1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645
2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
2679
2680
2681
2682
2683
2684
2685
2686
2687
2688
2689
2690
2691
2692
2693
2694
2695
2696
2697
2698
2699
2700
2701
2702
2703
2704
2705
2706
2707
2708
2709
2710
2711
2712
2713
2714
2715
2716
2717
2718
2719
2720
2721
2722
2723
2724
2725
2726
2727
2728
2729
2730
2731
2732
2733
2734
2735
2736
2737
2738
2739
2740
2741
2742
2743
2744
2745
2746
2747
2748
2749
2750
2751
2752
2753
2754
2755
2756
2757
2758
2759
2760
2761
2762
2763
2764
2765
2766
2767
2768
2769
2770
2771
2772
2773
2774
2775
2776
2777
2778
2779
2780
2781
2782
2783
2784
2785
2786
2787
2788
2789
2790
2791
2792
2793
2794
2795
2796
2797
2798
2799
2800
2801
2802
2803
2804
2805
2806
2807
2808
2809
2810
2811
2812
2813
2814
2815
2816
2817
2818
2819
2820
2821
2822
2823
2824
2825
2826
2827
2828
2829
2830
2831
2832
2833
2834
2835
2836
2837
2838
2839
2840
2841
2842
2843
2844
2845
2846
2847
2848
2849
2850
2851
2852
2853
2854
2855
2856
2857
2858
2859
2860
2861
2862
2863
2864
2865
2866
2867
2868
2869
2870
2871
2872
2873
2874
2875
2876
2877
2878
2879
2880
2881
2882
2883
2884
2885
2886
2887
2888
2889
2890
2891
2892
2893
2894
2895
2896
2897
2898
2899
2900
2901
2902
2903
2904
2905
2906
2907
2908
2909
2910
2911
2912
2913
2914
2915
2916
2917
2918
2919
2920
2921
2922
2923
2924
2925
2926
2927
2928
2929
2930
2931
2932
2933
2934
2935
2936
2937
2938
2939
2940
2941
2942
2943
2944
2945
2946
2947
2948
2949
2950
2951
2952
2953
2954
2955
2956
2957
2958
2959
2960
2961
2962
2963
2964
2965
2966
2967
2968
2969
2970
2971
2972
2973
2974
2975
2976
2977
2978
2979
2980
2981
2982
2983
2984
2985
2986
2987
2988
2989
2990
2991
2992
2993
2994
2995
2996
2997
2998
2999
3000
3001
3002
3003
3004
3005
3006
3007
3008
3009
3010
3011
3012
3013
3014
3015
3016
3017
3018
3019
3020
3021
3022
3023
3024
3025
3026
3027
3028
3029
3030
3031
3032
3033
3034
3035
3036
3037
3038
3039
3040
3041
3042
3043
3044
3045
3046
3047
3048
3049
3050
3051
3052
3053
3054
3055
3056
3057
3058
3059
3060
3061
3062
3063
3064
3065
3066
3067
3068
3069
3070
3071
3072
3073
3074
3075
3076
3077
3078
3079
3080
3081
3082
3083
3084
3085
3086
3087
3088
3089
3090
3091
3092
3093
3094
3095
3096
3097
3098
3099
3100
3101
3102
3103
3104
3105
3106
3107
3108
3109
3110
3111
3112
3113
3114
3115
3116
3117
3118
3119
3120
3121
3122
3123
3124
3125
3126
3127
3128
3129
3130
3131
3132
3133
3134
3135
3136
3137
3138
3139
3140
3141
3142
3143
3144
3145
3146
3147
3148
3149
3150
3151
3152
3153
3154
3155
3156
3157
3158
3159
3160
3161
3162
3163
3164
3165
3166
3167
3168
3169
3170
3171
3172
3173
3174
3175
3176
3177
3178
3179
3180
3181
3182
3183
3184
3185
3186
3187
3188
