summaryrefslogtreecommitdiff
path: root/docs/users_guide/ghci.xml
blob: 1f20df4aab682abf69bc5151e09f53700abfb003 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645
2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
2679
2680
2681
2682
2683
2684
2685
2686
2687
2688
2689
2690
2691
2692
2693
2694
2695
2696
2697
2698
2699
2700
2701
2702
2703
2704
2705
2706
2707
2708
2709
2710
2711
2712
2713
2714
2715
2716
2717
2718
2719
2720
2721
2722
2723
2724
2725
2726
2727
2728
2729
2730
2731
2732
2733
2734
2735
2736
2737
2738
2739
2740
2741
2742
2743
2744
2745
2746
2747
2748
2749
2750
2751
2752
2753
2754
2755
2756
2757
2758
2759
2760
2761
2762
2763
2764
2765
2766
2767
2768
2769
2770
2771
2772
2773
2774
2775
2776
2777
2778
2779
2780
2781
2782
2783
2784
2785
2786
2787
2788
2789
2790
2791
2792
2793
2794
2795
2796
2797
2798
2799
2800
2801
2802
2803
2804
2805
2806
2807
2808
2809
2810
2811
2812
2813
2814
2815
2816
2817
2818
2819
2820
2821
2822
2823
2824
2825
2826
2827
2828
2829
2830
2831
2832
2833
2834
2835
2836
2837
2838
2839
2840
2841
2842
2843
2844
2845
2846
2847
2848
2849
2850
2851
2852
2853
2854
2855
2856
2857
2858
2859
2860
2861
2862
2863
2864
2865
2866
2867
2868
2869
2870
2871
2872
2873
2874
2875
2876
2877
2878
2879
2880
2881
2882
2883
2884
2885
2886
2887
2888
2889
2890
2891
2892
2893
2894
2895
2896
<?xml version="1.0" encoding="iso-8859-1"?>
<chapter id="ghci">
  <title>Using GHCi</title>
  <indexterm><primary>GHCi</primary></indexterm>
  <indexterm><primary>interpreter</primary><see>GHCi</see></indexterm>
  <indexterm><primary>interactive</primary><see>GHCi</see></indexterm>
  
  <para>GHCi<footnote>
      <para>The &lsquo;i&rsquo; stands for &ldquo;Interactive&rdquo;</para>
    </footnote>
  is GHC's interactive environment, in which Haskell expressions can
  be interactively evaluated and programs can be interpreted.  If
  you're familiar with <ulink url="http://www.haskell.org/hugs/">Hugs</ulink><indexterm><primary>Hugs</primary>
  </indexterm>, then you'll be right at home with GHCi.  However, GHCi
  also has support for interactively loading compiled code, as well as
  supporting all<footnote><para>except <literal>foreign export</literal>, at the moment</para>
  </footnote> the language extensions that GHC provides.
  <indexterm><primary>FFI</primary><secondary>GHCi support</secondary></indexterm>
  <indexterm><primary>Foreign Function
  Interface</primary><secondary>GHCi support</secondary></indexterm>.
  GHCi also includes an interactive debugger (see <xref linkend="ghci-debugger"/>).</para>

  <sect1 id="ghci-introduction">
    <title>Introduction to GHCi</title>

    <para>Let's start with an example GHCi session.  You can fire up
    GHCi with the command <literal>ghci</literal>:</para>

<screen>
$ ghci
GHCi, version 6.8.1: http://www.haskell.org/ghc/  :? for help
Loading package base ... linking ... done.
Prelude> 
</screen>

    <para>There may be a short pause while GHCi loads the prelude and
    standard libraries, after which the prompt is shown. As the banner
    says, you can type <literal>:?</literal> to see the list of commands
    available, and a half line description of each of them.</para>

    <para>We'll explain most of these commands as we go along.  For
    Hugs users: many things work the same as in Hugs, so you should be
    able to get going straight away.</para>

    <para>Haskell expressions can be typed at the prompt:</para>
    <indexterm><primary>prompt</primary><secondary>GHCi</secondary>
  </indexterm>

<screen>
Prelude> 1+2
3
Prelude> let x = 42 in x / 9
4.666666666666667
Prelude> 
</screen>

    <para>GHCi interprets the whole line as an expression to evaluate.
    The expression may not span several lines - as soon as you press
    enter, GHCi will attempt to evaluate it.</para>
  </sect1>

  <sect1 id="loading-source-files">
    <title>Loading source files</title>

    <para>Suppose we have the following Haskell source code, which we
    place in a file <filename>Main.hs</filename>:</para>

<programlisting>
main = print (fac 20)

fac 0 = 1
fac n = n * fac (n-1)
</programlisting>

    <para>You can save <filename>Main.hs</filename> anywhere you like,
    but if you save it somewhere other than the current
    directory<footnote><para>If you started up GHCi from the command
    line then GHCi's current directory is the same as the current
    directory of the shell from which it was started.  If you started
    GHCi from the &ldquo;Start&rdquo; menu in Windows, then the
    current directory is probably something like
    <filename>C:\Documents and Settings\<replaceable>user
    name</replaceable></filename>.</para> </footnote> then we will
    need to change to the right directory in GHCi:</para>

<screen>
Prelude> :cd <replaceable>dir</replaceable>
</screen>

    <para>where <replaceable>dir</replaceable> is the directory (or
    folder) in which you saved <filename>Main.hs</filename>.</para>

    <para>To load a Haskell source file into GHCi, use the
    <literal>:load</literal> command:</para>
    <indexterm><primary><literal>:load</literal></primary></indexterm>

<screen>
Prelude> :load Main
Compiling Main             ( Main.hs, interpreted )
Ok, modules loaded: Main.
*Main>
</screen>

    <para>GHCi has loaded the <literal>Main</literal> module, and the
    prompt has changed to &ldquo;<literal>*Main></literal>&rdquo; to
    indicate that the current context for expressions typed at the
    prompt is the <literal>Main</literal> module we just loaded (we'll
    explain what the <literal>*</literal> means later in <xref
    linkend="ghci-scope"/>).  So we can now type expressions involving
    the functions from <filename>Main.hs</filename>:</para>

<screen>
*Main> fac 17
355687428096000
</screen>

    <para>Loading a multi-module program is just as straightforward;
    just give the name of the &ldquo;topmost&rdquo; module to the
    <literal>:load</literal> command (hint: <literal>:load</literal>
    can be abbreviated to <literal>:l</literal>).  The topmost module
    will normally be <literal>Main</literal>, but it doesn't have to
    be.  GHCi will discover which modules are required, directly or
    indirectly, by the topmost module, and load them all in dependency
    order.</para>

    <sect2 id="ghci-modules-filenames">
      <title>Modules vs. filenames</title>
      <indexterm><primary>modules</primary><secondary>and filenames</secondary></indexterm>
      <indexterm><primary>filenames</primary><secondary>of modules</secondary></indexterm>
      
      <para>Question: How does GHC find the filename which contains
      module <replaceable>M</replaceable>?  Answer: it looks for the
      file <literal><replaceable>M</replaceable>.hs</literal>, or
      <literal><replaceable>M</replaceable>.lhs</literal>.  This means
      that for most modules, the module name must match the filename.
      If it doesn't, GHCi won't be able to find it.</para>

      <para>There is one exception to this general rule: when you load
      a program with <literal>:load</literal>, or specify it when you
      invoke <literal>ghci</literal>, you can give a filename rather
      than a module name.  This filename is loaded if it exists, and
      it may contain any module you like.  This is particularly
      convenient if you have several <literal>Main</literal> modules
      in the same directory and you can't call them all
      <filename>Main.hs</filename>.</para>

      <para>The search path for finding source files is specified with
      the <option>-i</option> option on the GHCi command line, like
      so:</para>
<screen>ghci -i<replaceable>dir<subscript>1</subscript></replaceable>:...:<replaceable>dir<subscript>n</subscript></replaceable></screen>

      <para>or it can be set using the <literal>:set</literal> command
      from within GHCi (see <xref
      linkend="ghci-cmd-line-options"/>)<footnote><para>Note that in
      GHCi, and <option>&ndash;&ndash;make</option> mode, the <option>-i</option>
      option is used to specify the search path for
      <emphasis>source</emphasis> files, whereas in standard
      batch-compilation mode the <option>-i</option> option is used to
      specify the search path for interface files, see <xref
      linkend="search-path"/>.</para> </footnote></para>

      <para>One consequence of the way that GHCi follows dependencies
      to find modules to load is that every module must have a source
      file.  The only exception to the rule is modules that come from
      a package, including the <literal>Prelude</literal> and standard
      libraries such as <literal>IO</literal> and
      <literal>Complex</literal>.  If you attempt to load a module for
      which GHCi can't find a source file, even if there are object
      and interface files for the module, you'll get an error
      message.</para>
    </sect2>

    <sect2>
      <title>Making changes and recompilation</title>
      <indexterm><primary><literal>:reload</literal></primary></indexterm>

      <para>If you make some changes to the source code and want GHCi
      to recompile the program, give the <literal>:reload</literal>
      command.  The program will be recompiled as necessary, with GHCi
      doing its best to avoid actually recompiling modules if their
      external dependencies haven't changed.  This is the same
      mechanism we use to avoid re-compiling modules in the batch
      compilation setting (see <xref linkend="recomp"/>).</para>
    </sect2>
  </sect1>

  <sect1 id="ghci-compiled">
    <title>Loading compiled code</title>
    <indexterm><primary>compiled code</primary><secondary>in GHCi</secondary></indexterm>

    <para>When you load a Haskell source module into GHCi, it is
    normally converted to byte-code and run using the interpreter.
    However, interpreted code can also run alongside compiled code in
    GHCi; indeed, normally when GHCi starts, it loads up a compiled
    copy of the <literal>base</literal> package, which contains the
    <literal>Prelude</literal>.</para>

    <para>Why should we want to run compiled code?  Well, compiled
    code is roughly 10x faster than interpreted code, but takes about
    2x longer to produce (perhaps longer if optimisation is on).  So
    it pays to compile the parts of a program that aren't changing
    very often, and use the interpreter for the code being actively
    developed.</para>

    <para>When loading up source modules with <literal>:load</literal>,
    GHCi normally looks for any corresponding compiled object files,
    and will use one in preference to interpreting the source if
    possible.  For example, suppose we have a 4-module program
    consisting of modules A, B, C, and D.  Modules B and C both import
    D only, and A imports both B &amp; C:</para>
<screen>
      A
     / \
    B   C
     \ /
      D
</screen>
    <para>We can compile D, then load the whole program, like this:</para>
<screen>
Prelude> :! ghc -c D.hs
Prelude> :load A
Compiling B                ( B.hs, interpreted )
Compiling C                ( C.hs, interpreted )
Compiling A                ( A.hs, interpreted )
Ok, modules loaded: A, B, C, D.
*Main>
</screen>

    <para>In the messages from the compiler, we see that there is no line
    for <literal>D</literal>. This is because
    it isn't necessary to compile <literal>D</literal>,
    because the source and everything it depends on
    is unchanged since the last compilation.</para>

    <para>At any time you can use the command 
    <literal>:show modules</literal>
    to get a list of the modules currently loaded
    into GHCi:</para>

<screen>
*Main> :show modules
D                ( D.hs, D.o )
C                ( C.hs, interpreted )
B                ( B.hs, interpreted )
A                ( A.hs, interpreted )
*Main></screen>

    <para>If we now modify the source of D (or pretend to: using the Unix
    command <literal>touch</literal> on the source file is handy for
    this), the compiler will no longer be able to use the object file,
    because it might be out of date:</para>

<screen>
*Main> :! touch D.hs
*Main> :reload
Compiling D                ( D.hs, interpreted )
Ok, modules loaded: A, B, C, D.
*Main> 
</screen>

    <para>Note that module D was compiled, but in this instance
    because its source hadn't really changed, its interface remained
    the same, and the recompilation checker determined that A, B and C
    didn't need to be recompiled.</para>

    <para>So let's try compiling one of the other modules:</para>

<screen>
*Main> :! ghc -c C.hs
*Main> :load A
Compiling D                ( D.hs, interpreted )
Compiling B                ( B.hs, interpreted )
Compiling C                ( C.hs, interpreted )
Compiling A                ( A.hs, interpreted )
Ok, modules loaded: A, B, C, D.
</screen>

    <para>We didn't get the compiled version of C!  What happened?
    Well, in GHCi a compiled module may only depend on other compiled
    modules, and in this case C depends on D, which doesn't have an
    object file, so GHCi also rejected C's object file.  Ok, so let's
    also compile D:</para>

<screen>
*Main> :! ghc -c D.hs
*Main> :reload
Ok, modules loaded: A, B, C, D.
</screen>

    <para>Nothing happened!  Here's another lesson: newly compiled
    modules aren't picked up by <literal>:reload</literal>, only
    <literal>:load</literal>:</para>

<screen>
*Main> :load A
Compiling B                ( B.hs, interpreted )
Compiling A                ( A.hs, interpreted )
Ok, modules loaded: A, B, C, D.
</screen>

