1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
|
\documentclass{article}
\usepackage{haskell}
\hscommand{\vect}[1]{(#1)_v}
\hscommand{\lift}[2]{(#1)^{\uparrow#2}}
\hscommand{\liftn}[1]{(#1)^{\uparrow{n}}}
\hscommand{\patype}[1]{\mathsf{patype}\langle#1\rangle}
\hscommand{\pa}[1]{\mathsf{pa}\langle#1\rangle}
\hscommand{\capp}{\mathbin{{\$}{:}}}
\hscommand{\cappP}{\mathbin{{\$}{:}^\uparrow}}
\hscommand{\parr}[1]{[{:}{:}#1{:}{:}]}
\hscommand{\pparr}[1]{[{:}#1{:}]}
\hscommand{\Data}{\hskwd{data}}
\hscommand{\DataF}{\hskwd{data~family}}
\hscommand{\DataI}{\hskwd{data~instance}}
\hscommand{\NewtypeI}{\hskwd{newtype~instance}}
\setlength{\parindent}{0cm}
\begin{document}
\section*{Library}
\subsection*{Parallel arrays}
We distinguish between user-visible, parametric arrays (\<\pparr{\cdot}\>) and
flattened parallel arrays (\<\parr{\cdot}\>) which are internal to our
implementation. Operations on the former have purely sequential semantics.
During vectorisation, they are replaced by parallel arrays and operations.
\begin{haskell}
\Data \pparr{\alpha} = Array Int \alpha \hscom{or similar} \\
\DataF \parr{\alpha}
\end{haskell}
\subsection*{\<PA\> dictionaries}
To avoid problems with using typeclasses in Core, we use explicit records for
representing dictionaries of type-dependent operations on parallel arrays:
\begin{haskell}
\Data PA \alpha = & PA \{
\hsbody{lengthP & :: \parr{\alpha}\to{Int} \\
replicateP & :: Int\to\alpha\to\parr{\alpha} \\
\ldots \\ \}}
\end{haskell}
In vectorised code, polymorphic functions must be supplied with a \<PA\>
dictionary for each type variable. For instance, \<\Lambda\alpha.e\> turns
into \<\Lambda\alpha.\lambda{dPA_\alpha}::PA \alpha.e'\>.
For higher-kinded type variables, we expect a function of appropriate type
which computes the dictionary for a saturated application of the type
variable from the dictionaries of the arguments. For instance,
\<\Lambda{m}::{*}\to{*}.e\> turns into
\<\Lambda{m}::{*}\to{*}.\lambda{dPA_m}::(\forall\alpha::{*}.PA \alpha\to{PA}
(m a)).e'\>.
In general, the type of the \<dPA\> argument for a type \<\sigma::\kappa\> is
given by
\begin{haskell}
\patype{\sigma:{*}} & = PA \sigma \\
\patype{\sigma:\kappa_1\to\kappa_2} & =
\forall\alpha:\kappa_1.\patype{\alpha:\kappa_1}\to\patype{\sigma \alpha:\kappa_2}
\end{haskell}
For each user-defined or built-in type constructor \<T\> we
automatically define its dictionary \<dPA_T::\patype{T}\>. Moreover, for every
in-scope type variable \<\alpha\> we have its dictionary
\<dPA_\alpha::\patype{\alpha}\>. This allows us to compute the dictionary for
an arbitrary type as follows:
\begin{haskell}
\pa{T} & = dPA_T \\
\pa{\alpha} & = dPA_{\alpha} \\
\pa{\sigma \phi} & = \pa{\sigma}[\phi] \pa{\phi} \\
\pa{\forall\alpha::\kappa.\sigma} & =
\Lambda\alpha::\kappa.\lambda{dPA_{\alpha}}::\patype{\alpha::\kappa}.\pa{\sigma}
\end{haskell}
\subsection*{Closures}
Closures are represented as follows:
\begin{haskell}
\Data & Clo \alpha \beta & = \exists\gamma. Clo & (PA \gamma) \gamma
& (\gamma\to\alpha\to\beta) (\parr{\gamma}\to\parr{\alpha}\to\parr{\beta}) \\
\DataI & \parr{Clo \alpha \beta} & = \exists\gamma. AClo & (PA \gamma)
\parr{\gamma}
& (\gamma\to\alpha\to\beta) (\parr{\gamma}\to\parr{\alpha}\to\parr{\beta})
\end{haskell}
Closure application is implemented by the following two operators:
\begin{haskell}
({\capp}) & :: Clo \alpha \beta \to \alpha \to \beta \\
({\cappP}) & :: \parr{Clo \alpha \beta} \to \parr{\alpha} \to \parr{\beta}
\end{haskell}
Note that \<({\cappP})\> is effectively the lifted version of \<({\capp})\>.
