1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
|
.. _bang-patterns:
.. _strict-haskell:
Bang patterns and Strict Haskell
================================
.. index::
single: strict haskell
.. index::
single: Bang patterns
In high-performance Haskell code (e.g. numeric code) eliminating
thunks from an inner loop can be a huge win.
GHC supports three extensions to allow the programmer to specify
use of strict (call-by-value) evaluation rather than lazy (call-by-need)
evaluation.
- Bang patterns (:extension:`BangPatterns`) makes pattern matching and
let bindings stricter.
- Strict data types (:extension:`StrictData`) makes constructor fields
strict by default, on a per-module basis.
- Strict pattern (:extension:`Strict`) makes all patterns and let bindings
strict by default, on a per-module basis.
The latter two extensions are simply a way to avoid littering high-performance
code with bang patterns, making it harder to read.
Bang patterns and strict matching do not affect the type system in any way.
.. _bang-patterns-informal:
Bang patterns
-------------
.. extension:: BangPatterns
:shortdesc: Enable bang patterns.
:since: 6.8.1
Allow use of bang pattern syntax.
GHC supports an extension of pattern matching called *bang patterns*,
written ``!pat``. Bang patterns are under consideration for Haskell
Prime. The `Haskell prime feature
description <http://ghc.haskell.org/trac/haskell-prime/wiki/BangPatterns>`__
contains more discussion and examples than the material below.
The main idea is to add a single new production to the syntax of
patterns: ::
pat ::= !pat
Matching an expression ``e`` against a pattern ``!p`` is done by first
evaluating ``e`` (to WHNF) and then matching the result against ``p``.
Example: ::
f1 !x = True
This definition makes ``f1`` is strict in ``x``, whereas without the
bang it would be lazy. Bang patterns can be nested of course: ::
f2 (!x, y) = [x,y]
Here, ``f2`` is strict in ``x`` but not in ``y``.
Note the following points:
- A bang only really has
an effect if it precedes a variable or wild-card pattern: ::
f3 !(x,y) = [x,y]
f4 (x,y) = [x,y]
Here, ``f3`` and ``f4`` are identical; putting a bang before a pattern
that forces evaluation anyway does nothing.
- A bang pattern is allowed in a let or where clause, and makes the binding
strict. For example: ::
let !x = e in body
let !(p,q) = e in body
In both cases ``e`` is evaluated before starting to evaluate ``body``.
However, *nested* bangs in a let/where pattern binding behave uniformly with all
other forms of pattern matching. For example ::
let (!x,[y]) = e in b
is equivalent to this: ::
let { t = case e of (x,[y]) -> x `seq` (x,y)
x = fst t
y = snd t }
in b
The binding is lazy, but when either ``x`` or ``y`` is evaluated by
``b`` the entire pattern is matched, including forcing the evaluation of
``x``.
See :ref:`Semantics of let bindings with bang patterns <recursive-and-polymorphic-let-bindings>` for
the detailed semantics.
- A pattern with a bang at the outermost level is not allowed at the top
level of a module.
- Bang patterns work in ``case`` expressions too, of course: ::
g5 x = let y = f x in body
g6 x = case f x of { y -> body }
g7 x = case f x of { !y -> body }
The functions ``g5`` and ``g6`` mean exactly the same thing. But ``g7``
evaluates ``(f x)``, binds ``y`` to the result, and then evaluates
``body``.
- There is one problem with syntactic ambiguity. Consider: ::
f !x = 3
Is this a definition of the infix function "``(!)``", or of the "``f``" with
a bang pattern? GHC resolves this ambiguity by looking at the surrounding
whitespace: ::
a ! b = ... -- infix operator
a !b = ... -- bang pattern
See `GHC Proposal #229 <https://github.com/ghc-proposals/ghc-proposals/blob/master/proposals/0229-whitespace-bang-patterns.rst>`__
for the precise rules.
.. _strict-data:
Strict-by-default data types
----------------------------
.. extension:: StrictData
:shortdesc: Enable default strict datatype fields.
:since: 8.0.1
Make fields of data types defined in the current module strict by default.
Informally the ``StrictData`` language extension switches data type
declarations to be strict by default allowing fields to be lazy by
adding a ``~`` in front of the field.
When the user writes ::
data T = C a
data T' = C' ~a
we interpret it as if they had written ::
data T = C !a
data T' = C' a
The extension only affects definitions in this module.
The ``~`` annotation must be written in prefix form::
data T = MkT ~Int -- valid
data T = MkT ~ Int -- invalid
See `GHC Proposal #229 <https://github.com/ghc-proposals/ghc-proposals/blob/master/proposals/0229-whitespace-bang-patterns.rst>`__
for the precise rules.