    <para>The automatic loading of object files can sometimes lead to
    confusion, because non-exported top-level definitions of a module
    are only available for use in expressions at the prompt when the
    module is interpreted (see <xref linkend="ghci-scope" />).  For
    this reason, if you ask GHCi to load a filename rather than a
    module name (e.g. <literal>:load Main.hs</literal> rather than
    <literal>:load Main</literal>) then any existing object file will
    be ignored and the module will be interpreted rather than
    compiled.  Using <literal>-fobject-code</literal> disables this
    behaviour (see <xref linkend="ghci-obj" />).</para>

    <para>HINT: since GHCi will only use a compiled object file if it
    can be sure that the compiled version is up-to-date, a good technique
    when working on a large program is to occasionally run
    <literal>ghc &ndash;&ndash;make</literal> to compile the whole project (say
    before you go for lunch :-), then continue working in the
    interpreter.  As you modify code, the changed modules will be
    interpreted, but the rest of the project will remain
    compiled.</para>
  </sect1>

  <sect1 id="interactive-evaluation">
    <title>Interactive evaluation at the prompt</title>

    <para>When you type an expression at the prompt, GHCi immediately
    evaluates and prints the result:
<screen>
Prelude> reverse "hello"
"olleh"
Prelude> 5+5
10
</screen>
</para>

<sect2><title>I/O actions at the prompt</title>

<para>GHCi does more than simple expression evaluation at the prompt.
If you type something of type <literal>IO a</literal> for some
    <literal>a</literal>, then GHCi <emphasis>executes</emphasis> it
    as an IO-computation.
<screen>
Prelude> "hello"
"hello"
Prelude> putStrLn "hello"
hello
</screen>
Furthermore, GHCi will print the result of the I/O action if (and only
if):
<itemizedlist>
  <listitem><para>The result type is an instance of <literal>Show</literal>.</para></listitem>
  <listitem><para>The result type is not
  <literal>()</literal>.</para></listitem>
</itemizedlist>
For example, remembering that <literal>putStrLn :: String -> IO ()</literal>:
<screen>
Prelude> putStrLn "hello"
hello
Prelude> do { putStrLn "hello"; return "yes" }
hello
"yes"
</screen>
</para></sect2>

    <sect2 id="ghci-stmts">
      <title>Using <literal>do-</literal>notation at the prompt</title>
      <indexterm><primary>do-notation</primary><secondary>in GHCi</secondary></indexterm>
      <indexterm><primary>statements</primary><secondary>in GHCi</secondary></indexterm>
      
      <para>GHCi actually accepts <firstterm>statements</firstterm>
      rather than just expressions at the prompt.  This means you can
      bind values and functions to names, and use them in future
      expressions or statements.</para>

      <para>The syntax of a statement accepted at the GHCi prompt is
      exactly the same as the syntax of a statement in a Haskell
      <literal>do</literal> expression.  However, there's no monad
      overloading here: statements typed at the prompt must be in the
      <literal>IO</literal> monad.
<screen>
Prelude> x &lt;- return 42
Prelude> print x
42
Prelude>
</screen>
      The statement <literal>x &lt;- return 42</literal> means
      &ldquo;execute <literal>return 42</literal> in the
      <literal>IO</literal> monad, and bind the result to
      <literal>x</literal>&rdquo;.  We can then use
      <literal>x</literal> in future statements, for example to print
      it as we did above.</para>

      <para>If <option>-fprint-bind-result</option> is set then
      GHCi will print the result of a statement if and only if: 
	<itemizedlist>
	  <listitem>
	    <para>The statement is not a binding, or it is a monadic binding 
	      (<literal>p &lt;- e</literal>) that binds exactly one
	      variable.</para>
	  </listitem>
	  <listitem>
	    <para>The variable's type is not polymorphic, is not
	      <literal>()</literal>, and is an instance of
	      <literal>Show</literal></para>
	  </listitem>
	</itemizedlist>
      <indexterm><primary><option>-fprint-bind-result</option></primary></indexterm><indexterm><primary><option>-fno-print-bind-result</option></primary></indexterm>.
      </para>

      <para>Of course, you can also bind normal non-IO expressions
      using the <literal>let</literal>-statement:</para>
<screen>
Prelude> let x = 42
Prelude> x
42
Prelude>
</screen>
      <para>Another important difference between the two types of binding
      is that the monadic bind (<literal>p &lt;- e</literal>) is
      <emphasis>strict</emphasis> (it evaluates <literal>e</literal>),
      whereas with the <literal>let</literal> form, the expression
      isn't evaluated immediately:</para>
<screen>
Prelude> let x = error "help!"
Prelude> print x
*** Exception: help!
Prelude>
</screen>

      <para>Note that <literal>let</literal> bindings do not automatically
	print the value bound, unlike monadic bindings.</para>

      <para>Hint: you can also use <literal>let</literal>-statements
      to define functions at the prompt:</para>
<screen>
Prelude> let add a b = a + b
Prelude> add 1 2
3
Prelude>
</screen>
        <para>However, this quickly gets tedious when defining functions 
        with multiple clauses, or groups of mutually recursive functions,
        because the complete definition has to be given on a single line, 
        using explicit braces and semicolons instead of layout:</para>
<screen>
Prelude> let { f op n [] = n ; f op n (h:t) = h `op` f op n t }
Prelude> f (+) 0 [1..3]
6
Prelude>
</screen>
      <para>To alleviate this issue, GHCi commands can be split over
      multiple lines, by wrapping them in <literal>:{</literal> and
      <literal>:}</literal> (each on a single line of its own):</para>
<screen>
Prelude> :{
Prelude| let { g op n [] = n
Prelude|     ; g op n (h:t) = h `op` g op n t
Prelude|     }
Prelude| :}
Prelude> g (*) 1 [1..3]
6
</screen>
      <para>Such multiline commands can be used with any GHCi command,
      and the lines between <literal>:{</literal> and
      <literal>:}</literal> are simply merged into a single line for 
      interpretation. That implies that each such group must form a single
      valid command when merged, and that no layout rule is used. 
      The main purpose of multiline commands is not to replace module
      loading but to make definitions in .ghci-files (see <xref
      linkend="ghci-dot-files"/>) more readable and maintainable.</para>

      <para>Any exceptions raised during the evaluation or execution
      of the statement are caught and printed by the GHCi command line
      interface (for more information on exceptions, see the module
      <literal>Control.Exception</literal> in the libraries
      documentation).</para>

      <para>Every new binding shadows any existing bindings of the
      same name, including entities that are in scope in the current
      module context.</para>

      <para>WARNING: temporary bindings introduced at the prompt only
      last until the next <literal>:load</literal> or
      <literal>:reload</literal> command, at which time they will be
      simply lost.  However, they do survive a change of context with
      <literal>:module</literal>: the temporary bindings just move to
      the new location.</para>

      <para>HINT: To get a list of the bindings currently in scope, use the
      <literal>:show bindings</literal> command:</para>

<screen>
Prelude> :show bindings
x :: Int
Prelude></screen>

      <para>HINT: if you turn on the <literal>+t</literal> option,
      GHCi will show the type of each variable bound by a statement.
      For example:</para>
      <indexterm><primary><literal>+t</literal></primary></indexterm>
<screen>
Prelude> :set +t
Prelude> let (x:xs) = [1..]
x :: Integer
xs :: [Integer]
</screen>

    </sect2>

    <sect2 id="ghci-scope">
      <title>What's really in scope at the prompt?</title> 

      <para>When you type an expression at the prompt, what
      identifiers and types are in scope?  GHCi provides a flexible
      way to control exactly how the context for an expression is
      constructed.  Let's start with the simple cases; when you start
      GHCi the prompt looks like this:</para>

<screen>Prelude></screen>

      <para>Which indicates that everything from the module
      <literal>Prelude</literal> is currently in scope.  If we now
      load a file into GHCi, the prompt will change:</para>

<screen>
Prelude> :load Main.hs
Compiling Main             ( Main.hs, interpreted )
*Main>
</screen>

      <para>The new prompt is <literal>*Main</literal>, which
      indicates that we are typing expressions in the context of the
      top-level of the <literal>Main</literal> module.  Everything
      that is in scope at the top-level in the module
      <literal>Main</literal> we just loaded is also in scope at the
      prompt (probably including <literal>Prelude</literal>, as long
      as <literal>Main</literal> doesn't explicitly hide it).</para>

      <para>The syntax
      <literal>*<replaceable>module</replaceable></literal> indicates
      that it is the full top-level scope of
      <replaceable>module</replaceable> that is contributing to the
      scope for expressions typed at the prompt.  Without the
      <literal>*</literal>, just the exports of the module are
      visible.</para>

      <para>We're not limited to a single module: GHCi can combine
      scopes from multiple modules, in any mixture of
      <literal>*</literal> and non-<literal>*</literal> forms.  GHCi
      combines the scopes from all of these modules to form the scope
      that is in effect at the prompt.</para>

      <para>NOTE: for technical reasons, GHCi can only support the
      <literal>*</literal>-form for modules that are interpreted.
      Compiled modules and package modules can only contribute their
      exports to the current scope.  This is why GHCi will always
      interpret, not compile, a module if you specify its filename
      rather than its module name to <literal>:load</literal>.</para>

      <para>The scope is manipulated using the
      <literal>:module</literal> command.  For example, if the current
      scope is <literal>Prelude</literal>, then we can bring into
      scope the exports from the module <literal>IO</literal> like
      so:</para>

<screen>
Prelude> :module +IO
Prelude IO> hPutStrLn stdout "hello\n"
hello
Prelude IO>
</screen>

      <para>(Note: you can use <literal>import M</literal> as an
      alternative to <literal>:module +M</literal>, and
      <literal>:module</literal> can also be shortened to 
      <literal>:m</literal>). The full syntax of the
      <literal>:module</literal> command is:</para>

<screen>
:module <optional>+|-</optional> <optional>*</optional><replaceable>mod<subscript>1</subscript></replaceable> ... <optional>*</optional><replaceable>mod<subscript>n</subscript></replaceable>
</screen>

      <para>Using the <literal>+</literal> form of the
      <literal>module</literal> commands adds modules to the current
      scope, and <literal>-</literal> removes them.  Without either
      <literal>+</literal> or <literal>-</literal>, the current scope
      is replaced by the set of modules specified.  Note that if you
      use this form and leave out <literal>Prelude</literal>, GHCi
      will assume that you really wanted the
      <literal>Prelude</literal> and add it in for you (if you don't
      want the <literal>Prelude</literal>, then ask to remove it with
      <literal>:m -Prelude</literal>).</para>

      <para>The scope is automatically set after a
      <literal>:load</literal> command, to the most recently loaded
      "target" module, in a <literal>*</literal>-form if possible.
      For example, if you say <literal>:load foo.hs bar.hs</literal>
      and <filename>bar.hs</filename> contains module
      <literal>Bar</literal>, then the scope will be set to
      <literal>*Bar</literal> if <literal>Bar</literal> is
      interpreted, or if <literal>Bar</literal> is compiled it will be
      set to <literal>Prelude Bar</literal> (GHCi automatically adds
      <literal>Prelude</literal> if it isn't present and there aren't
      any <literal>*</literal>-form modules).</para>

      <para>With multiple modules in scope, especially multiple
      <literal>*</literal>-form modules, it is likely that name
      clashes will occur.  Haskell specifies that name clashes are
      only reported when an ambiguous identifier is used, and GHCi
      behaves in the same way for expressions typed at the
      prompt.</para>

      <para>
        Hint: GHCi will tab-complete names that are in scope; for
        example, if you run GHCi and type <literal>J&lt;tab&gt;</literal>
        then GHCi will expand it to &ldquo;<literal>Just </literal>&rdquo;.
      </para>

      <sect3>
        <title><literal>:module</literal> and
        <literal>:load</literal></title>

        <para>It might seem that <literal>:module</literal> and
        <literal>:load</literal> do similar things: you can use both
        to bring a module into scope.  However, there is a clear
        difference.  GHCi is concerned with two sets of modules:</para>

        <itemizedlist>
          <listitem>
            <para>The set of modules that are
              currently <emphasis>loaded</emphasis>.  This set is
              modified
              by <literal>:load</literal>, <literal>:add</literal>
              and <literal>:reload</literal>.
            </para>
          </listitem>
          <listitem>
            <para>The set of modules that are currently <emphasis>in
                scope</emphasis> at the prompt.  This set is modified
              by <literal>:module</literal>, and it is also set
              automatically
                after <literal>:load</literal>, <literal>:add</literal>,
              and <literal>:reload</literal>.</para>
          </listitem>
        </itemizedlist>

        <para>You cannot add a module to the scope if it is not
          loaded.  This is why trying to
          use <literal>:module</literal> to load a new module results
          in the message &ldquo;<literal>module M is not
            loaded</literal>&rdquo;.</para>
      </sect3>

      <sect3 id="ghci-import-qualified">
	<title>Qualified names</title>

	<para>To make life slightly easier, the GHCi prompt also
        behaves as if there is an implicit <literal>import
        qualified</literal> declaration for every module in every
        package, and every module currently loaded into GHCi.  This
          behaviour can be disabled with the flag <option>-fno-implicit-import-qualified</option><indexterm><primary><option>-fno-implicit-import-qualified</option></primary></indexterm>.</para>
      </sect3>