\subsection*{Flat array representation}
Some important instances of the \<\parr{\cdot}\> family:
\begin{haskell}
\hskwd{data} & \hskwd{instance} \parr{(\alpha_1,\ldots,\alpha_n)}
& = ATup_n !Int \parr{\alpha_1} \ldots \parr{\alpha_n} \\
\hskwd{newtype}~ & \hskwd{instance} \parr{\alpha\to\beta}
& = AFn (\parr{\alpha}\to\parr{\beta}) \\
\hskwd{newtype} & \hskwd{instance} \parr{PA \alpha}
& = APA (PA \alpha)
\end{haskell}
The last two definitions are discussed later.
\section*{Vectorisation}
\subsection*{Types}
We assume that for each type constructor \<T\>, there exists a vectorised
version \<T_v\> (which can be the same as \<T\>). In particular, we have
\begin{haskell}
({\to}_v) & = Clo \\
\pparr{\cdot}_v & = \parr{\cdot}
\end{haskell}
Vectorisation of types is defined as follows:
\begin{haskell}
\vect{T} & = T_v \\
\vect{\alpha} & = \alpha \\
\vect{\sigma \phi} & = \vect{\sigma} \vect{\phi} \\
\vect{\forall\alpha:\kappa.\sigma} & = \forall\alpha:\kappa.\patype{\alpha:\kappa}\to\vect{\sigma}
\end{haskell}
\subsection*{Data type declarations}
\begin{haskell}
\vect{\hskwd{data} T = \overline{C t_1 \ldots t_n}} = \hskwd{data} T_v =
\overline{C_v \vect{t_1} \ldots \vect{t_n}}
\end{haskell}
\subsection*{Terms}
We distinguish between local variables (\<x\>) and global variables and
literals \<c\>. We assume that we have the following typing judgement:
\begin{haskell}
\Delta,\Gamma\vdash{e}:\sigma
\end{haskell}
Here, \<\Delta\> assigns types to globals and \<\Gamma\> to locals. Moreover,
we assume that for each global variable \<c\>, there exists a
vectorised version \<c_v\>, i.e.,
\begin{haskell}
c:\sigma\in\Delta \Longrightarrow c_v:\vect{\sigma}\in\Delta
\end{haskell}
\subsubsection*{Vectorisation}
\begin{haskell}
\vect{c} & = c_v & c is global \\
\vect{x} & = x & x is local \\
\vect{\Lambda\alpha:\kappa.e} & =
\Lambda\alpha:\kappa.\lambda{dPA_{\alpha}}:\patype{\alpha:\kappa}.\vect{e} \\
\vect{e[\sigma]} & = \vect{e}[\vect{\sigma}] \pa{\vect{\sigma}} \\
\vect{e_1 e_2} & = \vect{e_1}\capp\vect{e_2} \\
\vect{\lambda{x}:\sigma.e} & = Clo \vect{\sigma} \vect{\phi} \tau \pa{\tau}
(y_1,\dots,y_n) \\
&
\quad\quad(\lambda{ys}:\tau.
\lambda{x}:\vect{\sigma}.
\hskwd{case} ys \hskwd{of} (y_1,\dots,y_n) \to \vect{e}) \\
&
\quad\quad(\lambda{ys}:\parr{\tau}.
\lambda{x}:\parr{\vect{\sigma}}.
\hskwd{case} ys \hskwd{of} ATup_n l y_1 \dots y_n \to \lift{e}{l})
\\
\hswhere{e has type \phi \\
\{y_1:\tau_1,\dots,y_n:\tau_n\} & = FVS(e)\setminus{x} \\
\tau & = (\vect{\tau_1},\dots,\vect{\tau_n})}
% \\
% e has type \phi}
\end{haskell}
Vectorisation maintains the following invariant:
\begin{haskell}
\Delta,\Gamma\vdash{e}:\sigma \Longrightarrow
\Delta,\Gamma_v\vdash\vect{e}:\vect{\sigma}
\end{haskell}
where \<\Gamma_v\> is defined by
\begin{haskell}
x:\sigma\in\Gamma \Longleftrightarrow x:\vect{\sigma}\in\Gamma_v
\end{haskell}
\subsubsection*{Lifting}
\begin{haskell}
\liftn{c:\sigma} & = replicateP \pa{\vect{\sigma}} n c_v \\
\liftn{x} & = x \\
\liftn{\Lambda\alpha:\kappa.e} & =
\Lambda\alpha:\kappa.\lambda{dPA_{\alpha}}:\patype{\alpha:\kappa}.\liftn{e} \\
\liftn{e[\sigma]} & = \liftn{e}[\vect{\sigma}] \pa{\vect{\sigma}} \\
\liftn{e_1 e_2} & = \liftn{e_1} \cappP \liftn{e_2} \\
\liftn{\lambda{x}:\sigma.e} & = AClo \vect{\sigma} \vect{\phi} \vect{\tau}
\pa{\vect{\tau}}
(ATup_n y_1 \dots y_n) \\
&
\quad\quad(\lambda{ys}:\vect{\tau}.
\lambda{x}:\vect{\sigma}.
\hskwd{case} ys \hskwd{of} (y_1,\dots,y_n) \to \vect{e}) \\
&
\quad\quad(\lambda{ys}:\parr{\vect{\tau}}.
