summaryrefslogtreecommitdiff
path: root/docs/users_guide/exts/functional_dependencies.rst
blob: 7926c47efa4ab09506d7090e968bfe11f7cfce60 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
.. _functional-dependencies:

Functional dependencies
-----------------------

.. extension:: FunctionalDependencies
    :shortdesc: Enable functional dependencies.
        Implies :extension:`MultiParamTypeClasses`.

    :implies: :extension:`MultiParamTypeClasses`
    :since: 6.8.1

    Allow use of functional dependencies in class declarations.

Functional dependencies are implemented as described by Mark Jones in
[Jones2000]_.

Functional dependencies are introduced by a vertical bar in the syntax
of a class declaration; e.g. ::

      class (Monad m) => MonadState s m | m -> s where ...

      class Foo a b c | a b -> c where ...

More documentation can be found in the `Haskell Wiki
<https://wiki.haskell.org/Functional_dependencies>`_.

.. [Jones2000]
    "`Type Classes with Functional
    Dependencies <https://web.cecs.pdx.edu/~mpj/pubs/fundeps.html>`__",
    Mark P. Jones, In *Proceedings of the 9th European Symposium on Programming*,
    ESOP 2000, Berlin, Germany, March 2000, Springer-Verlag LNCS 1782, .

Rules for functional dependencies
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

In a class declaration, all of the class type variables must be
reachable (in the sense mentioned in :ref:`flexible-contexts`) from the
free variables of each method type. For example: ::

      class Coll s a where
        empty  :: s
        insert :: s -> a -> s

is not OK, because the type of ``empty`` doesn't mention ``a``.
Functional dependencies can make the type variable reachable: ::

      class Coll s a | s -> a where
        empty  :: s
        insert :: s -> a -> s

Alternatively ``Coll`` might be rewritten ::

      class Coll s a where
        empty  :: s a
        insert :: s a -> a -> s a

which makes the connection between the type of a collection of ``a``'s
(namely ``(s a)``) and the element type ``a``. Occasionally this really
doesn't work, in which case you can split the class like this: ::

      class CollE s where
        empty  :: s

      class CollE s => Coll s a where
        insert :: s -> a -> s

Background on functional dependencies
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

The following description of the motivation and use of functional
dependencies is taken from the Hugs user manual, reproduced here (with
minor changes) by kind permission of Mark Jones.

Consider the following class, intended as part of a library for
collection types: ::

       class Collects e ce where
           empty  :: ce
           insert :: e -> ce -> ce
           member :: e -> ce -> Bool

The type variable ``e`` used here represents the element type, while ``ce`` is
the type of the container itself. Within this framework, we might want to define
instances of this class for lists or characteristic functions (both of which can
be used to represent collections of any equality type), bit sets (which can be
used to represent collections of characters), or hash tables (which can be used
to represent any collection whose elements have a hash function). Omitting
standard implementation details, this would lead to the following declarations: ::

       instance Eq e => Collects e [e] where ...
       instance Eq e => Collects e (e -> Bool) where ...
       instance Collects Char BitSet where ...
       instance (Hashable e, Collects a ce)
                  => Collects e (Array Int ce) where ...

All this looks quite promising; we have a class and a range of
interesting implementations. Unfortunately, there are some serious
problems with the class declaration. First, the empty function has an
ambiguous type: ::

       empty :: Collects e ce => ce

By "ambiguous" we mean that there is a type variable ``e`` that appears on
the left of the ``=>`` symbol, but not on the right. The problem with
this is that, according to the theoretical foundations of Haskell
overloading, we cannot guarantee a well-defined semantics for any term
with an ambiguous type.