      <sect3>
        <title>The <literal>:main</literal> and <literal>:run</literal> commands</title>

        <para>
          When a program is compiled and executed, it can use the
          <literal>getArgs</literal> function to access the
          command-line arguments.
          However, we cannot simply pass the arguments to the
          <literal>main</literal> function while we are testing in ghci,
          as the <literal>main</literal> function doesn't take its
          directly.
        </para>

        <para>
          Instead, we can use the <literal>:main</literal> command.
          This runs whatever <literal>main</literal> is in scope, with
          any arguments being treated the same as command-line arguments,
          e.g.:
        </para>

<screen>
Prelude> let main = System.Environment.getArgs >>= print
Prelude> :main foo bar
["foo","bar"]
</screen>

        <para>
            We can also quote arguments which contains characters like
            spaces, and they are treated like Haskell strings, or we can
            just use Haskell list syntax:
        </para>

<screen>
Prelude> :main foo "bar baz"
["foo","bar baz"]
Prelude> :main ["foo", "bar baz"]
["foo","bar baz"]
</screen>

        <para>
            Finally, other functions can be called, either with the
            <literal>-main-is</literal> flag or the <literal>:run</literal>
            command:
        </para>

<screen>
Prelude> let foo = putStrLn "foo" >> System.Environment.getArgs >>= print
Prelude> let bar = putStrLn "bar" >> System.Environment.getArgs >>= print
Prelude> :set -main-is foo
Prelude> :main foo "bar baz"
foo
["foo","bar baz"]
Prelude> :run bar ["foo", "bar baz"]
bar
["foo","bar baz"]
</screen>

      </sect3>
    </sect2>
  

    <sect2>
      <title>The <literal>it</literal> variable</title>
      <indexterm><primary><literal>it</literal></primary>
      </indexterm>
      
      <para>Whenever an expression (or a non-binding statement, to be
      precise) is typed at the prompt, GHCi implicitly binds its value
      to the variable <literal>it</literal>.  For example:</para>
<screen>
Prelude> 1+2
3
Prelude> it * 2
6
</screen>
    <para>What actually happens is that GHCi typechecks the
    expression, and if it doesn't have an <literal>IO</literal> type,
    then it transforms it as follows: an expression
    <replaceable>e</replaceable> turns into 
<screen>
let it = <replaceable>e</replaceable>;
print it
</screen>
    which is then run as an IO-action.</para>

    <para>Hence, the original expression must have a type which is an
    instance of the <literal>Show</literal> class, or GHCi will
    complain:</para>

<screen>
Prelude&gt; id

&lt;interactive&gt;:1:0:
    No instance for (Show (a -&gt; a))
      arising from use of `print' at &lt;interactive&gt;:1:0-1
    Possible fix: add an instance declaration for (Show (a -> a))
    In the expression: print it
    In a 'do' expression: print it
</screen>

    <para>The error message contains some clues as to the
    transformation happening internally.</para>

      <para>If the expression was instead of type <literal>IO a</literal> for
      some <literal>a</literal>, then <literal>it</literal> will be
      bound to the result of the <literal>IO</literal> computation,
      which is of type <literal>a</literal>.  eg.:</para>
<screen>
Prelude> Time.getClockTime
Wed Mar 14 12:23:13 GMT 2001
Prelude> print it
Wed Mar 14 12:23:13 GMT 2001
</screen>

      <para>The corresponding translation for an IO-typed
      <replaceable>e</replaceable> is
<screen>
it &lt;- <replaceable>e</replaceable>
</screen>
      </para>

      <para>Note that <literal>it</literal> is shadowed by the new
      value each time you evaluate a new expression, and the old value
      of <literal>it</literal> is lost.</para>

    </sect2>

    <sect2 id="extended-default-rules">
      <title>Type defaulting in GHCi</title>
    <indexterm><primary>Type default</primary></indexterm>
    <indexterm><primary><literal>Show</literal> class</primary></indexterm>
      <para>
      Consider this GHCi session:
<programlisting>
  ghci> reverse []
</programlisting>
      What should GHCi do?  Strictly speaking, the program is ambiguous.  <literal>show (reverse [])</literal>
      (which is what GHCi computes here) has type <literal>Show a => a</literal> and how that displays depends 
      on the type <literal>a</literal>.  For example:
<programlisting>
  ghci> (reverse []) :: String
  ""
  ghci> (reverse []) :: [Int]
  []
</programlisting>
    However, it is tiresome for the user to have to specify the type, so GHCi extends Haskell's type-defaulting
    rules (Section 4.3.4 of the Haskell 98 Report (Revised)) as follows.  The
    standard rules take each group of constraints <literal>(C1 a, C2 a, ..., Cn
    a)</literal> for each type variable <literal>a</literal>, and defaults the
    type variable if 
    <orderedlist>
        <listitem>
            <para>
                The type variable <literal>a</literal> appears in no
                other constraints
            </para>
        </listitem>
        <listitem>
            <para>
                All the classes <literal>Ci</literal> are standard.
            </para>
        </listitem>
        <listitem>
            <para>
                At least one of the classes <literal>Ci</literal> is
                numeric.
            </para>
        </listitem>
    </orderedlist>
    At the GHCi prompt, or with GHC if the
    <literal>-XExtendedDefaultRules</literal> flag is given,
    the following additional differences apply:
    <itemizedlist>
        <listitem>
            <para>
                Rule 2 above is relaxed thus:
                <emphasis>All</emphasis> of the classes
                <literal>Ci</literal> are single-parameter type classes.
            </para>
        </listitem>
        <listitem>
            <para>
                Rule 3 above is relaxed this:
                At least one of the classes <literal>Ci</literal> is
                numeric, <emphasis>or is <literal>Show</literal>,
                <literal>Eq</literal>, or
                <literal>Ord</literal></emphasis>.
            </para>
        </listitem>
        <listitem>
            <para>
                The unit type <literal>()</literal> is added to the
                start of the standard list of types which are tried when
                doing type defaulting.
            </para>
        </listitem>
    </itemizedlist>
    The last point means that, for example, this program:
<programlisting>
main :: IO ()
main = print def

instance Num ()

def :: (Num a, Enum a) => a
def = toEnum 0
</programlisting>
    prints <literal>()</literal> rather than <literal>0</literal> as the
    type is defaulted to <literal>()</literal> rather than
    <literal>Integer</literal>.
   </para>
   <para>
    The motivation for the change is that it means <literal>IO a</literal>
    actions default to <literal>IO ()</literal>, which in turn means that
    ghci won't try to print a result when running them. This is
    particularly important for <literal>printf</literal>, which has an
    instance that returns <literal>IO a</literal>.
    However, it is only able to return
    <literal>undefined</literal>
    (the reason for the instance having this type is so that printf
    doesn't require extensions to the class system), so if the type defaults to
    <literal>Integer</literal> then ghci gives an error when running a
    printf.
   </para>
    </sect2>
  </sect1>

  <sect1 id="ghci-debugger">
    <title>The GHCi Debugger</title>
    <indexterm><primary>debugger</primary><secondary>in GHCi</secondary>
    </indexterm>

    <para>GHCi contains a simple imperative-style debugger in which you can
      stop a running computation in order to examine the values of
      variables.  The debugger is integrated into GHCi, and is turned on by
      default: no flags are required to enable the debugging
      facilities.  There is one major restriction: breakpoints and
      single-stepping are only available in interpreted modules;
      compiled code is invisible to the debugger<footnote><para>Note that packages
      only contain compiled code, so debugging a package requires
      finding its source and loading that directly.</para></footnote>.</para>

    <para>The debugger provides the following:
    <itemizedlist>
        <listitem>
          <para>The ability to set a <firstterm>breakpoint</firstterm> on a
            function definition or expression in the program.  When the function
            is called, or the expression evaluated, GHCi suspends 
            execution and returns to the prompt, where you can inspect the
            values of local variables before continuing with the
            execution.</para>
        </listitem>
        <listitem>
          <para>Execution can be <firstterm>single-stepped</firstterm>: the
            evaluator will suspend execution approximately after every
            reduction, allowing local variables to be inspected.  This is
            equivalent to setting a breakpoint at every point in the
            program.</para>
        </listitem>
        <listitem>
          <para>Execution can take place in <firstterm>tracing
              mode</firstterm>, in which the evaluator remembers each
            evaluation step as it happens, but doesn't suspend execution until
            an actual breakpoint is reached.  When this happens, the history of
            evaluation steps can be inspected.</para>
        </listitem>
        <listitem>
          <para>Exceptions (e.g. pattern matching failure and
            <literal>error</literal>) can be treated as breakpoints, to help
            locate the source of an exception in the program.</para>
        </listitem>
      </itemizedlist>
    </para>
      
    <para>There is currently no support for obtaining a &ldquo;stack
    trace&rdquo;, but the tracing and history features provide a
    useful second-best, which will often be enough to establish the
    context of an error.  For instance, it is possible to break
    automatically when an exception is thrown, even if it is thrown
    from within compiled code (see <xref
    linkend="ghci-debugger-exceptions" />).</para>
      
    <sect2 id="breakpoints">
      <title>Breakpoints and inspecting variables</title>
      
      <para>Let's use quicksort as a running example.  Here's the code:</para>

<programlisting>
qsort [] = [] 
qsort (a:as) = qsort left ++ [a] ++ qsort right
  where (left,right) = (filter (&lt;=a) as, filter (&gt;a) as)

main = print (qsort [8, 4, 0, 3, 1, 23, 11, 18])
</programlisting>

      <para>First, load the module into GHCi:</para>

<screen>
Prelude> :l qsort.hs
[1 of 1] Compiling Main             ( qsort.hs, interpreted )
Ok, modules loaded: Main.
*Main>
      </screen>       

      <para>Now, let's set a breakpoint on the right-hand-side of the second
        equation of qsort:</para>

<programlisting>
*Main> :break 2
Breakpoint 0 activated at qsort.hs:2:15-46
*Main>
</programlisting>
      
      <para>The command <literal>:break 2</literal> sets a breakpoint on line
        2 of the most recently-loaded module, in this case
        <literal>qsort.hs</literal>.   Specifically, it picks the
        leftmost complete subexpression on that line on which to set the
        breakpoint, which in this case is the expression 
        <literal>(qsort left ++ [a] ++ qsort right)</literal>.</para>

      <para>Now, we run the program:</para>

<programlisting>
*Main> main
Stopped at qsort.hs:2:15-46
_result :: [a]
a :: a
left :: [a]
right :: [a]
[qsort.hs:2:15-46] *Main>
</programlisting>

      <para>Execution has stopped at the breakpoint.  The prompt has changed to
        indicate that we are currently stopped at a breakpoint, and the location:
        <literal>[qsort.hs:2:15-46]</literal>.  To further clarify the
        location, we can use the <literal>:list</literal> command:</para>

<programlisting>
[qsort.hs:2:15-46] *Main> :list 
1  qsort [] = [] 
2  qsort (a:as) = qsort left ++ [a] ++ qsort right
3    where (left,right) = (filter (&lt;=a) as, filter (&gt;a) as)
</programlisting>

      <para>The <literal>:list</literal> command lists the source code around
        the current breakpoint.  If your output device supports it, then GHCi
        will highlight the active subexpression in bold.</para>

      <para>GHCi has provided bindings for the free variables<footnote><para>We
            originally provided bindings for all variables in scope, rather
            than just
            the free variables of the expression, but found that this affected
            performance considerably, hence the current restriction to just the
            free variables.</para>
        </footnote> of the expression
        on which the
        breakpoint was placed (<literal>a</literal>, <literal>left</literal>,
        <literal>right</literal>), and additionally a binding for the result of
        the expression (<literal>_result</literal>).  These variables are just
        like other variables that you might define in GHCi; you
        can use them in expressions that you type at the prompt, you can ask
        for their types with <literal>:type</literal>, and so on.  There is one
        important difference though: these variables may only have partial
        types.  For example, if we try to display the value of
        <literal>left</literal>:</para>

<screen>
[qsort.hs:2:15-46] *Main> left

&lt;interactive&gt;:1:0:
    Ambiguous type variable `a' in the constraint:
      `Show a' arising from a use of `print' at &lt;interactive&gt;:1:0-3
    Cannot resolve unknown runtime types: a
    Use :print or :force to determine these types
</screen>

      <para>This is because <literal>qsort</literal> is a polymorphic function,
        and because GHCi does not carry type information at runtime, it cannot
        determine the runtime types of free variables that involve type
        variables.  Hence, when you ask to display <literal>left</literal> at
        the prompt, GHCi can't figure out which instance of
        <literal>Show</literal> to use, so it emits the type error above.</para>

      <para>Fortunately, the debugger includes a generic printing command,
        <literal>:print</literal>, which can inspect the actual runtime value of a
        variable and attempt to reconstruct its type.  If we try it on
        <literal>left</literal>:</para>