\lambda{x}:\parr{\vect{\sigma}}.
\hskwd{case} ys \hskwd{of} ATup_n l y_1 \dots y_n \to \lift{e}{l})
\hswhere{e has type \phi \\
\{y_1:\tau_1,\dots,y_n:\tau_n\} & = FVS(e)\setminus{x} \\
\tau & = (\tau_1,\dots,\tau_n)}
\end{haskell}
Lifting maintains the following invariant:
\begin{haskell}
\Delta,\Gamma\vdash{e}:\sigma \Longrightarrow
\Delta,\Gamma^\uparrow\vdash\liftn{e} : \parr{\sigma_v}
\end{haskell}
where
\begin{haskell}
x:\sigma\in\Gamma \Longleftrightarrow x:\parr{\vect{\sigma}}\in\Gamma^\uparrow
\end{haskell}
Note that this is precisely the reason for the \<\parr{\cdot}\> instances for
\<\alpha\to\beta\> and \<PA \alpha\>. A term of type \<\forall\alpha.\sigma\>
will be lifted to a term of type
\<\parr{\forall\alpha.PA \alpha\to\vect{\sigma}}\> which requires the
instances. Apart from closures, these are the only occurrences of \<({\to})\> in
the transformed program, however.
\section*{What to vectorise?}
An expression is vectorisable if it only mentions globals and type constructors
which have a vectorised form. When vectorising, we look for maximal
vectorisable subexpressions and transform those. For instance, assuming that
\<print\> hasn't been vectorised, in
\begin{haskell}
main = \hsdo{
print (sumP \pparr{\ldots}) \\
print (mapP \ldots \pparr{\ldots})}
\end{haskell}
we would vectorise the arguments to \<print\>. Note that this implies that we
never call non-vectorised code from vectorised code (is that a problem?).
Whenever we come out of a vectorised ``bubble'', we have to convert between
vectorised and unvectorised data types. The examples above would roughly
translate to
\begin{haskell}
main = \hsdo{
print (unvect (sumP_v \parr{\ldots})) \\
print (unvect (mapP_v \ldots \parr{\ldots}))}
\end{haskell}
For this, we have to have the following functions:
\begin{haskell}
vect_\sigma & :: \sigma\to\vect{\sigma} \\
unvect_\sigma & :: \vect{\sigma}\to\sigma
\end{haskell}
It is sufficient to have these functions only for a restricted set of types as
we can always vectorise less if the conversions becomes too complex.
Sometimes, it doesn't make sense to vectorise things. For instance, in
\begin{haskell}
foo f xs = print (f xs)
\end{haskell}
we wouldn't vectorise \<f xs\>. Unfortunately, this means that
\<foo (mapP f) xs\> will be purely sequential.
For each expression, the vectoriser gives one of the following answers.
\begin{tabular}{lp{10cm}}
\textbf{Yes} &
the expression can be (and has been) vectorised \\
\textbf{Maybe} &
the expression can be vectorised but it doesn't make sense to do so
unless it is used in a vectrorisable context (e.g., for \<f xs\> in \<foo\>)
\\
\textbf{No} &
the expression can't be vectorised (although parts of it can, so we
still get back a transformed expression)
\end{tabular}
\subsection*{Top-level definitions}
For a top-level definition of the form
\begin{haskell}
f :: \sigma = e
\end{haskell}
vectorisation proceeds as follows.
\begin{itemize}
\item If \<e\> can be fully vectorised, we generate
\begin{haskell}
f_v :: \vect{\sigma} = \vect{e}
\end{haskell}
\item If it doesn't always make sense to vectorise \<e\>, i.e., the vectoriser
returned \textbf{Maybe}, we leave the definition of \<f\> unchanged. Thus, we
would not change
\begin{haskell}
({\$}) = \lambda{f}.\lambda{x}.f x
\end{haskell}
but would additionally generate
\begin{haskell}
({\$}_v) = Clo \ldots
\end{haskell}
\item Otherwise (if the vectoriser said \textbf{Yes}) and we have
\<unconv_\sigma\>, we change the definition of \<f\> to
\begin{haskell}
f :: \sigma = unconv_\sigma f_v
\end{haskell}
\item Otherwise (the vectoriser said \textbf{Yes} but we do not have
\<unconv_\sigma\> or if \<e\> couldn't be fully vectorised), we change the
definition of \<f\> to
\begin{haskell}
f :: \sigma = e'
\end{haskell}
where \<e'\> is obtaining by vectorising \<e\> as much as possible without
changing its type. For instance, for
\begin{haskell}
f = \lambda{g}.\lambda{x}.mapP (\ldots) (g x)
\end{haskell}
we would generate
\begin{haskell}
f & = \lambda{g}.\lambda{x}.unvect (mapP_v (\ldots) (vect (g x))) \\
f_v & = Clo \ldots
\end{haskell}
assuming we have the necessary conversions but cannot convert functions (i.e.,
\<g\>).
\end{itemize}
\end{document}
|