1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
|
-- Main entry point to the vectoriser. It is invoked iff the option '-fvectorise' is passed.
--
-- This module provides the function 'vectorise', which vectorises an entire (desugared) module.
-- It vectorises all type declarations and value bindings. It also processes all VECTORISE pragmas
-- (aka vectorisation declarations), which can lead to the vectorisation of imported data types
-- and the enrichment of imported functions with vectorised versions.
module Vectorise ( vectorise )
where
import GhcPrelude
import Vectorise.Type.Env
import Vectorise.Type.Type
import Vectorise.Convert
import Vectorise.Utils.Hoisting
import Vectorise.Exp
import Vectorise.Env
import Vectorise.Monad
import HscTypes hiding ( MonadThings(..) )
import CoreUnfold ( mkInlineUnfoldingWithArity )
import PprCore
import CoreSyn
import CoreMonad ( CoreM, getHscEnv )
import Type
import Id
import DynFlags
import Outputable
import Util ( zipLazy )
import MonadUtils
import Control.Monad
-- |Vectorise a single module.
--
vectorise :: ModGuts -> CoreM ModGuts
vectorise guts
= do { hsc_env <- getHscEnv
; liftIO $ vectoriseIO hsc_env guts
}
-- Vectorise a single monad, given the dynamic compiler flags and HscEnv.
--
vectoriseIO :: HscEnv -> ModGuts -> IO ModGuts
vectoriseIO hsc_env guts
= do { -- Get information about currently loaded external packages.
; eps <- hscEPS hsc_env
-- Combine vectorisation info from the current module, and external ones.
; let info = hptVectInfo hsc_env `plusVectInfo` eps_vect_info eps
-- Run the main VM computation.
; Just (info', guts') <- initV hsc_env guts info (vectModule guts)
; return (guts' { mg_vect_info = info' })
}
-- Vectorise a single module, in the VM monad.
--
vectModule :: ModGuts -> VM ModGuts
vectModule guts@(ModGuts { mg_tcs = tycons
, mg_binds = binds
, mg_fam_insts = fam_insts
, mg_vect_decls = vect_decls
})
= do { dumpOptVt Opt_D_dump_vt_trace "Before vectorisation" $
pprCoreBindings binds
-- Pick out all 'VECTORISE [SCALAR] type' and 'VECTORISE class' pragmas
; let ty_vect_decls = [vd | vd@(VectType _ _ _) <- vect_decls]
cls_vect_decls = [vd | vd@(VectClass _) <- vect_decls]
-- Vectorise the type environment. This will add vectorised
-- type constructors, their representations, and the
-- corresponding data constructors. Moreover, we produce
-- bindings for dfuns and family instances of the classes
-- and type families used in the DPH library to represent
-- array types.
; (new_tycons, new_fam_insts, tc_binds) <- vectTypeEnv tycons ty_vect_decls cls_vect_decls
-- Family instance environment for /all/ home-package modules including those instances
-- generated by 'vectTypeEnv'.
; (_, fam_inst_env) <- readGEnv global_fam_inst_env
-- Vectorise all the top level bindings and VECTORISE declarations on imported identifiers
-- NB: Need to vectorise the imported bindings first (local bindings may depend on them).
; let impBinds = [(imp_id, expr) | Vect imp_id expr <- vect_decls, isGlobalId imp_id]
; binds_imp <- mapM vectImpBind impBinds
; binds_top <- mapM vectTopBind binds
; return $ guts { mg_tcs = tycons ++ new_tycons
-- we produce no new classes or instances, only new class type constructors
-- and dfuns
, mg_binds = Rec tc_binds : (binds_top ++ binds_imp)
, mg_fam_inst_env = fam_inst_env
, mg_fam_insts = fam_insts ++ new_fam_insts
}
}
-- Try to vectorise a top-level binding. If it doesn't vectorise, or if it is entirely scalar, then
-- omit vectorisation of that binding.
--
-- For example, for the binding
--
-- @
-- foo :: Int -> Int
-- foo = \x -> x + x
-- @
--
-- we get
-- @
-- foo :: Int -> Int
-- foo = \x -> vfoo $: x
--
-- v_foo :: Closure void vfoo lfoo
-- v_foo = closure vfoo lfoo void
--
-- vfoo :: Void -> Int -> Int
-- vfoo = ...
--
-- lfoo :: PData Void -> PData Int -> PData Int
-- lfoo = ...
-- @
--
-- @vfoo@ is the "vectorised", or scalar, version that does the same as the original function foo,
-- but takes an explicit environment.