<screen>
[qsort.hs:2:15-46] *Main> :set -fprint-evld-with-show
[qsort.hs:2:15-46] *Main> :print left
left = (_t1::[a])
</screen>

      <para>This isn't particularly enlightening.  What happened is that
        <literal>left</literal> is bound to an unevaluated computation (a
        suspension, or <firstterm>thunk</firstterm>), and
        <literal>:print</literal> does not force any evaluation.  The idea is
        that <literal>:print</literal> can be used to inspect values at a
        breakpoint without any unfortunate side effects.  It won't force any
        evaluation, which could cause the program to give a different answer
        than it would normally, and hence it won't cause any exceptions to be
        raised, infinite loops, or further breakpoints to be triggered (see
        <xref linkend="nested-breakpoints" />).
        Rather than forcing thunks, <literal>:print</literal>
        binds each thunk to a fresh variable beginning with an
        underscore, in this case
        <literal>_t1</literal>.</para>

      <para>The flag <literal>-fprint-evld-with-show</literal> instructs
      <literal>:print</literal> to reuse
      available <literal>Show</literal> instances when possible. This happens
      only when the contents of the variable being inspected 
      are completely evaluated.</para>


      <para>If we aren't concerned about preserving the evaluatedness of a
        variable, we can use <literal>:force</literal> instead of
        <literal>:print</literal>.  The <literal>:force</literal> command
        behaves exactly like <literal>:print</literal>, except that it forces
        the evaluation of any thunks it encounters:</para>

<screen>
[qsort.hs:2:15-46] *Main> :force left
left = [4,0,3,1]
</screen>

      <para>Now, since <literal>:force</literal> has inspected the runtime
        value of <literal>left</literal>, it has reconstructed its type.  We
        can see the results of this type reconstruction:</para>

<screen>
[qsort.hs:2:15-46] *Main> :show bindings
_result :: [Integer]
a :: Integer
left :: [Integer]
right :: [Integer]
_t1 :: [Integer]
</screen>

      <para>Not only do we now know the type of <literal>left</literal>, but
        all the other partial types have also been resolved.  So we can ask
        for the value of <literal>a</literal>, for example:</para>

<screen>
[qsort.hs:2:15-46] *Main> a
8
</screen>
      
      <para>You might find it useful to use Haskell's
        <literal>seq</literal> function to evaluate individual thunks rather
        than evaluating the whole expression with <literal>:force</literal>.
        For example:</para>

<screen>
[qsort.hs:2:15-46] *Main> :print right
right = (_t1::[Integer])
[qsort.hs:2:15-46] *Main> seq _t1 ()
()
[qsort.hs:2:15-46] *Main> :print right
right = 23 : (_t2::[Integer])
</screen>

      <para>We evaluated only the <literal>_t1</literal> thunk, revealing the
        head of the list, and the tail is another thunk now bound to
        <literal>_t2</literal>.  The <literal>seq</literal> function is a
        little inconvenient to use here, so you might want to use
        <literal>:def</literal> to make a nicer interface (left as an exercise
        for the reader!).</para>

      <para>Finally, we can continue the current execution:</para>

<screen>
[qsort.hs:2:15-46] *Main> :continue
Stopped at qsort.hs:2:15-46
_result :: [a]
a :: a
left :: [a]
right :: [a]
[qsort.hs:2:15-46] *Main> 
</screen>

      <para>The execution continued at the point it previously stopped, and has
        now stopped at the breakpoint for a second time.</para>


      <sect3 id="setting-breakpoints">
        <title>Setting breakpoints</title>

        <para>Breakpoints can be set in various ways.  Perhaps the easiest way to
          set a breakpoint is to name a top-level function:</para>

<screen>
   :break <replaceable>identifier</replaceable>
</screen>

      <para>Where <replaceable>identifier</replaceable> names any top-level
        function in an interpreted module currently loaded into GHCi (qualified
        names may be used).  The breakpoint will be set on the body of the
        function, when it is fully applied but before any pattern matching has
        taken place.</para>

      <para>Breakpoints can also be set by line (and optionally column)
        number:</para>

<screen>
   :break <replaceable>line</replaceable>
   :break <replaceable>line</replaceable> <replaceable>column</replaceable>
   :break <replaceable>module</replaceable> <replaceable>line</replaceable>
   :break <replaceable>module</replaceable> <replaceable>line</replaceable> <replaceable>column</replaceable> 
</screen>

      <para>When a breakpoint is set on a particular line, GHCi sets the
        breakpoint on the
        leftmost subexpression that begins and ends on that line.  If two
        complete subexpressions start at the same 
        column, the longest one is picked.  If there is no complete
        subexpression on the line, then the leftmost expression starting on
        the line is picked, and failing that the rightmost expression that
        partially or completely covers the line.</para>

      <para>When a breakpoint is set on a particular line and column, GHCi
        picks the smallest subexpression that encloses that location on which
        to set the breakpoint.  Note: GHC considers the TAB character to have a
        width of 1, wherever it occurs; in other words it counts
          characters, rather than columns.  This matches what some editors do,
          and doesn't match others.  The best advice is to avoid tab
          characters in your source code altogether (see
          <option>-fwarn-tabs</option> in <xref linkend="options-sanity"
            />).</para> 

      <para>If the module is omitted, then the most recently-loaded module is
        used.</para>

      <para>Not all subexpressions are potential breakpoint locations.  Single
        variables are typically not considered to be breakpoint locations
        (unless the variable is the right-hand-side of a function definition,
        lambda, or case alternative).  The rule of thumb is that all redexes
        are breakpoint locations, together with the bodies of functions,
        lambdas, case alternatives and binding statements.  There is normally
        no breakpoint on a let expression, but there will always be a
        breakpoint on its body, because we are usually interested in inspecting
        the values of the variables bound by the let.</para>

      </sect3>
      <sect3>
        <title>Listing and deleting breakpoints</title>

        <para>The list of breakpoints currently enabled can be displayed using
          <literal>:show&nbsp;breaks</literal>:</para>
<screen>
*Main> :show breaks
[0] Main qsort.hs:1:11-12
[1] Main qsort.hs:2:15-46
</screen>

        <para>To delete a breakpoint, use the <literal>:delete</literal>
          command with the number given in the output from <literal>:show&nbsp;breaks</literal>:</para>

<screen>
*Main> :delete 0
*Main> :show breaks
[1] Main qsort.hs:2:15-46
</screen>        

        <para>To delete all breakpoints at once, use <literal>:delete *</literal>.</para>

    </sect3>
    </sect2>

    <sect2 id="single-stepping">
      <title>Single-stepping</title>

      <para>Single-stepping is a great way to visualise the execution of your
        program, and it is also a useful tool for identifying the source of a
        bug. GHCi offers two variants of stepping. Use 
	<literal>:step</literal>  to enable all the
        breakpoints in the program, and execute until the next breakpoint is
        reached. Use <literal>:steplocal</literal> to limit the set
	of enabled breakpoints to those in the current top level function.
	Similarly, use <literal>:stepmodule</literal> to single step only on
	breakpoints contained in the current module.
	For example:</para>

<screen>
*Main> :step main
Stopped at qsort.hs:5:7-47
_result :: IO ()
</screen>

      <para>The command <literal>:step
        <replaceable>expr</replaceable></literal> begins the evaluation of
        <replaceable>expr</replaceable> in single-stepping mode.  If
        <replaceable>expr</replaceable> is omitted, then it single-steps from
        the current breakpoint. <literal>:stepover</literal> 
        works similarly.</para>

      <para>The <literal>:list</literal> command is particularly useful when
        single-stepping, to see where you currently are:</para>

<screen>
[qsort.hs:5:7-47] *Main> :list
4  
5  main = print (qsort [8, 4, 0, 3, 1, 23, 11, 18])
6  
[qsort.hs:5:7-47] *Main>
</screen>

      <para>In fact, GHCi provides a way to run a command when a breakpoint is
        hit, so we can make it automatically do
        <literal>:list</literal>:</para>

<screen>
[qsort.hs:5:7-47] *Main> :set stop :list
[qsort.hs:5:7-47] *Main> :step
Stopped at qsort.hs:5:14-46
_result :: [Integer]
4  
5  main = print (qsort [8, 4, 0, 3, 1, 23, 11, 18])
6  
[qsort.hs:5:14-46] *Main>
</screen>
    </sect2>

    <sect2 id="nested-breakpoints">
      <title>Nested breakpoints</title>
      <para>When GHCi is stopped at a breakpoint, and an expression entered at
        the prompt triggers a
        second breakpoint, the new breakpoint becomes the &ldquo;current&rdquo;
      one, and the old one is saved on a stack.  An arbitrary number of
        breakpoint contexts can be built up in this way.  For example:</para>

<screen>
[qsort.hs:2:15-46] *Main> :st qsort [1,3]
Stopped at qsort.hs:(1,0)-(3,55)
_result :: [a]
... [qsort.hs:(1,0)-(3,55)] *Main>
</screen>

      <para>While stopped at the breakpoint on line 2 that we set earlier, we
        started a new evaluation with <literal>:step qsort [1,3]</literal>.
        This new evaluation stopped after one step (at the definition of
        <literal>qsort</literal>).  The prompt has changed, now prefixed with
        <literal>...</literal>, to indicate that there are saved breakpoints
        beyond the current one.  To see the stack of contexts, use
        <literal>:show context</literal>:</para>

<screen>
... [qsort.hs:(1,0)-(3,55)] *Main> :show context
--> main
  Stopped at qsort.hs:2:15-46
--> qsort [1,3]
  Stopped at qsort.hs:(1,0)-(3,55)
... [qsort.hs:(1,0)-(3,55)] *Main>
</screen>

        <para>To abandon the current evaluation, use
        <literal>:abandon</literal>:</para>

<screen>
... [qsort.hs:(1,0)-(3,55)] *Main> :abandon
[qsort.hs:2:15-46] *Main> :abandon
*Main>
</screen>
    </sect2>

    <sect2 id="ghci-debugger-result">
      <title>The <literal>_result</literal> variable</title>
      <para>When stopped at a breakpoint or single-step, GHCi binds the
        variable <literal>_result</literal> to the value of the currently
        active expression.  The value of <literal>_result</literal> is
        presumably not available yet, because we stopped its evaluation, but it
        can be forced: if the type is known and showable, then just entering
        <literal>_result</literal> at the prompt will show it.  However,
        there's one caveat to doing this: evaluating <literal>_result</literal>
        will be likely to trigger further breakpoints, starting with the
        breakpoint we are currently stopped at (if we stopped at a real
        breakpoint, rather than due to <literal>:step</literal>).  So it will
        probably be necessary to issue a <literal>:continue</literal>
        immediately when evaluating <literal>_result</literal>.  Alternatively,
        you can use <literal>:force</literal> which ignores breakpoints.</para>
    </sect2>

    <sect2 id="tracing">
      <title>Tracing and history</title>

      <para>A question that we often want to ask when debugging a program is
        &ldquo;how did I get here?&rdquo;.  Traditional imperative debuggers
        usually provide some kind of stack-tracing feature that lets you see
        the stack of active function calls (sometimes called the &ldquo;lexical
        call stack&rdquo;), describing a path through the code
        to the current location.  Unfortunately this is hard to provide in
        Haskell, because execution proceeds on a demand-driven basis, rather
        than a depth-first basis as in strict languages.  The
        &ldquo;stack&ldquo; in GHC's execution engine bears little
        resemblance to the lexical call stack.  Ideally GHCi would maintain a
        separate lexical call stack in addition to the dynamic call stack, and
        in fact this is exactly
        what our profiling system does (<xref linkend="profiling" />), and what
        some other Haskell debuggers do.  For the time being, however, GHCi
        doesn't maintain a lexical call stack (there are some technical
        challenges to be overcome).  Instead, we provide a way to backtrack from a
        breakpoint to previous evaluation steps: essentially this is like
        single-stepping backwards, and should in many cases provide enough
        information to answer the &ldquo;how did I get here?&rdquo;
        question.</para>

      <para>To use tracing, evaluate an expression with the
        <literal>:trace</literal> command.  For example, if we set a breakpoint
        on the base case of <literal>qsort</literal>:</para>

<screen>
*Main&gt; :list qsort
1  qsort [] = [] 
2  qsort (a:as) = qsort left ++ [a] ++ qsort right
3    where (left,right) = (filter (&lt;=a) as, filter (&gt;a) as)
4  
*Main&gt; :b 1
Breakpoint 1 activated at qsort.hs:1:11-12
*Main&gt; 
</screen>

      <para>and then run a small <literal>qsort</literal> with
        tracing:</para>

<screen>
*Main> :trace qsort [3,2,1]
Stopped at qsort.hs:1:11-12
_result :: [a]
[qsort.hs:1:11-12] *Main>
</screen>

