :: Bool
#ifdef mingw32_TARGET_OS
isWindowsTarget = True
#else
isWindowsTarget = False
#endif
isDarwinTarget :: Bool
#ifdef darwin_TARGET_OS
isDarwinTarget = True
#else
isDarwinTarget = False
#endif
\end{code}
%************************************************************************
%* *
\subsection{A for loop}
%* *
%************************************************************************
\begin{code}
-- | Compose a function with itself n times. (nth rather than twice)
nTimes :: Int -> (a -> a) -> (a -> a)
nTimes 0 _ = id
nTimes 1 f = f
nTimes n f = f . nTimes (n-1) f
\end{code}
\begin{code}
fstOf3 :: (a,b,c) -> a
sndOf3 :: (a,b,c) -> b
thirdOf3 :: (a,b,c) -> c
fstOf3 (a,_,_) = a
sndOf3 (_,b,_) = b
thirdOf3 (_,_,c) = c
\end{code}
%************************************************************************
%* *
\subsection[Utils-lists]{General list processing}
%* *
%************************************************************************
\begin{code}
filterOut :: (a->Bool) -> [a] -> [a]
-- ^ Like filter, only it reverses the sense of the test
filterOut _ [] = []
filterOut p (x:xs) | p x = filterOut p xs
| otherwise = x : filterOut p xs
partitionWith :: (a -> Either b c) -> [a] -> ([b], [c])
-- ^ Uses a function to determine which of two output lists an input element should join
partitionWith _ [] = ([],[])
partitionWith f (x:xs) = case f x of
Left b -> (b:bs, cs)
Right c -> (bs, c:cs)
where (bs,cs) = partitionWith f xs
splitEithers :: [Either a b] -> ([a], [b])
-- ^ Teases a list of 'Either's apart into two lists
splitEithers [] = ([],[])
splitEithers (e : es) = case e of
Left x -> (x:xs, ys)
Right y -> (xs, y:ys)
where (xs,ys) = splitEithers es
\end{code}
A paranoid @zip@ (and some @zipWith@ friends) that checks the lists
are of equal length. Alastair Reid thinks this should only happen if
DEBUGging on; hey, why not?
\begin{code}
zipEqual :: String -> [a] -> [b] -> [(a,b)]
zipWithEqual :: String -> (a->b->c) -> [a]->[b]->[c]
zipWith3Equal :: String -> (a->b->c->d) -> [a]->[b]->[c]->[d]
zipWith4Equal :: String -> (a->b->c->d->e) -> [a]->[b]->[c]->[d]->[e]
#ifndef DEBUG
zipEqual _ = zip
zipWithEqual _ = zipWith
zipWith3Equal _ = zipWith3
zipWith4Equal _ = zipWith4
#else
zipEqual _ [] [] = []
zipEqual msg (a:as) (b:bs) = (a,b) : zipEqual msg as bs
zipEqual msg _ _ = panic ("zipEqual: unequal lists:"++msg)
zipWithEqual msg z (a:as) (b:bs)= z a b : zipWithEqual msg z as bs
zipWithEqual _ _ [] [] = []
zipWithEqual msg _ _ _ = panic ("zipWithEqual: unequal lists:"++msg)
zipWith3Equal msg z (a:as) (b:bs) (c:cs)
= z a b c : zipWith3Equal msg z as bs cs
zipWith3Equal _ _ [] [] [] = []