We can sidestep this specific problem by removing the empty member from
the class declaration. However, although the remaining members, insert
and member, do not have ambiguous types, we still run into problems when
we try to use them. For example, consider the following two functions: ::

       f x y = insert x . insert y
       g     = f True 'a'

for which GHC infers the following types: ::

       f :: (Collects a c, Collects b c) => a -> b -> c -> c
       g :: (Collects Bool c, Collects Char c) => c -> c

Notice that the type for ``f`` allows the two parameters ``x`` and ``y`` to be
assigned different types, even though it attempts to insert each of the
two values, one after the other, into the same collection. If we're
trying to model collections that contain only one type of value, then
this is clearly an inaccurate type. Worse still, the definition for g is
accepted, without causing a type error. As a result, the error in this
code will not be flagged at the point where it appears. Instead, it will
show up only when we try to use ``g``, which might even be in a different
module.

An attempt to use constructor classes
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

Faced with the problems described above, some Haskell programmers might
be tempted to use something like the following version of the class
declaration: ::

       class Collects e c where
          empty  :: c e
          insert :: e -> c e -> c e
          member :: e -> c e -> Bool

The key difference here is that we abstract over the type constructor ``c``
that is used to form the collection type ``c e``, and not over that
collection type itself, represented by ``ce`` in the original class
declaration. This avoids the immediate problems that we mentioned above:
empty has type ``Collects e c => c e``, which is not ambiguous.

The function ``f`` from the previous section has a more accurate type: ::

       f :: (Collects e c) => e -> e -> c e -> c e

The function ``g`` from the previous section is now rejected with a type
error as we would hope because the type of ``f`` does not allow the two
arguments to have different types. This, then, is an example of a
multiple parameter class that does actually work quite well in practice,
without ambiguity problems. There is, however, a catch. This version of
the ``Collects`` class is nowhere near as general as the original class
seemed to be: only one of the four instances for ``Collects`` given
above can be used with this version of Collects because only one of them—the
instance for lists—has a collection type that can be written in the form ``c
e``, for some type constructor ``c``, and element type ``e``.

Adding functional dependencies
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

To get a more useful version of the ``Collects`` class, GHC provides a
mechanism that allows programmers to specify dependencies between the
parameters of a multiple parameter class (For readers with an interest
in theoretical foundations and previous work: The use of dependency
information can be seen both as a generalisation of the proposal for
"parametric type classes" that was put forward by Chen, Hudak, and
Odersky, or as a special case of Mark Jones's later framework for
"improvement" of qualified types. The underlying ideas are also
discussed in a more theoretical and abstract setting in a manuscript
[Jones1999]_, where they are identified as one point in a general design
space for systems of implicit parameterisation). To start with an
abstract example, consider a declaration such as: ::

       class C a b where ...

.. [Jones1999]
    "`Exploring the Design Space for Type-based Implicit Parameterization
    <https://web.cecs.pdx.edu/~mpj/pubs/fdtr.html>`__", Mark P. Jones, Oregon
    Graduate Institute of Science & Technology, Technical Report, July 1999.

which tells us simply that ``C`` can be thought of as a binary relation on
types (or type constructors, depending on the kinds of ``a`` and ``b``). Extra
clauses can be included in the definition of classes to add information
about dependencies between parameters, as in the following examples: ::

       class D a b | a -> b where ...
       class E a b | a -> b, b -> a where ...

The notation ``a -> b`` used here between the ``|`` and ``where`` symbols —
not to be confused with a function type — indicates that the ``a``
parameter uniquely determines the ``b`` parameter, and might be read as "``a``
determines ``b``." Thus ``D`` is not just a relation, but actually a (partial)
function. Similarly, from the two dependencies that are included in the
definition of ``E``, we can see that ``E`` represents a (partial) one-to-one
mapping between types.