      <para>We can now inspect the history of evaluation steps:</para>

<screen>
[qsort.hs:1:11-12] *Main> :hist
-1  : qsort.hs:3:24-38
-2  : qsort.hs:3:23-55
-3  : qsort.hs:(1,0)-(3,55)
-4  : qsort.hs:2:15-24
-5  : qsort.hs:2:15-46
-6  : qsort.hs:3:24-38
-7  : qsort.hs:3:23-55
-8  : qsort.hs:(1,0)-(3,55)
-9  : qsort.hs:2:15-24
-10 : qsort.hs:2:15-46
-11 : qsort.hs:3:24-38
-12 : qsort.hs:3:23-55
-13 : qsort.hs:(1,0)-(3,55)
-14 : qsort.hs:2:15-24
-15 : qsort.hs:2:15-46
-16 : qsort.hs:(1,0)-(3,55)
&lt;end of history&gt;
</screen>

      <para>To examine one of the steps in the history, use
        <literal>:back</literal>:</para>

<screen>
[qsort.hs:1:11-12] *Main> :back
Logged breakpoint at qsort.hs:3:24-38
_result :: [a]
as :: [a]
a :: a
[-1: qsort.hs:3:24-38] *Main> 
</screen>

      <para>Note that the local variables at each step in the history have been
        preserved, and can be examined as usual.  Also note that the prompt has
        changed to indicate that we're currently examining the first step in
        the history: <literal>-1</literal>.  The command
        <literal>:forward</literal> can be used to traverse forward in the
        history.</para>

      <para>The <literal>:trace</literal> command can be used with or without
        an expression.  When used without an expression, tracing begins from
        the current breakpoint, just like <literal>:step</literal>.</para>

      <para>The history is only available when
        using <literal>:trace</literal>; the reason for this is we found that
        logging each breakpoint in the history cuts performance by a factor of
        2 or more.  GHCi remembers the last 50 steps in the history (perhaps in
        the future we'll make this configurable).</para>
    </sect2>

    <sect2 id="ghci-debugger-exceptions">
      <title>Debugging exceptions</title>
      <para>Another common question that comes up when debugging is
        &ldquo;where did this exception come from?&rdquo;.  Exceptions such as
        those raised by <literal>error</literal> or <literal>head []</literal>
        have no context information attached to them.  Finding which
        particular call to <literal>head</literal> in your program resulted in
        the error can be a painstaking process, usually involving
        <literal>Debug.Trace.trace</literal>, or compiling with
        profiling and using <literal>+RTS -xc</literal> (see <xref
          linkend="prof-time-options" />).</para>

      <para>The GHCi debugger offers a way to hopefully shed some light on
        these errors quickly and without modifying or recompiling the source
        code.  One way would be to set a breakpoint on the location in the
        source code that throws the exception, and then use
        <literal>:trace</literal> and <literal>:history</literal> to establish
        the context.  However, <literal>head</literal> is in a library and
        we can't set a breakpoint on it directly.  For this reason, GHCi
        provides the flags <literal>-fbreak-on-exception</literal> which causes
        the evaluator to stop when an exception is thrown, and <literal>
	-fbreak-on-error</literal>, which works similarly but stops only on 
	uncaught exceptions. When stopping at an exception, GHCi will act 
	just as it does when a breakpoint is hit, with the deviation that it
	will not show you any source code location. Due to this, these 
	commands are only really useful in conjunction with
        <literal>:trace</literal>, in order to log the steps leading up to the
        exception.  For example:</para>

<screen>
*Main> :set -fbreak-on-exception
*Main> :trace qsort ("abc" ++ undefined)
"Stopped at &lt;exception thrown&gt;
_exception :: e
[&lt;exception thrown&gt;] *Main&gt; :hist
-1  : qsort.hs:3:24-38
-2  : qsort.hs:3:23-55
-3  : qsort.hs:(1,0)-(3,55)
-4  : qsort.hs:2:15-24
-5  : qsort.hs:2:15-46
-6  : qsort.hs:(1,0)-(3,55)
&lt;end of history&gt;
[&lt;exception thrown&gt;] *Main&gt; :back
Logged breakpoint at qsort.hs:3:24-38
_result :: [a]
as :: [a]
a :: a
[-1: qsort.hs:3:24-38] *Main&gt; :force as
*** Exception: Prelude.undefined
[-1: qsort.hs:3:24-38] *Main&gt; :print as
as = 'b' : 'c' : (_t1::[Char])
</screen>

      <para>The exception itself is bound to a new variable,
        <literal>_exception</literal>.</para>

      <para>Breaking on exceptions is particularly useful for finding out what
        your program was doing when it was in an infinite loop.  Just hit
        Control-C, and examine the history to find out what was going
        on.</para>
    </sect2>

    <sect2><title>Example: inspecting functions</title>
      <para>
        It is possible to use the debugger to examine function values. 
        When we are at a breakpoint and a function is in scope, the debugger
        cannot show 
        you the source code for it; however, it is possible to get some 
        information by applying it to some arguments and  observing the result. 
      </para>

      <para>
        The process is slightly complicated when the binding is polymorphic. 
        We show the process by means of an example.
        To keep things simple, we will use the well known <literal>map</literal> function:
<programlisting>
import Prelude hiding (map)

map :: (a->b) -> [a] -> [b]
map f [] = []
map f (x:xs) = f x : map f xs
</programlisting>
      </para>

      <para>
        We set a breakpoint on <literal>map</literal>, and call it.
<screen>
*Main> :break 5
Breakpoint 0 activated at  map.hs:5:15-28
*Main> map Just [1..5]
Stopped at map.hs:(4,0)-(5,12)
_result :: [b]
x :: a
f :: a -> b
xs :: [a]
</screen>
      GHCi tells us that, among other bindings, <literal>f</literal> is in scope. 
      However, its type is not fully known yet,  
      and thus it is not possible to apply it to any 
      arguments. Nevertheless, observe that the type of its first argument is the
      same as the type of <literal>x</literal>, and its result type is shared
        with <literal>_result</literal>.
      </para>

      <para>
        As we demonstrated earlier (<xref linkend="breakpoints" />),  the
        debugger has some intelligence built-in to update the type of 
        <literal>f</literal> whenever the types of <literal>x</literal> or 
        <literal>_result</literal> are discovered.  So what we do in this
        scenario is
        force <literal>x</literal> a bit, in order to recover both its type 
      and the argument part of <literal>f</literal>.  
<screen>
*Main> seq x ()
*Main> :print x
x = 1
</screen>
      </para>
      <para>
        We can check now that as expected, the type of <literal>x</literal>
        has been reconstructed, and with it the 
        type of <literal>f</literal> has been too:</para>
<screen>
*Main> :t x
x :: Integer
*Main> :t f
f :: Integer -> b
</screen>
      <para>
        From here, we can apply f to any argument of type Integer and observe
        the results. 
<screen><![CDATA[
*Main> let b = f 10
*Main> :t b
b :: b
*Main> b
<interactive>:1:0:
    Ambiguous type variable `b' in the constraint:
      `Show b' arising from a use of `print' at <interactive>:1:0
*Main> :p b
b = (_t2::a)
*Main> seq b ()
()
*Main> :t b
b :: a
*Main> :p b
b = Just 10
*Main> :t b
b :: Maybe Integer
*Main> :t f
f :: Integer -> Maybe Integer
*Main> f 20
Just 20
*Main> map f [1..5]
[Just 1, Just 2, Just 3, Just 4, Just 5]
]]></screen>
      In the first application of <literal>f</literal>, we had to do 
      some more type reconstruction
      in order to recover the result type of <literal>f</literal>. 
      But after that, we are free to use 
      <literal>f</literal> normally.
     </para>
    </sect2>

    <sect2><title>Limitations</title>
      <itemizedlist>
        <listitem>
          <para>When stopped at a breakpoint, if you try to evaluate a variable
            that is already under evaluation, the second evaluation will hang.
            The reason is
            that GHC knows the variable is under evaluation, so the new
            evaluation just waits for the result before continuing, but of
            course this isn't going to happen because the first evaluation is
            stopped at a breakpoint. Control-C can interrupt the hung
            evaluation and return to the prompt.</para>
          <para>The most common way this can happen is when you're evaluating a
            CAF (e.g. main), stop at a breakpoint, and ask for the value of the
            CAF at the prompt again.</para>
        </listitem>
	<listitem><para>
	  Implicit parameters (see <xref linkend="implicit-parameters"/>) are only available 
	  at the scope of a breakpoint if there is an explicit type signature.
	</para>
        </listitem>
      </itemizedlist>
    </sect2>
  </sect1>

  <sect1 id="ghci-invocation">
    <title>Invoking GHCi</title>
    <indexterm><primary>invoking</primary><secondary>GHCi</secondary></indexterm>
    <indexterm><primary><option>&ndash;&ndash;interactive</option></primary></indexterm>

    <para>GHCi is invoked with the command <literal>ghci</literal> or
    <literal>ghc &ndash;&ndash;interactive</literal>.  One or more modules or
    filenames can also be specified on the command line; this
    instructs GHCi to load the specified modules or filenames (and all
    the modules they depend on), just as if you had said
    <literal>:load <replaceable>modules</replaceable></literal> at the
    GHCi prompt (see <xref linkend="ghci-commands" />).  For example, to
    start GHCi and load the program whose topmost module is in the
    file <literal>Main.hs</literal>, we could say:</para>

<screen>
$ ghci Main.hs
</screen>

    <para>Most of the command-line options accepted by GHC (see <xref
    linkend="using-ghc"/>) also make sense in interactive mode.  The ones
    that don't make sense are mostly obvious.</para>

    <sect2>
      <title>Packages</title>
      <indexterm><primary>packages</primary><secondary>with GHCi</secondary></indexterm>

      <para>Most packages (see <xref linkend="using-packages"/>) are
      available without needing to specify any extra flags at all:
      they will be automatically loaded the first time they are
      needed.</para>

      <para>For hidden packages, however, you need to request the
      package be loaded by using the <literal>-package</literal> flag:</para>

<screen>
$ ghci -package readline
GHCi, version 6.8.1: http://www.haskell.org/ghc/  :? for help
Loading package base ... linking ... done.
Loading package readline-1.0 ... linking ... done.
Prelude> 
</screen>

      <para>The following command works to load new packages into a
      running GHCi:</para>

<screen>
Prelude> :set -package <replaceable>name</replaceable>
</screen>

      <para>But note that doing this will cause all currently loaded
      modules to be unloaded, and you'll be dumped back into the
      <literal>Prelude</literal>.</para>
    </sect2>

    <sect2>
      <title>Extra libraries</title>
      <indexterm><primary>libraries</primary><secondary>with GHCi</secondary></indexterm>
      
      <para>Extra libraries may be specified on the command line using
      the normal <literal>-l<replaceable>lib</replaceable></literal>
      option.  (The term <emphasis>library</emphasis> here refers to
      libraries of foreign object code; for using libraries of Haskell
      source code, see <xref linkend="ghci-modules-filenames"/>.) For
      example, to load the &ldquo;m&rdquo; library:</para>

<screen>
$ ghci -lm
</screen>

      <para>On systems with <literal>.so</literal>-style shared
      libraries, the actual library loaded will the
      <filename>lib<replaceable>lib</replaceable>.so</filename>.  GHCi
      searches the following places for libraries, in this order:</para>

      <itemizedlist>
	<listitem>
	  <para>Paths specified using the
          <literal>-L<replaceable>path</replaceable></literal>
          command-line option,</para>
	</listitem>
	<listitem>
	  <para>the standard library search path for your system,
	  which on some systems may be overridden by setting the
	  <literal>LD_LIBRARY_PATH</literal> environment
	  variable.</para>
	</listitem>
      </itemizedlist>

      <para>On systems with <literal>.dll</literal>-style shared
      libraries, the actual library loaded will be
      <filename><replaceable>lib</replaceable>.dll</filename>.  Again,
      GHCi will signal an error if it can't find the library.</para>

      <para>GHCi can also load plain object files
      (<literal>.o</literal> or <literal>.obj</literal> depending on
      your platform) from the command-line.  Just add the name the
      object file to the command line.</para>

      <para>Ordering of <option>-l</option> options matters: a library
      should be mentioned <emphasis>before</emphasis> the libraries it
      depends on (see <xref linkend="options-linker"/>).</para>
    </sect2>

  </sect1>

  <sect1 id="ghci-commands">
    <title>GHCi commands</title>

    <para>GHCi commands all begin with
    &lsquo;<literal>:</literal>&rsquo; and consist of a single command
    name followed by zero or more parameters.  The command name may be
    abbreviated, with ambiguities being resolved in favour of the more
    commonly used commands.</para>

    <variablelist>
      <varlistentry>
	<term>
          <literal>:abandon</literal>
          <indexterm><primary><literal>:abandon</literal></primary></indexterm>
        </term>
	<listitem>
	  <para>Abandons the current evaluation (only available when stopped at
          a breakpoint).</para>
	</listitem>
      </varlistentry>

      <varlistentry>
	<term>
          <literal>:add</literal> <replaceable>module</replaceable> ...
          <indexterm><primary><literal>:add</literal></primary></indexterm>
        </term>
	<listitem>
	  <para>Add <replaceable>module</replaceable>(s) to the
	  current <firstterm>target set</firstterm>, and perform a
	  reload.</para>
	</listitem>
      </varlistentry>