zipWith3Equal msg _ _ _ _ = panic ("zipWith3Equal: unequal lists:"++msg)
zipWith4Equal msg z (a:as) (b:bs) (c:cs) (d:ds)
= z a b c d : zipWith4Equal msg z as bs cs ds
zipWith4Equal _ _ [] [] [] [] = []
zipWith4Equal msg _ _ _ _ _ = panic ("zipWith4Equal: unequal lists:"++msg)
#endif
\end{code}
\begin{code}
-- | 'zipLazy' is a kind of 'zip' that is lazy in the second list (observe the ~)
zipLazy :: [a] -> [b] -> [(a,b)]
zipLazy [] _ = []
-- We want to write this, but with GHC 6.4 we get a warning, so it
-- doesn't validate:
-- zipLazy (x:xs) ~(y:ys) = (x,y) : zipLazy xs ys
-- so we write this instead:
zipLazy (x:xs) zs = let y : ys = zs
in (x,y) : zipLazy xs ys
\end{code}
\begin{code}
stretchZipWith :: (a -> Bool) -> b -> (a->b->c) -> [a] -> [b] -> [c]
-- ^ @stretchZipWith p z f xs ys@ stretches @ys@ by inserting @z@ in
-- the places where @p@ returns @True@
stretchZipWith _ _ _ [] _ = []
stretchZipWith p z f (x:xs) ys
| p x = f x z : stretchZipWith p z f xs ys
| otherwise = case ys of
[] -> []
(y:ys) -> f x y : stretchZipWith p z f xs ys
\end{code}
\begin{code}
mapFst :: (a->c) -> [(a,b)] -> [(c,b)]
mapSnd :: (b->c) -> [(a,b)] -> [(a,c)]
mapFst f xys = [(f x, y) | (x,y) <- xys]
mapSnd f xys = [(x, f y) | (x,y) <- xys]
mapAndUnzip :: (a -> (b, c)) -> [a] -> ([b], [c])
mapAndUnzip _ [] = ([], [])
mapAndUnzip f (x:xs)
= let (r1, r2) = f x
(rs1, rs2) = mapAndUnzip f xs
in
(r1:rs1, r2:rs2)
mapAndUnzip3 :: (a -> (b, c, d)) -> [a] -> ([b], [c], [d])
mapAndUnzip3 _ [] = ([], [], [])
mapAndUnzip3 f (x:xs)
= let (r1, r2, r3) = f x
(rs1, rs2, rs3) = mapAndUnzip3 f xs
in
(r1:rs1, r2:rs2, r3:rs3)
\end{code}
\begin{code}
nOfThem :: Int -> a -> [a]
nOfThem n thing = replicate n thing
-- | @atLength atLen atEnd ls n@ unravels list @ls@ to position @n@. Precisely:
--
-- @
-- atLength atLenPred atEndPred ls n
-- | n < 0 = atLenPred n
-- | length ls < n = atEndPred (n - length ls)
-- | otherwise = atLenPred (drop n ls)
-- @
atLength :: ([a] -> b)
-> (Int -> b)
-> [a]
-> Int
-> b
atLength atLenPred atEndPred ls n
| n < 0 = atEndPred n
| otherwise = go n ls
where
go n [] = atEndPred n
go 0 ls = atLenPred ls
go n (_:xs) = go (n-1) xs
-- Some special cases of atLength:
lengthExceeds :: [a] -> Int -> Bool
-- ^ > (lengthExceeds xs n) = (length xs > n)
lengthExceeds = atLength notNull (const False)
lengthAtLeast :: [a] -> Int -> Bool
lengthAtLeast = atLength notNull (== 0)
lengthIs :: [a] -> Int -> Bool
lengthIs = atLength null (==0)
listLengthCmp :: [a] -> Int -> Ordering
listLengthCmp = atLength atLen atEnd
where
atEnd 0 = EQ
atEnd x
| x > 0 = LT -- not yet seen 'n' elts, so list length is < n.