.. _strict:
Strict-by-default pattern bindings
----------------------------------
.. extension:: Strict
:shortdesc: Make bindings in the current module strict by default.
:implies: :extension:`StrictData`
:since: 8.0.1
Make bindings in the current module strict by default.
Informally the ``Strict`` language extension switches functions, data
types, and bindings to be strict by default, allowing optional laziness
by adding ``~`` in front of a variable. This essentially reverses the
present situation where laziness is default and strictness can be
optionally had by adding ``!`` in front of a variable.
``Strict`` implies :ref:`StrictData <strict-data>`.
- **Function definitions**
When the user writes ::
f x = ...
we interpret it as if they had written ::
f !x = ...
Adding ``~`` in front of ``x`` gives the regular lazy behavior.
Turning patterns into irrefutable ones requires ``~(~p)`` when ``Strict`` is enabled.
- **Let/where bindings**
When the user writes ::
let x = ...
let pat = ...
we interpret it as if they had written ::
let !x = ...
let !pat = ...
Adding ``~`` in front of ``x`` gives the regular lazy
behavior.
The general rule is that we add an implicit bang on the outermost pattern,
unless disabled with ``~``.
- **Pattern matching in case expressions, lambdas, do-notation, etc**
The outermost pattern of all pattern matches gets an implicit bang,
unless disabled with ``~``.
This applies to case expressions, patterns in lambda, do-notation,
list comprehension, and so on.
For example ::
case x of (a,b) -> rhs
is interpreted as ::
case x of !(a,b) -> rhs
Since the semantics of pattern matching in case expressions is
strict, this usually has no effect whatsoever. But it does make a
difference in the degenerate case of variables and newtypes. So ::
case x of y -> rhs
is lazy in Haskell, but with ``Strict`` is interpreted as ::
case x of !y -> rhs
which evaluates ``x``. Similarly, if ``newtype Age = MkAge Int``, then ::
case x of MkAge i -> rhs
is lazy in Haskell; but with ``Strict`` the added bang makes it
strict.
Similarly ::
\ x -> body
do { x <- rhs; blah }
[ e | x <- rhs; blah }
all get implicit bangs on the ``x`` pattern.
- **Nested patterns**
Notice that we do *not* put bangs on nested patterns. For
example ::
let (p,q) = if flob then (undefined, undefined) else (True, False)
in ...
will behave like ::
let !(p,q) = if flob then (undefined, undefined) else (True,False)
in ...
which will strictly evaluate the right hand side, and bind ``p``
and ``q`` to the components of the pair. But the pair itself is
lazy (unless we also compile the ``Prelude`` with ``Strict``; see
:ref:`strict-modularity` below). So ``p`` and ``q`` may end up bound to
undefined. See also :ref:`recursive-and-polymorphic-let-bindings` below.
- **Top level bindings**
are unaffected by ``Strict``. For example: ::
x = factorial 20
(y,z) = if x > 10 then True else False
Here ``x`` and the pattern binding ``(y,z)`` remain lazy. Reason:
there is no good moment to force them, until first use.
- **Newtypes**
There is no effect on newtypes, which simply rename existing types.
For example: ::
newtype T = C a
f (C x) = rhs1
g !(C x) = rhs2
In ordinary Haskell, ``f`` is lazy in its argument and hence in
``x``; and ``g`` is strict in its argument and hence also strict in
``x``. With ``Strict``, both become strict because ``f``'s argument
gets an implicit bang.
.. _strict-modularity:
Modularity
----------
``Strict`` and ``StrictData`` only affects definitions in the module
they are used in. Functions and data types imported from other modules
are unaffected. For example, we won't evaluate the argument to
``Just`` before applying the constructor. Similarly we won't evaluate
the first argument to ``Data.Map.findWithDefault`` before applying the
function.
This is crucial to preserve correctness. Entities defined in other
modules might rely on laziness for correctness (whether functional or
performance).
Tuples, lists, ``Maybe``, and all the other types from ``Prelude``
continue to have their existing, lazy, semantics.
.. _bang-patterns-sem:
.. _recursive-and-polymorphic-let-bindings:
Dynamic semantics of bang patterns
----------------------------------
The semantics of Haskell pattern matching is described in `Section
3.17.2 <http://www.haskell.org/onlinereport/exps.html#sect3.17.2>`__ of
the Haskell Report. To this description add one extra item 10, saying:
- Matching the pattern ``!pat`` against a value ``v`` behaves as
follows:
- if ``v`` is bottom, the match diverges
- otherwise, ``pat`` is matched against ``v``
Similarly, in Figure 4 of `Section
3.17.3 <http://www.haskell.org/onlinereport/exps.html#sect3.17.3>`__,
add a new case (t): ::
case v of { !pat -> e; _ -> e' }
= v `seq` case v of { pat -> e; _ -> e' }
That leaves let expressions, whose translation is given in `Section
3.12 <http://www.haskell.org/onlinereport/exps.html#sect3.12>`__ of the
Haskell Report.