      <varlistentry>
	<term>
          <literal>:back</literal>
          <indexterm><primary><literal>:back</literal></primary></indexterm>
        </term>
	<listitem>
	  <para>Travel back one step in the history.  See <xref
              linkend="tracing" />.  See also:
            <literal>:trace</literal>, <literal>:history</literal>,
            <literal>:forward</literal>.</para>
	</listitem>
      </varlistentry>

      <varlistentry>
	<term>
          <literal>:break [<replaceable>identifier</replaceable> |
            [<replaceable>module</replaceable>] <replaceable>line</replaceable>
            [<replaceable>column</replaceable>]]</literal>
        </term>
          <indexterm><primary><literal>:break</literal></primary></indexterm>
	<listitem>
	  <para>Set a breakpoint on the specified function or line and
              column.  See <xref linkend="setting-breakpoints" />.</para>
	</listitem>
      </varlistentry>

      <varlistentry>
	<term>
          <literal>:browse</literal><optional><literal>!</literal></optional> <optional><optional><literal>*</literal></optional><replaceable>module</replaceable></optional> ...
          <indexterm><primary><literal>:browse</literal></primary></indexterm>
        </term>
	<listitem>
	  <para>Displays the identifiers defined by the module
	  <replaceable>module</replaceable>, which must be either
	  loaded into GHCi or be a member of a package.  If
	  <replaceable>module</replaceable> is omitted, the most
	  recently-loaded module is used.</para>

          <para>If the <literal>*</literal> symbol is placed before
	  the module name, then <emphasis>all</emphasis> the
	  identifiers in scope in <replaceable>module</replaceable> are
	  shown; otherwise the list is limited to the exports of
	  <replaceable>module</replaceable>.  The
	  <literal>*</literal>-form is only available for modules
	  which are interpreted; for compiled modules (including
	  modules from packages) only the non-<literal>*</literal>
    form of <literal>:browse</literal> is available.
    If the <literal>!</literal> symbol is appended to the
    command, data constructors and class methods will be 
    listed individually, otherwise, they will only be listed
    in the context of their data type or class declaration. 
    The <literal>!</literal>-form also annotates the listing 
    with comments giving possible imports for each group of 
    entries.</para>
<screen>
Prelude> :browse! Data.Maybe
-- not currently imported
Data.Maybe.catMaybes :: [Maybe a] -> [a]
Data.Maybe.fromJust :: Maybe a -> a
Data.Maybe.fromMaybe :: a -> Maybe a -> a
Data.Maybe.isJust :: Maybe a -> Bool
Data.Maybe.isNothing :: Maybe a -> Bool
Data.Maybe.listToMaybe :: [a] -> Maybe a
Data.Maybe.mapMaybe :: (a -> Maybe b) -> [a] -> [b]
Data.Maybe.maybeToList :: Maybe a -> [a]
-- imported via Prelude
Just :: a -> Maybe a
data Maybe a = Nothing | Just a
Nothing :: Maybe a
maybe :: b -> (a -> b) -> Maybe a -> b
</screen>
  <para>
    This output shows that, in the context of the current session, in the scope
    of <literal>Prelude</literal>, the first group of items from
    <literal>Data.Maybe</literal> have not been imported (but are available in
    fully qualified form in the GHCi session - see <xref
      linkend="ghci-scope"/>), whereas the second group of items have been
    imported via <literal>Prelude</literal> and are therefore available either
    unqualified, or with a <literal>Prelude.</literal> qualifier.
  </para>
	</listitem>
      </varlistentry>

      <varlistentry>
	<term>
          <literal>:cd</literal> <replaceable>dir</replaceable>
          <indexterm><primary><literal>:cd</literal></primary></indexterm>
        </term>
	<listitem>
	  <para>Changes the current working directory to
	  <replaceable>dir</replaceable>.  A
	  &lsquo;<literal>&tilde;</literal>&rsquo; symbol at the
	  beginning of <replaceable>dir</replaceable> will be replaced
	  by the contents of the environment variable
	  <literal>HOME</literal>.</para>

	  <para>NOTE: changing directories causes all currently loaded
	  modules to be unloaded.  This is because the search path is
	  usually expressed using relative directories, and changing
	  the search path in the middle of a session is not
	  supported.</para>
	</listitem>
      </varlistentry>

      <varlistentry>
	<term>
          <literal>:cmd</literal> <replaceable>expr</replaceable>
          <indexterm><primary><literal>:cmd</literal></primary></indexterm>
        </term>
	<listitem>
	  <para>Executes <replaceable>expr</replaceable> as a computation of
            type <literal>IO String</literal>, and then executes the resulting
            string as a list of GHCi commands.  Multiple commands are separated
            by newlines.  The <literal>:cmd</literal> command is useful with
            <literal>:def</literal> and <literal>:set stop</literal>.</para>
	</listitem>
      </varlistentry>

      <varlistentry>
	<term>
          <literal>:continue</literal> 
          <indexterm><primary><literal>:continue</literal></primary></indexterm>
        </term>
	<listitem><para>Continue the current evaluation, when stopped at a
            breakpoint.</para>
	</listitem>
      </varlistentry>

      <varlistentry>
	<term>
	  <literal>:ctags</literal> <optional><replaceable>filename</replaceable></optional>
	  <literal>:etags</literal> <optional><replaceable>filename</replaceable></optional>
	  <indexterm><primary><literal>:etags</literal></primary>
	  </indexterm>
	  <indexterm><primary><literal>:etags</literal></primary>
	  </indexterm>
	</term>
	<listitem>
	  <para>Generates a &ldquo;tags&rdquo; file for Vi-style editors
	    (<literal>:ctags</literal>) or
        Emacs-style editors (<literal>:etags</literal>).  If
	    no filename is specified, the default <filename>tags</filename> or
	    <filename>TAGS</filename> is
	    used, respectively.  Tags for all the functions, constructors and
	    types in the currently loaded modules are created.  All modules must
	    be interpreted for these commands to work.</para>
          <para>See also <xref linkend="hasktags" />.</para>
	</listitem>
      </varlistentry>

      <varlistentry>
	<term>
          <literal>:def<optional>!</optional> <optional><replaceable>name</replaceable> <replaceable>expr</replaceable></optional></literal>
          <indexterm><primary><literal>:def</literal></primary></indexterm>
        </term>
	<listitem>
          <para><literal>:def</literal> is used to define new
          commands, or macros, in GHCi.  The command
          <literal>:def</literal> <replaceable>name</replaceable>
          <replaceable>expr</replaceable> defines a new GHCi command
          <literal>:<replaceable>name</replaceable></literal>,
          implemented by the Haskell expression
          <replaceable>expr</replaceable>, which must have type
          <literal>String -> IO String</literal>.  When
          <literal>:<replaceable>name</replaceable>
          <replaceable>args</replaceable></literal> is typed at the
          prompt, GHCi will run the expression
          <literal>(<replaceable>name</replaceable>
          <replaceable>args</replaceable>)</literal>, take the
          resulting <literal>String</literal>, and feed it back into
          GHCi as a new sequence of commands.  Separate commands in
          the result must be separated by
          &lsquo;<literal>\n</literal>&rsquo;.</para>

	  <para>That's all a little confusing, so here's a few
	  examples.  To start with, here's a new GHCi command which
	  doesn't take any arguments or produce any results, it just
	  outputs the current date &amp; time:</para>

<screen>
Prelude> let date _ = Time.getClockTime >>= print >> return ""
Prelude> :def date date
Prelude> :date
Fri Mar 23 15:16:40 GMT 2001
</screen>

	  <para>Here's an example of a command that takes an argument.
	  It's a re-implementation of <literal>:cd</literal>:</para>

<screen>
Prelude> let mycd d = Directory.setCurrentDirectory d >> return ""
Prelude> :def mycd mycd
Prelude> :mycd ..
</screen>

	  <para>Or I could define a simple way to invoke
	  &ldquo;<literal>ghc &ndash;&ndash;make Main</literal>&rdquo; in the
	  current directory:</para>

<screen>
Prelude> :def make (\_ -> return ":! ghc &ndash;&ndash;make Main")
</screen>

          <para>We can define a command that reads GHCi input from a
          file.  This might be useful for creating a set of bindings
          that we want to repeatedly load into the GHCi session:</para>

<screen>
Prelude> :def . readFile
Prelude> :. cmds.ghci
</screen>

          <para>Notice that we named the command
          <literal>:.</literal>, by analogy with the
          &lsquo;<literal>.</literal>&rsquo; Unix shell command that
          does the same thing.</para>

          <para>Typing <literal>:def</literal> on its own lists the
          currently-defined macros.  Attempting to redefine an
          existing command name results in an error unless the
          <literal>:def!</literal> form is used, in which case the old
          command with that name is silently overwritten.</para>
	</listitem>
      </varlistentry>

      <varlistentry>
	<term>
          <literal>:delete * | <replaceable>num</replaceable> ...</literal> 
          <indexterm><primary><literal>:delete</literal></primary></indexterm>
        </term>
	<listitem>
	  <para>Delete one or more breakpoints by number (use <literal>:show
              breaks</literal> to see the number of each breakpoint).  The
            <literal>*</literal> form deletes all the breakpoints.</para>
	</listitem>
      </varlistentry>

      <varlistentry>
	<term>
          <literal>:edit <optional><replaceable>file</replaceable></optional></literal>
          <indexterm><primary><literal>:edit</literal></primary></indexterm>
        </term>
	<listitem>
	  <para>Opens an editor to edit the file
	  <replaceable>file</replaceable>, or the most recently loaded
	  module if <replaceable>file</replaceable> is omitted.  The
	  editor to invoke is taken from the <literal>EDITOR</literal>
	  environment variable, or a default editor on your system if
	  <literal>EDITOR</literal> is not set.  You can change the
	  editor using <literal>:set editor</literal>.</para>
	</listitem>
      </varlistentry>

      <varlistentry>
	<term>
          <literal>:etags</literal> 
        </term>
	<listitem>
	  <para>See <literal>:ctags</literal>.</para>
	</listitem>
      </varlistentry>

      <varlistentry>
	<term>
          <literal>:force <replaceable>identifier</replaceable> ...</literal>
          <indexterm><primary><literal>:force</literal></primary></indexterm>
        </term>
	<listitem>
	  <para>Prints the value of <replaceable>identifier</replaceable> in
            the same way as <literal>:print</literal>.   Unlike
            <literal>:print</literal>, <literal>:force</literal> evaluates each
            thunk that it encounters while traversing the value.  This may
            cause exceptions or infinite loops, or further breakpoints (which
            are ignored, but displayed).</para>
	</listitem>
      </varlistentry>

      <varlistentry>
	<term>
          <literal>:forward</literal>
          <indexterm><primary><literal>:forward</literal></primary></indexterm>
        </term>
	<listitem>
	  <para>Move forward in the history.   See <xref
              linkend="tracing" />.  See also:
            <literal>:trace</literal>, <literal>:history</literal>,
            <literal>:back</literal>.</para>
	</listitem>
      </varlistentry>

      <varlistentry>
	<term>
          <literal>:help</literal>
          <indexterm><primary><literal>:help</literal></primary></indexterm>
        </term>
	<term>
          <literal>:?</literal>
          <indexterm><primary><literal>:?</literal></primary></indexterm>
        </term>
	<listitem>
	  <para>Displays a list of the available commands.</para>
	</listitem>
      </varlistentry>

      <varlistentry>
       <term>
          <literal>:</literal>
          <indexterm><primary><literal>:</literal></primary></indexterm>
        </term>
       <listitem>
         <para>Repeat the previous command.</para>
       </listitem>
      </varlistentry>

      <varlistentry>

	<term>
          <literal>:history [<replaceable>num</replaceable>]</literal>
          <indexterm><primary><literal>:history</literal></primary></indexterm>
        </term>
	<listitem>
	  <para>Display the history of evaluation steps.  With a number,
            displays that many steps (default: 20).  For use with
            <literal>:trace</literal>; see <xref
              linkend="tracing" />.</para>
	</listitem>
      </varlistentry>

      <varlistentry>
	<term>
          <literal>:info</literal> <replaceable>name</replaceable> ...
          <indexterm><primary><literal>:info</literal></primary></indexterm>
        </term>
	<listitem>
	  <para>Displays information about the given name(s).  For
	  example, if <replaceable>name</replaceable> is a class, then
	  the class methods and their types will be printed;  if
	  <replaceable>name</replaceable> is a type constructor, then
	  its definition will be printed;  if
	  <replaceable>name</replaceable> is a function, then its type
	  will be printed.  If <replaceable>name</replaceable> has
	  been loaded from a source file, then GHCi will also display
	  the location of its definition in the source.</para>
	  <para>For types and classes, GHCi also summarises instances that
	  mention them.  To avoid showing irrelevant information, an instance
	  is shown only if (a) its head mentions <replaceable>name</replaceable>, 
	  and (b) all the other things mentioned in the instance
	  are in scope (either qualified or otherwise) as a result of 
	  a <literal>:load</literal> or <literal>:module</literal> commands. </para>
	</listitem>
      </varlistentry>