| otherwise = GT
atLen [] = EQ
atLen _ = GT
equalLength :: [a] -> [b] -> Bool
equalLength [] [] = True
equalLength (_:xs) (_:ys) = equalLength xs ys
equalLength _ _ = False
compareLength :: [a] -> [b] -> Ordering
compareLength [] [] = EQ
compareLength (_:xs) (_:ys) = compareLength xs ys
compareLength [] _ = LT
compareLength _ [] = GT
----------------------------
singleton :: a -> [a]
singleton x = [x]
isSingleton :: [a] -> Bool
isSingleton [_] = True
isSingleton _ = False
notNull :: [a] -> Bool
notNull [] = False
notNull _ = True
only :: [a] -> a
#ifdef DEBUG
only [a] = a
#else
only (a:_) = a
#endif
only _ = panic "Util: only"
\end{code}
Debugging/specialising versions of \tr{elem} and \tr{notElem}
\begin{code}
isIn, isn'tIn :: Eq a => String -> a -> [a] -> Bool
# ifndef DEBUG
isIn _msg x ys = x `elem` ys
isn'tIn _msg x ys = x `notElem` ys
# else /* DEBUG */
isIn msg x ys
= elem100 (_ILIT(0)) x ys
where
elem100 _ _ [] = False
elem100 i x (y:ys)
| i ># _ILIT(100) = trace ("Over-long elem in " ++ msg)
(x `elem` (y:ys))
| otherwise = x == y || elem100 (i +# _ILIT(1)) x ys
isn'tIn msg x ys
= notElem100 (_ILIT(0)) x ys
where
notElem100 _ _ [] = True
notElem100 i x (y:ys)
| i ># _ILIT(100) = trace ("Over-long notElem in " ++ msg)
(x `notElem` (y:ys))
| otherwise = x /= y && notElem100 (i +# _ILIT(1)) x ys
# endif /* DEBUG */
\end{code}
%************************************************************************
%* *
\subsubsection[Utils-Carsten-mergesort]{A mergesort from Carsten}
%* *
%************************************************************************
\begin{display}
Date: Mon, 3 May 93 20:45:23 +0200
From: Carsten Kehler Holst <kehler@cs.chalmers.se>
To: partain@dcs.gla.ac.uk
Subject: natural merge sort beats quick sort [ and it is prettier ]
Here is a piece of Haskell code that I'm rather fond of. See it as an
attempt to get rid of the ridiculous quick-sort routine. group is
quite useful by itself I think it was John's idea originally though I
believe the lazy version is due to me [surprisingly complicated].
gamma [used to be called] is called gamma because I got inspired by
the Gamma calculus. It is not very close to the calculus but does
behave less sequentially than both foldr and foldl. One could imagine
a version of gamma that took a unit element as well thereby avoiding
the problem with empty lists.
I've tried this code against
1) insertion sort - as provided by haskell
2) the normal implementation of quick sort
3) a deforested version of quick sort due to Jan Sparud
4) a super-optimized-quick-sort of Lennart's
If the list is partially sorted both merge sort and in particular
natural merge sort wins. If the list is random [ average length of
rising subsequences = approx 2 ] mergesort still wins and natural
merge sort is marginally beaten by Lennart's soqs. The space
consumption of merge sort is a bit worse than Lennart's quick sort
approx a factor of 2. And a lot worse if Sparud's bug-fix [see his
fpca article ] isn't used because of group.
have fun
Carsten
\end{display}
\begin{code}
group :: (a -> a -> Bool) -> [a] -> [[a]]
-- Given a <= function, group finds maximal contiguous up-runs
-- or down-runs in the input list.
-- It's stable, in the sense that it never re-orders equal elements
--
-- Date: Mon, 12 Feb 1996 15:09:41 +0000
-- From: Andy Gill <andy@dcs.gla.ac.uk>
-- Here is a `better' definition of group.