--
-- @lfoo@ is the "lifted" version that works on arrays.
--
-- @v_foo@ combines both of these into a `Closure` that also contains the environment.
--
-- The original binding @foo@ is rewritten to call the vectorised version present in the closure.
--
-- Vectorisation may be suppressed by annotating a binding with a 'NOVECTORISE' pragma. If this
-- pragma is used in a group of mutually recursive bindings, either all or no binding must have
-- the pragma. If only some bindings are annotated, a fatal error is being raised. (In the case of
-- scalar bindings, we only omit vectorisation if all bindings in a group are scalar.)
--
-- FIXME: Once we support partial vectorisation, we may be able to vectorise parts of a group, or
-- we may emit a warning and refrain from vectorising the entire group.
--
vectTopBind :: CoreBind -> VM CoreBind
vectTopBind b@(NonRec var expr)
= do
{ traceVt "= Vectorise non-recursive top-level variable" (ppr var)
; (hasNoVect, vectDecl) <- lookupVectDecl var
; if hasNoVect
then do
{ -- 'NOVECTORISE' pragma => leave this binding as it is
; traceVt "NOVECTORISE" $ ppr var
; return b
}
else do
{ vectRhs <- case vectDecl of
Just (_, expr') ->
-- 'VECTORISE' pragma => just use the provided vectorised rhs
do
{ traceVt "VECTORISE" $ ppr var
; addGlobalParallelVar var
; return $ Just (False, inlineMe, expr')
}
Nothing ->
-- no pragma => standard vectorisation of rhs
do
{ traceVt "[Vanilla]" $ ppr var <+> char '=' <+> ppr expr
; vectTopExpr var expr
}
; hs <- takeHoisted -- make sure we clean those out (even if we skip)
; case vectRhs of
{ Nothing ->
-- scalar binding => leave this binding as it is
do
{ traceVt "scalar binding [skip]" $ ppr var
; return b
}
; Just (parBind, inline, expr') -> do
{
-- vanilla case => create an appropriate top-level binding & add it to the vectorisation map
; when parBind $
addGlobalParallelVar var
; var' <- vectTopBinder var inline expr'
-- We replace the original top-level binding by a value projected from the vectorised
-- closure and add any newly created hoisted top-level bindings.
; cexpr <- tryConvert var var' expr
; return . Rec $ (var, cexpr) : (var', expr') : hs
} } } }
`orElseErrV`
do
{ emitVt " Could NOT vectorise top-level binding" $ ppr var
; return b
}
vectTopBind b@(Rec binds)
= do
{ traceVt "= Vectorise recursive top-level variables" $ ppr vars
; vectDecls <- mapM lookupVectDecl vars
; let hasNoVects = map fst vectDecls
; if and hasNoVects
then do
{ -- 'NOVECTORISE' pragmas => leave this entire binding group as it is
; traceVt "NOVECTORISE" $ ppr vars
; return b
}
else do
{ if or hasNoVects
then do
{ -- Inconsistent 'NOVECTORISE' pragmas => bail out
; dflags <- getDynFlags
; cantVectorise dflags noVectoriseErr (ppr b)
}
else do
{ traceVt "[Vanilla]" $ vcat [ppr var <+> char '=' <+> ppr expr | (var, expr) <- binds]
-- For all bindings *with* a pragma, just use the pragma-supplied vectorised expression
; newBindsWPragma <- concat <$>
sequence [ vectTopBindAndConvert bind inlineMe expr'
| (bind, (_, Just (_, expr'))) <- zip binds vectDecls]
-- Standard vectorisation of all rhses that are *without* a pragma.
-- NB: The reason for 'fixV' is rather subtle: 'vectTopBindAndConvert' adds entries for
-- the bound variables in the recursive group to the vectorisation map, which in turn
-- are needed by 'vectPolyExprs' (unless it returns 'Nothing').