      <varlistentry>
	<term>
          <literal>:kind</literal> <replaceable>type</replaceable>
          <indexterm><primary><literal>:kind</literal></primary></indexterm>
        </term>
	<listitem>
	  <para>Infers and prints the kind of
	  <replaceable>type</replaceable>. The latter can be an arbitrary
	    type expression, including a partial application of a type constructor,
	    such as <literal>Either Int</literal>.</para>
	</listitem>
      </varlistentry>

      <varlistentry>
	<term>
          <literal>:load</literal> <replaceable>module</replaceable> ...
          <indexterm><primary><literal>:load</literal></primary></indexterm>
        </term>
	<listitem>
	  <para>Recursively loads the specified
	  <replaceable>module</replaceable>s, and all the modules they
	  depend on.  Here, each <replaceable>module</replaceable>
	  must be a module name or filename, but may not be the name
	  of a module in a package.</para>

	  <para>All previously loaded modules, except package modules,
	  are forgotten.  The new set of modules is known as the
	  <firstterm>target set</firstterm>.  Note that
	  <literal>:load</literal> can be used without any arguments
	  to unload all the currently loaded modules and
	  bindings.</para>

	  <para>After a <literal>:load</literal> command, the current
	  context is set to:</para>

	  <itemizedlist>
	    <listitem>
	      <para><replaceable>module</replaceable>, if it was loaded
	      successfully, or</para>
	    </listitem>
	    <listitem>
	      <para>the most recently successfully loaded module, if
	      any other modules were loaded as a result of the current
	      <literal>:load</literal>, or</para>
	    </listitem>
	    <listitem>
	      <para><literal>Prelude</literal> otherwise.</para>
	    </listitem>
	  </itemizedlist>
	</listitem>
      </varlistentry>

      <varlistentry>
	<term>
          <literal>:main <replaceable>arg<subscript>1</subscript></replaceable> ... <replaceable>arg<subscript>n</subscript></replaceable></literal>
          <indexterm><primary><literal>:main</literal></primary></indexterm>
        </term>
        <listitem>
          <para>
            When a program is compiled and executed, it can use the
            <literal>getArgs</literal> function to access the
            command-line arguments.
            However, we cannot simply pass the arguments to the
            <literal>main</literal> function while we are testing in ghci,
            as the <literal>main</literal> function doesn't take its
            arguments directly.
          </para>

          <para>
            Instead, we can use the <literal>:main</literal> command.
            This runs whatever <literal>main</literal> is in scope, with
            any arguments being treated the same as command-line arguments,
            e.g.:
          </para>

<screen>
Prelude> let main = System.Environment.getArgs >>= print
Prelude> :main foo bar
["foo","bar"]
</screen>

        <para>
            We can also quote arguments which contains characters like
            spaces, and they are treated like Haskell strings, or we can
            just use Haskell list syntax:
        </para>

<screen>
Prelude> :main foo "bar baz"
["foo","bar baz"]
Prelude> :main ["foo", "bar baz"]
["foo","bar baz"]
</screen>

        <para>
            Finally, other functions can be called, either with the
            <literal>-main-is</literal> flag or the <literal>:run</literal>
            command:
        </para>

<screen>
Prelude> let foo = putStrLn "foo" >> System.Environment.getArgs >>= print
Prelude> let bar = putStrLn "bar" >> System.Environment.getArgs >>= print
Prelude> :set -main-is foo
Prelude> :main foo "bar baz"
foo
["foo","bar baz"]
Prelude> :run bar ["foo", "bar baz"]
bar
["foo","bar baz"]
</screen>

        </listitem>
      </varlistentry>

      <varlistentry>
	<term>
          <literal>:module <optional>+|-</optional> <optional>*</optional><replaceable>mod<subscript>1</subscript></replaceable> ... <optional>*</optional><replaceable>mod<subscript>n</subscript></replaceable></literal>
          <indexterm><primary><literal>:module</literal></primary></indexterm>
        </term>
        <term>
          <literal>import <replaceable>mod</replaceable></literal>
        </term>
	<listitem>
	  <para>Sets or modifies the current context for statements
	  typed at the prompt.  The form <literal>import
	  <replaceable>mod</replaceable></literal> is equivalent to
	  <literal>:module +<replaceable>mod</replaceable></literal>.
	  See <xref linkend="ghci-scope"/> for
	  more details.</para>
	</listitem>
      </varlistentry>

      <varlistentry>
	<term>
          <literal>:print </literal> <replaceable>names</replaceable> ...
          <indexterm><primary><literal>:print</literal></primary></indexterm>
        </term>
	<listitem>
	  <para>Prints a value without forcing its evaluation.
            <literal>:print</literal> may be used on values whose types are
            unknown or partially known, which might be the case for local
            variables with polymorphic types at a breakpoint.  While inspecting
            the runtime value, <literal>:print</literal> attempts to
            reconstruct the type of the value, and will elaborate the type in
            GHCi's environment if possible.  If any unevaluated components
            (thunks) are encountered, then <literal>:print</literal> binds
            a fresh variable with a name beginning with <literal>_t</literal>
            to each thunk.  See <xref linkend="breakpoints" /> for more
            information.  See also the <literal>:sprint</literal> command,
            which works like <literal>:print</literal> but does not bind new
            variables.</para>
	</listitem>
      </varlistentry>

      <varlistentry>
	<term>
          <literal>:quit</literal>
          <indexterm><primary><literal>:quit</literal></primary></indexterm>
        </term>
	<listitem>
	  <para>Quits GHCi.  You can also quit by typing control-D
	  at the prompt.</para>
	</listitem>
      </varlistentry>

      <varlistentry>
	<term>
          <literal>:reload</literal>
          <indexterm><primary><literal>:reload</literal></primary></indexterm>
        </term>
	<listitem>
	  <para>Attempts to reload the current target set (see
	  <literal>:load</literal>) if any of the modules in the set,
	  or any dependent module, has changed.  Note that this may
	  entail loading new modules, or dropping modules which are no
	  longer indirectly required by the target.</para>
	</listitem>
      </varlistentry>

      <varlistentry>
	<term>
          <literal>:set</literal> <optional><replaceable>option</replaceable>...</optional>
          <indexterm><primary><literal>:set</literal></primary></indexterm>
        </term>
	<listitem>
    <para>Sets various options.  See <xref linkend="ghci-set"/> for a list of
      available options and <xref linkend="interactive-mode-options"/> for a
      list of GHCi-specific flags.  The <literal>:set</literal> command by
      itself shows which options are currently set. It also lists the current
      dynamic flag settings, with GHCi-specific flags listed separately.</para>
	</listitem>
      </varlistentry>

      <varlistentry>
	<term>
          <literal>:set</literal> <literal>args</literal> <replaceable>arg</replaceable> ...
          <indexterm><primary><literal>:set args</literal></primary></indexterm>
        </term>
	<listitem>
	  <para>Sets the list of arguments which are returned when the
	  program calls <literal>System.getArgs</literal><indexterm><primary>getArgs</primary>
	    </indexterm>.</para>
	</listitem>
      </varlistentry>

      <varlistentry>
	<term>
           <literal>:set</literal> <literal>editor</literal> <replaceable>cmd</replaceable>
        </term>
	<listitem>
	  <para>Sets the command used by <literal>:edit</literal> to
	  <replaceable>cmd</replaceable>.</para>
        </listitem>
      </varlistentry>

      <varlistentry>
	<term>
           <literal>:set</literal> <literal>prog</literal> <replaceable>prog</replaceable>
           <indexterm><primary><literal>:set prog</literal></primary></indexterm>
        </term>
	<listitem>
	  <para>Sets the string to be returned when the program calls
	  <literal>System.getProgName</literal><indexterm><primary>getProgName</primary>
	    </indexterm>.</para>
	</listitem>
      </varlistentry>

      <varlistentry>
	<term>
           <literal>:set</literal> <literal>prompt</literal> <replaceable>prompt</replaceable>
        </term>
	<listitem>
	  <para>Sets the string to be used as the prompt in GHCi.
	  Inside <replaceable>prompt</replaceable>, the sequence
	  <literal>%s</literal> is replaced by the names of the
	  modules currently in scope, and <literal>%%</literal> is
	  replaced by <literal>%</literal>.</para>
        </listitem>
      </varlistentry>

      <varlistentry>
	<term>
           <literal>:set</literal> <literal>stop</literal>
          [<replaceable>num</replaceable>] <replaceable>cmd</replaceable>
        </term>
	<listitem>
	  <para>Set a command to be executed when a breakpoint is hit, or a new
          item in the history is selected.  The most common use of
            <literal>:set stop</literal> is to display the source code at the
            current location, e.g. <literal>:set stop :list</literal>.</para>

          <para>If a number is given before the command, then the commands are
            run when the specified breakpoint (only) is hit.  This can be quite
            useful: for example, <literal>:set stop 1 :continue</literal>
            effectively disables breakpoint 1, by running
            <literal>:continue</literal> whenever it is hit (although GHCi will
            still emit a message to say the breakpoint was hit).  What's more,
            with cunning use of <literal>:def</literal> and
            <literal>:cmd</literal> you can use <literal>:set stop</literal> to
            implement conditional breakpoints:</para>
<screen>
*Main> :def cond \expr -> return (":cmd if (" ++ expr ++ ") then return \"\" else return \":continue\"")
*Main> :set stop 0 :cond (x &lt; 3)
</screen>
          <para>Ignoring breakpoints for a specified number of iterations is
            also possible using similar techniques.</para>
	</listitem>
      </varlistentry>

      <varlistentry>
	<term>
          <literal>:show bindings</literal>
          <indexterm><primary><literal>:show bindings</literal></primary></indexterm>
        </term>
	<listitem>
	  <para>Show the bindings made at the prompt and their
	  types.</para>
	</listitem>
      </varlistentry>

      <varlistentry>
	<term>
          <literal>:show breaks</literal>
          <indexterm><primary><literal>:show breaks</literal></primary></indexterm>
        </term>
	<listitem>
	  <para>List the active breakpoints.</para>
	</listitem>
      </varlistentry>

      <varlistentry>
	<term>
          <literal>:show context</literal>
          <indexterm><primary><literal>:show context</literal></primary></indexterm>
        </term>
	<listitem>
	  <para>List the active evaluations that are stopped at breakpoints.</para>
	</listitem>
      </varlistentry>

      <varlistentry>
	<term>
          <literal>:show modules</literal>
          <indexterm><primary><literal>:show modules</literal></primary></indexterm>
        </term>
	<listitem>
	  <para>Show the list of modules currently loaded.</para>
	</listitem>
      </varlistentry>

      <varlistentry>
	<term>
          <literal>:show packages</literal>
          <indexterm><primary><literal>:show packages</literal></primary></indexterm>
        </term>
	<listitem>
    <para>Show the currently active package flags, as well as the list of
      packages currently loaded.</para>
	</listitem>
      </varlistentry>

      <varlistentry>
	<term>
          <literal>:show languages</literal>
          <indexterm><primary><literal>:show languages</literal></primary></indexterm>
        </term>
	<listitem>
    <para>Show the currently active language flags.</para>
	</listitem>
      </varlistentry>


      <varlistentry>
	<term>
          <literal>:show [args|prog|prompt|editor|stop]</literal>
          <indexterm><primary><literal>:show</literal></primary></indexterm>
        </term>
	<listitem>
	  <para>Displays the specified setting (see
            <literal>:set</literal>).</para>
	</listitem>
      </varlistentry>

      <varlistentry>
	<term>
          <literal>:sprint</literal>
          <indexterm><primary><literal>:sprint</literal></primary></indexterm>
        </term>
	<listitem>
	  <para>Prints a value without forcing its evaluation.
            <literal>:sprint</literal> is similar to <literal>:print</literal>,
            with the difference that unevaluated subterms are not bound to new
            variables, they are simply denoted by &lsquo;_&rsquo;.</para>
	</listitem>
      </varlistentry>

      <varlistentry>
	<term>
          <literal>:step [<replaceable>expr</replaceable>]</literal> 
          <indexterm><primary><literal>:step</literal></primary></indexterm>
        </term>
	<listitem>
	  <para>Single-step from the last breakpoint.  With an expression
            argument, begins evaluation of the expression with a
            single-step.</para>
	</listitem>
      </varlistentry>

      <varlistentry>
	<term>
          <literal>:trace [<replaceable>expr</replaceable>]</literal>
          <indexterm><primary><literal>:trace</literal></primary></indexterm>
        </term>
	<listitem>
	  <para>Evaluates the given expression (or from the last breakpoint if
            no expression is given), and additionally logs the evaluation
            steps for later inspection using <literal>:history</literal>.  See
            <xref linkend="tracing" />.</para>
	</listitem>
      </varlistentry>

      <varlistentry>
	<term>
         <literal>:type</literal> <replaceable>expression</replaceable>
         <indexterm><primary><literal>:type</literal></primary></indexterm>
        </term>
	<listitem>
	  <para>Infers and prints the type of
	  <replaceable>expression</replaceable>, including explicit
	  forall quantifiers for polymorphic types.  The monomorphism
	  restriction is <emphasis>not</emphasis> applied to the
	  expression during type inference.</para>
	</listitem>
      </varlistentry>