group _ [] = []
group p (x:xs) = group' xs x x (x :)
where
group' [] _ _ s = [s []]
group' (x:xs) x_min x_max s
| x_max `p` x = group' xs x_min x (s . (x :))
| not (x_min `p` x) = group' xs x x_max ((x :) . s)
| otherwise = s [] : group' xs x x (x :)
-- NB: the 'not' is essential for stablity
-- x `p` x_min would reverse equal elements
generalMerge :: (a -> a -> Bool) -> [a] -> [a] -> [a]
generalMerge _ xs [] = xs
generalMerge _ [] ys = ys
generalMerge p (x:xs) (y:ys) | x `p` y = x : generalMerge p xs (y:ys)
| otherwise = y : generalMerge p (x:xs) ys
-- gamma is now called balancedFold
balancedFold :: (a -> a -> a) -> [a] -> a
balancedFold _ [] = error "can't reduce an empty list using balancedFold"
balancedFold _ [x] = x
balancedFold f l = balancedFold f (balancedFold' f l)
balancedFold' :: (a -> a -> a) -> [a] -> [a]
balancedFold' f (x:y:xs) = f x y : balancedFold' f xs
balancedFold' _ xs = xs
generalNaturalMergeSort :: (a -> a -> Bool) -> [a] -> [a]
generalNaturalMergeSort _ [] = []
generalNaturalMergeSort p xs = (balancedFold (generalMerge p) . group p) xs
#if NOT_USED
generalMergeSort p [] = []
generalMergeSort p xs = (balancedFold (generalMerge p) . map (: [])) xs
mergeSort, naturalMergeSort :: Ord a => [a] -> [a]
mergeSort = generalMergeSort (<=)
naturalMergeSort = generalNaturalMergeSort (<=)
mergeSortLe le = generalMergeSort le
#endif
sortLe :: (a->a->Bool) -> [a] -> [a]
sortLe le = generalNaturalMergeSort le
sortWith :: Ord b => (a->b) -> [a] -> [a]
sortWith get_key xs = sortLe le xs
where
x `le` y = get_key x < get_key y
on :: (a -> a -> c) -> (b -> a) -> b -> b -> c
on cmp sel = \x y -> sel x `cmp` sel y
\end{code}
%************************************************************************
%* *
\subsection[Utils-transitive-closure]{Transitive closure}
%* *
%************************************************************************
This algorithm for transitive closure is straightforward, albeit quadratic.
\begin{code}
transitiveClosure :: (a -> [a]) -- Successor function
-> (a -> a -> Bool) -- Equality predicate
-> [a]
-> [a] -- The transitive closure
transitiveClosure succ eq xs
= go [] xs
where
go done [] = done
go done (x:xs) | x `is_in` done = go done xs
| otherwise = go (x:done) (succ x ++ xs)
_ `is_in` [] = False
x `is_in` (y:ys) | eq x y = True
| otherwise = x `is_in` ys
\end{code}
%************************************************************************
%* *
\subsection[Utils-accum]{Accumulating}
%* *
%************************************************************************
A combination of foldl with zip. It works with equal length lists.
\begin{code}
foldl2 :: (acc -> a -> b -> acc) -> acc -> [a] -> [b] -> acc
foldl2 _ z [] [] = z
foldl2 k z (a:as) (b:bs) = foldl2 k (k z a b) as bs
foldl2 _ _ _ _ = panic "Util: foldl2"
all2 :: (a -> b -> Bool) -> [a] -> [b] -> Bool
-- True if the lists are the same length, and
-- all corresponding elements satisfy the predicate
all2 _ [] [] = True
all2 p (x:xs) (y:ys) = p x y && all2 p xs ys
all2 _ _ _ = False
\end{code}
Count the number of times a predicate is true
\begin{code}
count :: (a -> Bool) -> [a] -> Int
count _ [] = 0
count p (x:xs) | p x = 1 + count p xs
| otherwise = count p xs
\end{code}
@splitAt@, @take@, and @drop@ but with length of another
list giving the break-off point:
\begin{code}
takeList :: [b] -> [a] -> [a]
takeList [] _ = []
takeList (_:xs) ls =
case ls of
[] -> []
(y:ys) -> y : takeList xs ys
dropList :: [b] -> [a] -> [a]
dropList [] xs = xs
dropList _ xs@[] = xs
dropList (_:xs) (_:ys) = dropList xs ys
splitAtList :: [b] -> [a] -> ([a], [a])
splitAtList [] xs = ([], xs)
splitAtList _ xs@[] = (xs, xs)
splitAtList (_:xs) (y:ys) = (y:ys', ys'')