; let bindsWOPragma = [bind | (bind, (_, Nothing)) <- zip binds vectDecls]
; (newBinds, _) <- fixV $
\ ~(_, exprs') ->
do
{ -- Create appropriate top-level bindings, enter them into the vectorisation map, and
-- vectorise the right-hand sides
; newBindsWOPragma <- concat <$>
sequence [vectTopBindAndConvert bind inline expr
| (bind, ~(inline, expr)) <- zipLazy bindsWOPragma exprs']
-- irrefutable pattern and 'zipLazy' to tie the knot;
-- hence, can't use 'zipWithM'
; vectRhses <- vectTopExprs bindsWOPragma
; hs <- takeHoisted -- make sure we clean those out (even if we skip)
; case vectRhses of
Nothing ->
-- scalar bindings => skip all bindings except those with pragmas and retract the
-- entries into the vectorisation map for the scalar bindings
do
{ traceVt "scalar bindings [skip]" $ ppr vars
; mapM_ (undefGlobalVar . fst) bindsWOPragma
; return (bindsWOPragma ++ newBindsWPragma, exprs')
}
Just (parBind, exprs') ->
-- vanilla case => record parallel variables and return the final bindings
do
{ when parBind $
mapM_ addGlobalParallelVar vars
; return (newBindsWOPragma ++ newBindsWPragma ++ hs, exprs')
}
}
; return $ Rec newBinds
} } }
`orElseErrV`
do
{ emitVt " Could NOT vectorise top-level bindings" $ ppr vars
; return b
}
where
vars = map fst binds
noVectoriseErr = "NOVECTORISE must be used on all or no bindings of a recursive group"
-- Replace the original top-level bindings by a values projected from the vectorised
-- closures and add any newly created hoisted top-level bindings to the group.
vectTopBindAndConvert (var, expr) inline expr'
= do
{ var' <- vectTopBinder var inline expr'
; cexpr <- tryConvert var var' expr
; return [(var, cexpr), (var', expr')]
}
-- Add a vectorised binding to an imported top-level variable that has a VECTORISE pragma
-- in this module.
--
-- RESTRICTION: Currently, we cannot use the pragma for mutually recursive definitions.
--
vectImpBind :: (Id, CoreExpr) -> VM CoreBind
vectImpBind (var, expr)
= do
{ traceVt "= Add vectorised binding to imported variable" (ppr var)
; var' <- vectTopBinder var inlineMe expr
; return $ NonRec var' expr
}
-- |Make the vectorised version of this top level binder, and add the mapping between it and the
-- original to the state. For some binder @foo@ the vectorised version is @$v_foo@
--
-- NOTE: 'vectTopBinder' *MUST* be lazy in inline and expr because of how it is used inside of
-- 'fixV' in 'vectTopBind'.
--
vectTopBinder :: Var -- ^ Name of the binding.
-> Inline -- ^ Whether it should be inlined, used to annotate it.
-> CoreExpr -- ^ RHS of binding, used to set the 'Unfolding' of the returned 'Var'.
-> VM Var -- ^ Name of the vectorised binding.
vectTopBinder var inline expr
= do { -- Vectorise the type attached to the var.
; vty <- vectType (idType var)
-- If there is a vectorisation declaration for this binding, make sure its type matches
; (_, vectDecl) <- lookupVectDecl var
; case vectDecl of
Nothing -> return ()
Just (vdty, _)
| eqType vty vdty -> return ()
| otherwise ->
do
{ dflags <- getDynFlags
; cantVectorise dflags ("Type mismatch in vectorisation pragma for " ++ showPpr dflags var) $
(text "Expected type" <+> ppr vty)
$$
(text "Inferred type" <+> ppr vdty)
}
-- Make the vectorised version of binding's name, and set the unfolding used for inlining
; var' <- liftM (`setIdUnfolding` unfolding)
$ mkVectId var vty
-- Add the mapping between the plain and vectorised name to the state.
; defGlobalVar var var'
; return var'
}
where
unfolding = case inline of
Inline arity -> mkInlineUnfoldingWithArity arity expr
DontInline -> noUnfolding
{-
!!!TODO: dfuns and unfoldings:
-- Do not inline the dfun; instead give it a magic DFunFunfolding
-- See Note [ClassOp/DFun selection]
-- See also note [Single-method classes]
dfun_id_w_fun
| isNewTyCon class_tc
= dfun_id `setInlinePragma` alwaysInlinePragma { inl_sat = Just 0 }
| otherwise
= dfun_id `setIdUnfolding` mkDFunUnfolding dfun_ty dfun_args
`setInlinePragma` dfunInlinePragma
-}
-- |Project out the vectorised version of a binding from some closure, or return the original body
-- if that doesn't work.
--
tryConvert :: Var -- ^Name of the original binding (eg @foo@)
-> Var -- ^Name of vectorised version of binding (eg @$vfoo@)
-> CoreExpr -- ^The original body of the binding.
-> VM CoreExpr
tryConvert var vect_var rhs
= fromVect (idType var) (Var vect_var)
`orElseErrV`
do
{ emitVt " Could NOT call vectorised from original version" $ ppr var <+> dcolon <+> ppr (idType var)
; return rhs
}
|