      <varlistentry>
	<term>
          <literal>:undef</literal> <replaceable>name</replaceable>
          <indexterm><primary><literal>:undef</literal></primary></indexterm>
        </term>
	<listitem>
	  <para>Undefines the user-defined command
	  <replaceable>name</replaceable> (see <literal>:def</literal>
	  above).</para>
	</listitem>
      </varlistentry>

      <varlistentry>
	<term>
          <literal>:unset</literal> <replaceable>option</replaceable>...
          <indexterm><primary><literal>:unset</literal></primary></indexterm>
        </term>
	<listitem>
	  <para>Unsets certain options.  See <xref linkend="ghci-set"/>
	  for a list of available options.</para>
	</listitem>
      </varlistentry>

      <varlistentry>
	<term>
          <literal>:!</literal> <replaceable>command</replaceable>...
          <indexterm><primary><literal>:!</literal></primary></indexterm>
          <indexterm><primary>shell commands</primary><secondary>in GHCi</secondary></indexterm>
        </term>
	<listitem>
	  <para>Executes the shell command
	  <replaceable>command</replaceable>.</para>
	</listitem>
      </varlistentry>

    </variablelist>
  </sect1>

  <sect1 id="ghci-set">
    <title>The <literal>:set</literal> command</title>
    <indexterm><primary><literal>:set</literal></primary></indexterm>

    <para>The <literal>:set</literal> command sets two types of
    options: GHCi options, which begin with
    &lsquo;<literal>+</literal>&rsquo;, and &ldquo;command-line&rdquo;
    options, which begin with &lsquo;-&rsquo;.  </para>

    <para>NOTE: at the moment, the <literal>:set</literal> command
    doesn't support any kind of quoting in its arguments: quotes will
    not be removed and cannot be used to group words together.  For
    example, <literal>:set -DFOO='BAR BAZ'</literal> will not do what
    you expect.</para>

    <sect2>
      <title>GHCi options</title>
      <indexterm><primary>options</primary><secondary>GHCi</secondary>
      </indexterm>

      <para>GHCi options may be set using <literal>:set</literal> and
      unset using <literal>:unset</literal>.</para>

      <para>The available GHCi options are:</para>

      <variablelist>
	<varlistentry>
	  <term>
            <literal>+r</literal>
            <indexterm><primary><literal>+r</literal></primary></indexterm>
            <indexterm><primary>CAFs</primary><secondary>in GHCi</secondary></indexterm>
            <indexterm><primary>Constant Applicative Form</primary><see>CAFs</see></indexterm>
          </term>
	  <listitem>
	    <para>Normally, any evaluation of top-level expressions
	    (otherwise known as CAFs or Constant Applicative Forms) in
	    loaded modules is retained between evaluations.  Turning
	    on <literal>+r</literal> causes all evaluation of
	    top-level expressions to be discarded after each
	    evaluation (they are still retained
	    <emphasis>during</emphasis> a single evaluation).</para>
	  
	    <para>This option may help if the evaluated top-level
	    expressions are consuming large amounts of space, or if
	    you need repeatable performance measurements.</para>
	  </listitem>
	</varlistentry>

	<varlistentry>
	  <term>
            <literal>+s</literal>
            <indexterm><primary><literal>+s</literal></primary></indexterm>
          </term>
	  <listitem>
	    <para>Display some stats after evaluating each expression,
	    including the elapsed time and number of bytes allocated.
	    NOTE: the allocation figure is only accurate to the size
	    of the storage manager's allocation area, because it is
	    calculated at every GC.  Hence, you might see values of
	    zero if no GC has occurred.</para>
	  </listitem>
	</varlistentry>

	<varlistentry>
	  <term>
            <literal>+t</literal>
            <indexterm><primary><literal>+t</literal></primary></indexterm>
          </term>
	  <listitem>
	    <para>Display the type of each variable bound after a
	    statement is entered at the prompt.  If the statement is a
	    single expression, then the only variable binding will be
	    for the variable
	    &lsquo;<literal>it</literal>&rsquo;.</para>
	  </listitem>
	</varlistentry>
      </variablelist>
    </sect2>

    <sect2 id="ghci-cmd-line-options">
      <title>Setting GHC command-line options in GHCi</title>

      <para>Normal GHC command-line options may also be set using
      <literal>:set</literal>.  For example, to turn on
      <option>-fglasgow-exts</option>, you would say:</para>

<screen>
Prelude> :set -fglasgow-exts
</screen>
      
      <para>Any GHC command-line option that is designated as
      <firstterm>dynamic</firstterm> (see the table in <xref
      linkend="flag-reference"/>), may be set using
      <literal>:set</literal>.  To unset an option, you can set the
      reverse option:</para>
      <indexterm><primary>dynamic</primary><secondary>options</secondary></indexterm>

<screen>
Prelude> :set -fno-glasgow-exts
</screen>

      <para><xref linkend="flag-reference"/> lists the reverse for each
      option where applicable.</para>

      <para>Certain static options (<option>-package</option>,
      <option>-I</option>, <option>-i</option>, and
      <option>-l</option> in particular) will also work, but some may
      not take effect until the next reload.</para>
      <indexterm><primary>static</primary><secondary>options</secondary></indexterm>
    </sect2>
  </sect1>
  <sect1 id="ghci-dot-files">
    <title>The <filename>.ghci</filename> file</title>
    <indexterm><primary><filename>.ghci</filename></primary><secondary>file</secondary>
    </indexterm>
    <indexterm><primary>startup</primary><secondary>files, GHCi</secondary>
    </indexterm>

    <para>When it starts, unless the <literal>-ignore-dot-ghci</literal>
    flag is given, GHCi reads and executes commands from the following
    files, in this order, if they exist:</para>

    <orderedlist>
    <listitem>
      <para><filename>./.ghci</filename></para>
    </listitem>
    <listitem>
      <para><literal><replaceable>appdata</replaceable>/ghc/ghci.conf</literal>,
      where <replaceable>appdata</replaceable> depends on your system,
      but is usually something like <literal>C:/Documents and Settings/<replaceable>user</replaceable>/Application Data</literal></para>
    </listitem>
    <listitem>
      <para>On Unix: <literal>$HOME/.ghc/ghci.conf</literal></para>
    </listitem>
    <listitem>
      <para><literal>$HOME/.ghci</literal></para>
    </listitem>
   </orderedlist>

    <para>The <filename>ghci.conf</filename> file is most useful for
    turning on favourite options (eg. <literal>:set +s</literal>), and
    defining useful macros.  Placing a <filename>.ghci</filename> file
    in a directory with a Haskell project is a useful way to set
    certain project-wide options so you don't have to type them
    everytime you start GHCi: eg. if your project uses GHC extensions
    and CPP, and has source files in three subdirectories A, B and C,
    you might put the following lines in
    <filename>.ghci</filename>:</para>

<screen>
:set -fglasgow-exts -cpp
:set -iA:B:C
</screen>

    <para>(Note that strictly speaking the <option>-i</option> flag is
    a static one, but in fact it works to set it using
    <literal>:set</literal> like this.  The changes won't take effect
    until the next <literal>:load</literal>, though.)</para>

    <para>Once you have a library of GHCi macros, you may want
    to source them from separate files, or you may want to source
    your <filename>.ghci</filename> file into your running GHCi
    session while debugging it</para>

<screen>
:def source readFile
</screen>

    <para>With this macro defined in your <filename>.ghci</filename> 
    file, you can use <literal>:source file</literal> to read GHCi
    commands from <literal>file</literal>. You can find (and contribute!-)
    other suggestions for <filename>.ghci</filename> files on this Haskell
    wiki page: <ulink
      url="http://haskell.org/haskellwiki/GHC/GHCi">GHC/GHCi</ulink></para>

    <para>Two command-line options control whether the
    startup files files are read:</para>

    <variablelist>
      <varlistentry>
	<term>
          <option>-ignore-dot-ghci</option>
          <indexterm><primary><option>-ignore-dot-ghci</option></primary></indexterm>
        </term>
	<listitem>
	  <para>Don't read either <filename>./.ghci</filename> or the
          other startup files when starting up.</para>
	</listitem>
      </varlistentry>
      <varlistentry>
	<term>
          <option>-read-dot-ghci</option>
          <indexterm><primary><option>-read-dot-ghci</option></primary></indexterm>
        </term>
	<listitem>
	  <para>Read <filename>./.ghci</filename> and the other
          startup files (see above).  This is normally the
	  default, but the <option>-read-dot-ghci</option> option may
	  be used to override a previous
	  <option>-ignore-dot-ghci</option> option.</para>
	</listitem>
      </varlistentry>
    </variablelist>

  </sect1>

  <sect1 id="ghci-obj">
    <title>Compiling to object code inside GHCi</title>

    <para>By default, GHCi compiles Haskell source code into byte-code
    that is interpreted by the runtime system.  GHCi can also compile
    Haskell code to object code: to turn on this feature, use the
    <option>-fobject-code</option> flag either on the command line or
    with <literal>:set</literal> (the option
    <option>-fbyte-code</option> restores byte-code compilation
    again).  Compiling to object code takes longer, but typically the
    code will execute 10-20 times faster than byte-code.</para>

    <para>Compiling to object code inside GHCi is particularly useful
    if you are developing a compiled application, because the
    <literal>:reload</literal> command typically runs much faster than
    restarting GHC with <option>--make</option> from the command-line,
    because all the interface files are already cached in
    memory.</para>

    <para>There are disadvantages to compiling to object-code: you
    can't set breakpoints in object-code modules, for example.  Only
    the exports of an object-code module will be visible in GHCi,
    rather than all top-level bindings as in interpreted
    modules.</para>
  </sect1>

  <sect1 id="ghci-faq">
    <title>FAQ and Things To Watch Out For</title>
    
    <variablelist>
      <varlistentry>
	<term>The interpreter can't load modules with foreign export
	declarations!</term>
	<listitem>
	  <para>Unfortunately not.  We haven't implemented it yet.
	  Please compile any offending modules by hand before loading
	  them into GHCi.</para>
	</listitem>
      </varlistentry>

      <varlistentry>
	<term>
          <literal>-O</literal> doesn't work with GHCi!
          <indexterm><primary><option>-O</option></primary></indexterm>
         </term>
	<listitem>
	  <para>For technical reasons, the bytecode compiler doesn't
	  interact well with one of the optimisation passes, so we
	  have disabled optimisation when using the interpreter.  This
	  isn't a great loss: you'll get a much bigger win by
	  compiling the bits of your code that need to go fast, rather
	  than interpreting them with optimisation turned on.</para>
	</listitem>
      </varlistentry>

      <varlistentry>
	<term>Unboxed tuples don't work with GHCi</term>
	<listitem>
	  <para>That's right.  You can always compile a module that
	  uses unboxed tuples and load it into GHCi, however.
	  (Incidentally the previous point, namely that
	  <literal>-O</literal> is incompatible with GHCi, is because
	  the bytecode compiler can't deal with unboxed
	  tuples).</para>
	</listitem>
      </varlistentry>

      <varlistentry>
	<term>Concurrent threads don't carry on running when GHCi is
        waiting for input.</term>
	<listitem>
	  <para>This should work, as long as your GHCi was built with
	  the <option>-threaded</option> switch, which is the default.
	  Consult whoever supplied your GHCi installation.</para>
	</listitem>
      </varlistentry>

      <varlistentry>
	<term>After using <literal>getContents</literal>, I can't use
	<literal>stdin</literal> again until I do
	<literal>:load</literal> or <literal>:reload</literal>.</term>

	<listitem>
	  <para>This is the defined behaviour of
	  <literal>getContents</literal>: it puts the stdin Handle in
	  a state known as <firstterm>semi-closed</firstterm>, wherein
	  any further I/O operations on it are forbidden.  Because I/O
	  state is retained between computations, the semi-closed
	  state persists until the next <literal>:load</literal> or
	  <literal>:reload</literal> command.</para>

	  <para>You can make <literal>stdin</literal> reset itself
	  after every evaluation by giving GHCi the command
	  <literal>:set +r</literal>.  This works because
	  <literal>stdin</literal> is just a top-level expression that
	  can be reverted to its unevaluated state in the same way as
	  any other top-level expression (CAF).</para>
	</listitem>
      </varlistentry>

      <varlistentry>
	<term>I can't use Control-C to interrupt computations in
          GHCi on Windows.</term>
        <listitem>
          <para>See <xref linkend="ghci-windows"/>.</para>
        </listitem>
      </varlistentry>

      <varlistentry>
	<term>The default buffering mode is different in GHCi to GHC.</term>
        <listitem>
          <para>
            In GHC, the stdout handle is line-buffered by default.
            However, in GHCi we turn off the buffering on stdout,
            because this is normally what you want in an interpreter:
            output appears as it is generated.
          </para>
        </listitem>
      </varlistentry>
    </variablelist>
  </sect1>

</chapter>

<!-- Emacs stuff:
     ;;; Local Variables: ***
     ;;; mode: xml ***
     ;;; sgml-parent-document: ("users_guide.xml" "book" "chapter") ***
     ;;; End: ***
 -->