where
(ys', ys'') = splitAtList xs ys
-- drop from the end of a list
dropTail :: Int -> [a] -> [a]
dropTail n = reverse . drop n . reverse
snocView :: [a] -> Maybe ([a],a)
-- Split off the last element
snocView [] = Nothing
snocView xs = go [] xs
where
-- Invariant: second arg is non-empty
go acc [x] = Just (reverse acc, x)
go acc (x:xs) = go (x:acc) xs
go _ [] = panic "Util: snocView"
split :: Char -> String -> [String]
split c s = case rest of
[] -> [chunk]
_:rest -> chunk : split c rest
where (chunk, rest) = break (==c) s
\end{code}
%************************************************************************
%* *
\subsection[Utils-comparison]{Comparisons}
%* *
%************************************************************************
\begin{code}
isEqual :: Ordering -> Bool
-- Often used in (isEqual (a `compare` b))
isEqual GT = False
isEqual EQ = True
isEqual LT = False
thenCmp :: Ordering -> Ordering -> Ordering
{-# INLINE thenCmp #-}
thenCmp EQ ordering = ordering
thenCmp ordering _ = ordering
eqListBy :: (a->a->Bool) -> [a] -> [a] -> Bool
eqListBy _ [] [] = True
eqListBy eq (x:xs) (y:ys) = eq x y && eqListBy eq xs ys
eqListBy _ _ _ = False
cmpList :: (a -> a -> Ordering) -> [a] -> [a] -> Ordering
-- `cmpList' uses a user-specified comparer
cmpList _ [] [] = EQ
cmpList _ [] _ = LT
cmpList _ _ [] = GT
cmpList cmp (a:as) (b:bs)
= case cmp a b of { EQ -> cmpList cmp as bs; xxx -> xxx }
\end{code}
\begin{code}
removeSpaces :: String -> String
removeSpaces = reverse . dropWhile isSpace . reverse . dropWhile isSpace
\end{code}
%************************************************************************
%* *
\subsection{Edit distance}
%* *
%************************************************************************
\begin{code}
-- | Find the "restricted" Damerau-Levenshtein edit distance between two strings.
-- See: <http://en.wikipedia.org/wiki/Damerau-Levenshtein_distance>.
-- Based on the algorithm presented in "A Bit-Vector Algorithm for Computing
-- Levenshtein and Damerau Edit Distances" in PSC'02 (Heikki Hyyro).
-- See http://www.cs.uta.fi/~helmu/pubs/psc02.pdf and
-- http://www.cs.uta.fi/~helmu/pubs/PSCerr.html for an explanation
restrictedDamerauLevenshteinDistance :: String -> String -> Int
restrictedDamerauLevenshteinDistance str1 str2
= restrictedDamerauLevenshteinDistanceWithLengths m n str1 str2
where
m = length str1
n = length str2
restrictedDamerauLevenshteinDistanceWithLengths
:: Int -> Int -> String -> String -> Int
restrictedDamerauLevenshteinDistanceWithLengths m n str1 str2
| m <= n
= if n <= 32 -- n must be larger so this check is sufficient
then restrictedDamerauLevenshteinDistance' (undefined :: Word32) m n str1 str2
else restrictedDamerauLevenshteinDistance' (undefined :: Integer) m n str1 str2
| otherwise
= if m <= 32 -- m must be larger so this check is sufficient
then restrictedDamerauLevenshteinDistance' (undefined :: Word32) n m str2 str1
else restrictedDamerauLevenshteinDistance' (undefined :: Integer) n m str2 str1
restrictedDamerauLevenshteinDistance'
:: (Bits bv) => bv -> Int -> Int -> String -> String -> Int
restrictedDamerauLevenshteinDistance' _bv_dummy m n str1 str2
| [] <- str1 = n
| otherwise = extractAnswer $
foldl' (restrictedDamerauLevenshteinDistanceWorker
(matchVectors str1) top_bit_mask vector_mask)
(0, 0, m_ones, 0, m) str2
where
m_ones@vector_mask = (2 ^ m) - 1
top_bit_mask = (1 `shiftL` (m - 1)) `asTypeOf` _bv_dummy
extractAnswer (_, _, _, _, distance) = distance
restrictedDamerauLevenshteinDistanceWorker
:: (Bits bv) => IM.IntMap bv -> bv -> bv
-> (bv, bv, bv, bv, Int) -> Char -> (bv, bv, bv, bv, Int)
restrictedDamerauLevenshteinDistanceWorker str1_mvs top_bit_mask vector_mask