More generally, dependencies take the form ``x1 ... xn -> y1 ... ym``,
where ``x1``, ..., ``xn``, and ``y1``, ..., ``yn`` are type variables with n>0 and m>=0,
meaning that the ``y`` parameters are uniquely determined by the ``x``
parameters. Spaces can be used as separators if more than one variable
appears on any single side of a dependency, as in ``t -> a b``. Note
that a class may be annotated with multiple dependencies using commas as
separators, as in the definition of ``E`` above. Some dependencies that we
can write in this notation are redundant, and will be rejected because
they don't serve any useful purpose, and may instead indicate an error
in the program. Examples of dependencies like this include ``a -> a``,
``a -> a a``, ``a ->``, etc. There can also be some redundancy if
multiple dependencies are given, as in ``a->b``, ``b->c``, ``a->c``, and
in which some subset implies the remaining dependencies. Examples like
this are not treated as errors. Note that dependencies appear only in
class declarations, and not in any other part of the language. In
particular, the syntax for instance declarations, class constraints, and
types is completely unchanged.

By including dependencies in a class declaration, we provide a mechanism
for the programmer to specify each multiple parameter class more
precisely. The compiler, on the other hand, is responsible for ensuring
that the set of instances that are in scope at any given point in the
program is consistent with any declared dependencies. For example, the
following pair of instance declarations cannot appear together in the
same scope because they violate the dependency for ``D``, even though either
one on its own would be acceptable: ::

       instance D Bool Int where ...
       instance D Bool Char where ...

Note also that the following declaration is not allowed, even by itself: ::

       instance D [a] b where ...

The problem here is that this instance would allow one particular choice
of ``[a]`` to be associated with more than one choice for ``b``, which
contradicts the dependency specified in the definition of ``D``. More
generally, this means that, in any instance of the form: ::

       instance D t s where ...

for some particular types ``t`` and ``s``, the only variables that can appear in
``s`` are the ones that appear in ``t``, and hence, if the type ``t`` is known,
then ``s`` will be uniquely determined.

The benefit of including dependency information is that it allows us to
define more general multiple parameter classes, without ambiguity
problems, and with the benefit of more accurate types. To illustrate
this, we return to the collection class example, and annotate the
original definition of ``Collects`` with a simple dependency: ::

       class Collects e ce | ce -> e where
          empty  :: ce
          insert :: e -> ce -> ce
          member :: e -> ce -> Bool

The dependency ``ce -> e`` here specifies that the type ``e`` of elements is
uniquely determined by the type of the collection ``ce``. Note that both
parameters of Collects are of kind ``Type``; there are no constructor classes
here. Note too that all of the instances of ``Collects`` that we gave earlier
can be used together with this new definition.

What about the ambiguity problems that we encountered with the original
definition? The empty function still has type ``Collects e ce => ce``, but
it is no longer necessary to regard that as an ambiguous type: Although
the variable ``e`` does not appear on the right of the ``=>`` symbol, the
dependency for class ``Collects`` tells us that it is uniquely determined by
``ce``, which does appear on the right of the ``=>`` symbol. Hence the context
in which empty is used can still give enough information to determine
types for both ``ce`` and ``e``, without ambiguity. More generally, we need only
regard a type as ambiguous if it contains a variable on the left of the
``=>`` that is not uniquely determined (either directly or indirectly) by
the variables on the right.

Dependencies also help to produce more accurate types for user defined
functions, and hence to provide earlier detection of errors, and less
cluttered types for programmers to work with. Recall the previous
definition for a function ``f``: ::

       f x y = insert x y = insert x . insert y

for which we originally obtained a type: ::

       f :: (Collects a c, Collects b c) => a -> b -> c -> c

Given the dependency information that we have for ``Collects``, however, we
can deduce that ``a`` and ``b`` must be equal because they both appear as the
second parameter in a ``Collects`` constraint with the same first parameter
``c``. Hence we can infer a shorter and more accurate type for ``f``: ::

       f :: (Collects a c) => a -> a -> c -> c

In a similar way, the earlier definition of ``g`` will now be flagged as a
type error.

Although we have given only a few examples here, it should be clear that
the addition of dependency information can help to make multiple
parameter classes more useful in practice, avoiding ambiguity problems,
and allowing more general sets of instance declarations.