Replace the "Translation" there with the following one. Given
``let { bind1 ... bindn } in body``:
.. admonition:: FORCE
Replace any binding ``!p = e`` with ``v = case e of p -> (x1, ..., xn); (x1, ..., xn) = v`` and replace
``body`` with ``v seq body``, where ``v`` is fresh. This translation works fine if
``p`` is already a variable ``x``, but can obviously be optimised by not
introducing a fresh variable ``v``.
.. admonition:: SPLIT
Replace any binding ``p = e``, where ``p`` is not a variable, with
``v = e; x1 = case v of p -> x1; ...; xn = case v of p -> xn``, where
``v`` is fresh and ``x1``.. ``xn`` are the bound variables of ``p``.
Again if ``e`` is a variable, this can be optimised by not introducing a
fresh variable.
The result will be a (possibly) recursive set of bindings, binding
only simple variables on the left hand side. (One could go one step
further, as in the Haskell Report and make the recursive bindings
non-recursive using ``fix``, but we do not do so in Core, and it only
obfuscates matters, so we do not do so here.)
The translation is carefully crafted to make bang patterns meaningful
for recursive and polymorphic bindings as well as straightforward
non-recursive bindings.
Here are some examples of how this translation works. The first
expression of each sequence is Haskell source; the subsequent ones are
Core.
Here is a simple non-recursive case: ::
let x :: Int -- Non-recursive
!x = factorial y
in body
===> (FORCE)
let x = factorial y in x `seq` body
===> (inline seq)
let x = factorial y in case x of x -> body
===> (inline x)
case factorial y of x -> body
Same again, only with a pattern binding: ::
let !(Just x, Left y) = e in body
===> (FORCE)
let v = case e of (Just x, Left y) -> (x,y)
(x,y) = v
in v `seq` body
===> (SPLIT)
let v = case e of (Just x, Left y) -> (x,y)
x = case v of (x,y) -> x
y = case v of (x,y) -> y
in v `seq` body
===> (inline seq, float x,y bindings inwards)
let v = case e of (Just x, Left y) -> (x,y)
in case v of v -> let x = case v of (x,y) -> x
y = case v of (x,y) -> y
in body
===> (fluff up v's pattern; this is a standard Core optimisation)
let v = case e of (Just x, Left y) -> (x,y)
in case v of v@(p,q) -> let x = case v of (x,y) -> x
y = case v of (x,y) -> y
in body
===> (case of known constructor)
let v = case e of (Just x, Left y) -> (x,y)
in case v of v@(p,q) -> let x = p
y = q
in body
===> (inline x,y, v)
case (case e of (Just x, Left y) -> (x,y) of
(p,q) -> body[p/x, q/y]
===> (case of case)
case e of (Just x, Left y) -> body[p/x, q/y]
The final form is just what we want: a simple case expression.
Here is a recursive case ::
letrec xs :: [Int] -- Recursive
!xs = factorial y : xs
in body
===> (FORCE)
letrec xs = factorial y : xs in xs `seq` body
===> (inline seq)
letrec xs = factorial y : xs in case xs of xs -> body
===> (eliminate case of value)
letrec xs = factorial y : xs in body
and a polymorphic one: ::
let f :: forall a. [a] -> [a] -- Polymorphic
!f = fst (reverse, True)
in body
===> (FORCE)
let f = /\a. fst (reverse a, True) in f `seq` body
===> (inline seq, inline f)
case (/\a. fst (reverse a, True)) of f -> body
Notice that the ``seq`` is added only in the translation to Core
If we did it in Haskell source, thus ::
let f = ... in f `seq` body
then ``f``\ 's polymorphic type would get instantiated, so the Core
translation would be ::
let f = ... in f Any `seq` body
When overloading is involved, the results might be slightly counter
intuitive: ::
let f :: forall a. Eq a => a -> [a] -> Bool -- Overloaded
!f = fst (member, True)
in body
===> (FORCE)
let f = /\a \(d::Eq a). fst (member, True) in f `seq` body
===> (inline seq, case of value)
let f = /\a \(d::Eq a). fst (member, True) in body
Note that the bang has no effect at all in this case
|