(pm, d0, vp, vn, distance) char2
= seq str1_mvs $ seq top_bit_mask $ seq vector_mask $
seq pm' $ seq d0' $ seq vp' $ seq vn' $
seq distance'' $ seq char2 $
(pm', d0', vp', vn', distance'')
where
pm' = IM.findWithDefault 0 (ord char2) str1_mvs
d0' = ((((sizedComplement vector_mask d0) .&. pm') `shiftL` 1) .&. pm)
.|. ((((pm' .&. vp) + vp) .&. vector_mask) `xor` vp) .|. pm' .|. vn
-- No need to mask the shiftL because of the restricted range of pm
hp' = vn .|. sizedComplement vector_mask (d0' .|. vp)
hn' = d0' .&. vp
hp'_shift = ((hp' `shiftL` 1) .|. 1) .&. vector_mask
hn'_shift = (hn' `shiftL` 1) .&. vector_mask
vp' = hn'_shift .|. sizedComplement vector_mask (d0' .|. hp'_shift)
vn' = d0' .&. hp'_shift
distance' = if hp' .&. top_bit_mask /= 0 then distance + 1 else distance
distance'' = if hn' .&. top_bit_mask /= 0 then distance' - 1 else distance'
sizedComplement :: Bits bv => bv -> bv -> bv
sizedComplement vector_mask vect = vector_mask `xor` vect
matchVectors :: Bits bv => String -> IM.IntMap bv
matchVectors = snd . foldl' go (0 :: Int, IM.empty)
where
go (ix, im) char = let ix' = ix + 1
im' = IM.insertWith (.|.) (ord char) (2 ^ ix) im
in seq ix' $ seq im' $ (ix', im')
#ifdef __GLASGOW_HASKELL__
{-# SPECIALIZE INLINE restrictedDamerauLevenshteinDistance'
:: Word32 -> Int -> Int -> String -> String -> Int #-}
{-# SPECIALIZE INLINE restrictedDamerauLevenshteinDistance'
:: Integer -> Int -> Int -> String -> String -> Int #-}
{-# SPECIALIZE restrictedDamerauLevenshteinDistanceWorker
:: IM.IntMap Word32 -> Word32 -> Word32
-> (Word32, Word32, Word32, Word32, Int)
-> Char -> (Word32, Word32, Word32, Word32, Int) #-}
{-# SPECIALIZE restrictedDamerauLevenshteinDistanceWorker
:: IM.IntMap Integer -> Integer -> Integer
-> (Integer, Integer, Integer, Integer, Int)
-> Char -> (Integer, Integer, Integer, Integer, Int) #-}
{-# SPECIALIZE INLINE sizedComplement :: Word32 -> Word32 -> Word32 #-}
{-# SPECIALIZE INLINE sizedComplement :: Integer -> Integer -> Integer #-}
{-# SPECIALIZE matchVectors :: String -> IM.IntMap Word32 #-}
{-# SPECIALIZE matchVectors :: String -> IM.IntMap Integer #-}
#endif
fuzzyMatch :: String -> [String] -> [String]
fuzzyMatch key vals = fuzzyLookup key [(v,v) | v <- vals]
-- | Search for possible matches to the users input in the given list,
-- returning a small number of ranked results
fuzzyLookup :: String -> [(String,a)] -> [a]
fuzzyLookup user_entered possibilites
= map fst $ take mAX_RESULTS $ sortBy (comparing snd)
[ (poss_val, distance) | (poss_str, poss_val) <- possibilites
, let distance = restrictedDamerauLevenshteinDistance
poss_str user_entered
, distance <= fuzzy_threshold ]
where
-- Work out an approriate match threshold:
-- We report a candidate if its edit distance is <= the threshold,
-- The threshhold is set to about a quarter of the # of characters the user entered
-- Length Threshold
-- 1 0 -- Don't suggest *any* candidates
-- 2 1 -- for single-char identifiers
-- 3 1
-- 4 1
-- 5 1
-- 6 2
--
fuzzy_threshold = truncate $ fromIntegral (length user_entered + 2) / (4 :: Rational)
mAX_RESULTS = 3
\end{code}
%************************************************************************
%* *
\subsection[Utils-pairs]{Pairs}
%* *
%************************************************************************
\begin{code}
unzipWith :: (a -> b -> c) -> [(a, b)] -> [c]
unzipWith f pairs = map ( \ (a, b) -> f a b ) pairs
\end{code}
\begin{code}
seqList :: [a] -> b -> b
seqList [] b = b
seqList (x:xs) b = x `seq` seqList xs b
\end{code}
Global variables:
\begin{code}
global :: a -> IORef a
global a = unsafePerformIO (newIORef a)
\end{code}
\begin{code}
consIORef :: IORef [a] -> a -> IO ()
consIORef var x = do
atomicModifyIORef var (\xs -> (x:xs,()))
\end{code}
\begin{code}
globalMVar :: a -> MVar a
globalMVar a = unsafePerformIO (newMVar a)
globalEmptyMVar :: MVar a
globalEmptyMVar = unsafePerformIO newEmptyMVar
\end{code}
Module names:
\begin{code}
looksLikeModuleName :: String -> Bool
looksLikeModuleName [] = False
looksLikeModuleName (c:cs) = isUpper c && go cs
where go [] = True
go ('.':cs) = looksLikeModuleName cs
go (c:cs) = (isAlphaNum c || c == '_' || c == '\'') && go cs
\end{code}
Akin to @Prelude.words@, but acts like the Bourne shell, treating
quoted strings as Haskell Strings, and also parses Haskell [String]
syntax.
\begin{code}
getCmd :: String -> Either String -- Error
(String, String) -- (Cmd, Rest)
getCmd s = case break isSpace $ dropWhile isSpace s of
([], _) -> Left ("Couldn't find command in " ++ show s)
res -> Right res
toCmdArgs :: String -> Either String -- Error
(String, [String]) -- (Cmd, Args)
toCmdArgs s = case getCmd s of
Left err -> Left err
Right (cmd, s') -> case toArgs s' of
Left err -> Left err
Right args -> Right (cmd, args)
toArgs :: String -> Either String -- Error
[String] -- Args
toArgs str
= case dropWhile isSpace str of
s@('[':_) -> case reads s of
[(args, spaces)]
| all isSpace spaces ->
Right args
_ ->
Left ("Couldn't read " ++ show str ++ "as [String]")
s -> toArgs' s
where
toArgs' s = case dropWhile isSpace s of
[] -> Right []
('"' : _) -> case reads s of
[(arg, rest)]
-- rest must either be [] or start with a space
| all isSpace (take 1 rest) ->
case toArgs' rest of
Left err -> Left err
Right args -> Right (arg : args)
_ ->
Left ("Couldn't read " ++ show s ++ "as String")
s' -> case break isSpace s' of
(arg, s'') -> case toArgs' s'' of
Left err -> Left err
Right args -> Right (arg : args)
\end{code}
-- -----------------------------------------------------------------------------
-- Floats
\begin{code}
readRational__ :: ReadS Rational -- NB: doesn't handle leading "-"
readRational__ r = do
(n,d,s) <- readFix r
(k,t) <- readExp s
return ((n%1)*10^^(k-d), t)
where
readFix r = do
(ds,s) <- lexDecDigits r
(ds',t) <- lexDotDigits s
return (read (ds++ds'), length ds', t)
readExp (e:s) | e `elem` "eE" = readExp' s
readExp s = return (0,s)
readExp' ('+':s) = readDec s
readExp' ('-':s) = do (k,t) <- readDec s
return (-k,t)
readExp' s = readDec s
readDec s = do
(ds,r) <- nonnull isDigit s
return (foldl1 (\n d -> n * 10 + d) [ ord d - ord '0' | d <- ds ],
r)
lexDecDigits = nonnull isDigit
lexDotDigits ('.':s) = return (span isDigit s)
lexDotDigits s = return ("",s)
nonnull p s = do (cs@(_:_),t) <- return (span p s)
return (cs,t)
readRational :: String -> Rational -- NB: *does* handle a leading "-"
readRational top_s
= case top_s of
'-' : xs -> - (read_me xs)
xs -> read_me xs
where
read_me s
= case (do { (x,"") <- readRational__ s ; return x }) of
[x] -> x
[] -> error ("readRational: no parse:" ++ top_s)
_ -> error ("readRational: ambiguous parse:" ++ top_s)
-----------------------------------------------------------------------------
-- read helpers
maybeReadFuzzy :: Read a => String -> Maybe a
maybeReadFuzzy str = case reads str of
[(x, s)]
| all isSpace s ->
Just x
_ ->
Nothing
-----------------------------------------------------------------------------
-- Create a hierarchy of directories
createDirectoryHierarchy :: FilePath -> IO ()
createDirectoryHierarchy dir | isDrive dir = return () -- XXX Hack
createDirectoryHierarchy dir = do
b <- doesDirectoryExist dir
unless b $ do createDirectoryHierarchy (takeDirectory dir)
createDirectory dir
-----------------------------------------------------------------------------
-- Verify that the 'dirname' portion of a FilePath exists.
--
doesDirNameExist :: FilePath -> IO Bool
doesDirNameExist fpath = case takeDirectory fpath of
"" -> return True -- XXX Hack
_ -> doesDirectoryExist (takeDirectory fpath)
-- --------------------------------------------------------------
-- check existence & modification time at the same time
modificationTimeIfExists :: FilePath -> IO (Maybe ClockTime)
modificationTimeIfExists f = do
(do t <- getModificationTime f; return (Just t))
`catchIO` \e -> if isDoesNotExistError e
then return Nothing
else ioError e
-- split a string at the last character where 'pred' is True,
-- returning a pair of strings. The first component holds the string
-- up (but not including) the last character for which 'pred' returned
-- True, the second whatever comes after (but also not including the
-- last character).
--
-- If 'pred' returns False for all characters in the string, the original
-- string is returned in the first component (and the second one is just
-- empty).
splitLongestPrefix :: String -> (Char -> Bool) -> (String,String)
splitLongestPrefix str pred
| null r_pre = (str, [])
| otherwise = (reverse (tail r_pre), reverse r_suf)
-- 'tail' drops the char satisfying 'pred'
where (r_suf, r_pre) = break pred (reverse str)
escapeSpaces :: String -> String
escapeSpaces = foldr (\c s -> if isSpace c then '\\':c:s else c:s) ""
type Suffix = String
--------------------------------------------------------------
-- * Search path
--------------------------------------------------------------
-- | The function splits the given string to substrings
-- using the 'searchPathSeparator'.
parseSearchPath :: String -> [FilePath]
parseSearchPath path = split path
where
split :: String -> [String]
split s =
case rest' of
[] -> [chunk]
_:rest -> chunk : split rest
where
chunk =
case chunk' of
#ifdef mingw32_HOST_OS
('\"':xs@(_:_)) | last xs == '\"' -> init xs
#endif
_ -> chunk'
(chunk', rest') = break isSearchPathSeparator s
data Direction = Forwards | Backwards
reslash :: Direction -> FilePath -> FilePath
reslash d = f
where f ('/' : xs) = slash : f xs
f ('\\' : xs) = slash : f xs
f (x : xs) = x : f xs
f "" = ""
slash = case d of
Forwards -> '/'
Backwards -> '\\'
\end{code}
%************************************************************************
%* *
\subsection[Utils-Data]{Utils for defining Data instances}
%* *
%************************************************************************
These functions helps us to define Data instances for abstract types.
\begin{code}
abstractConstr :: String -> Constr
abstractConstr n = mkConstr (abstractDataType n) ("{abstract:"++n++"}") [] Prefix
\end{code}
\begin{code}
abstractDataType :: String -> DataType
abstractDataType n = mkDataType n [abstractConstr n]
\end{code}
%************************************************************************
%* *
\subsection[Utils-C]{Utils for printing C code}
%* *
%************************************************************************
\begin{code}
charToC :: Word8 -> String
charToC w =
case chr (fromIntegral w) of
'\"' -> "\\\""
'\'' -> "\\\'"
'\\' -> "\\\\"
c | c >= ' ' && c <= '~' -> [c]
| otherwise -> ['\\',
chr (ord '0' + ord c `div` 64),
chr (ord '0' + ord c `div` 8 `mod` 8),
chr (ord '0' + ord c `mod` 8)]
\end{code}
|