3189
3190
3191
3192
3193
3194
3195
3196
3197
3198
3199
3200
3201
3202
3203
3204
3205
3206
3207
3208
3209
3210
3211
3212
3213
3214
3215
3216
3217
3218
3219
3220
3221
3222
3223
3224
3225
3226
3227
3228
3229
3230
3231
3232
3233
3234
3235
3236
3237
3238
3239
3240
3241
3242
3243
3244
3245
3246
3247
3248
3249
3250
3251
3252
3253
3254
3255
3256
3257
3258
3259
3260
3261
3262
3263
3264
3265
3266
3267
3268
3269
3270
3271
3272
3273
3274
3275
3276
3277
3278
3279
3280
3281
3282
3283
3284
3285
3286
3287
3288
3289
3290
3291
3292
3293
3294
3295
3296
3297
3298
3299
3300
3301
3302
3303
3304
3305
3306
3307
3308
3309
3310
3311
3312
3313
3314
3315
3316
3317
3318
3319
3320
3321
3322
3323
3324
3325
3326
3327
3328
3329
3330
3331
3332
3333
3334
3335
3336
3337
3338
3339
3340
3341
3342
3343
3344
3345
3346
3347
3348
3349
3350
3351
3352
3353
3354
3355
3356
3357
3358
3359
3360
3361
3362
3363
3364
3365
3366
3367
3368
3369
3370
3371
3372
3373
3374
3375
3376
3377
3378
3379
3380
3381
3382
3383
3384
3385
3386
3387
3388
3389
3390
3391
3392
3393
3394
3395
3396
3397
3398
3399
3400
3401
3402
3403
3404
3405
3406
3407
3408
3409
3410
3411
3412
3413
3414
3415
3416
3417
3418
3419
3420
3421
3422
3423
3424
3425
3426
3427
3428
3429
3430
3431
3432
3433
3434
3435
3436
3437
3438
3439
3440
3441
3442
3443
3444
3445
3446
3447
3448
3449
3450
3451
3452
3453
3454
3455
3456
3457
3458
3459
3460
3461
3462
3463
3464
3465
3466
3467
3468
3469
3470
3471
3472
3473
3474
3475
3476
3477
3478
3479
3480
3481
3482
3483
3484
3485
3486
3487
3488
3489
3490
3491
3492
3493
3494
3495
3496
3497
3498
3499
3500
3501
3502
3503
3504
3505
3506
3507
3508
3509
3510
3511
3512
3513
3514
3515
3516
3517
3518
3519
3520
3521
3522
3523
3524
3525
3526
3527
3528
3529
3530
3531
3532
3533
3534
3535
3536
3537
3538
3539
3540
3541
3542
3543
3544
3545
3546
3547
3548
3549
3550
3551
3552
3553
3554
3555
3556
3557
3558
3559
3560
3561
3562
3563
3564
3565
3566
3567
3568
3569
3570
3571
3572
3573
3574
3575
3576
3577
3578
3579
3580
3581
3582
3583
3584
3585
3586
3587
3588
3589
3590
3591
3592
3593
3594
3595
3596
3597
3598
3599
3600
3601
3602
3603
3604
3605
3606
3607
3608
3609
3610
3611
3612
3613
3614
3615
3616
3617
3618
3619
3620
3621
3622
3623
3624
3625
3626
3627
3628
3629
3630
3631
3632
3633
3634
3635
3636
3637
3638
3639
3640
3641
3642
3643
3644
3645
3646
3647
3648
3649
3650
3651
3652
3653
3654
3655
3656
3657
3658
3659
3660
3661
3662
3663
3664
3665
3666
3667
3668
3669
3670
3671
3672
3673
3674
3675
3676
3677
3678
3679
3680
3681
3682
3683
3684
3685
3686
3687
3688
3689
3690
3691
3692
3693
3694
3695
3696
3697
3698
3699
3700
3701
3702
3703
3704
3705
3706
3707
3708
3709
3710
3711
3712
3713
3714
3715
3716
3717
3718
3719
3720
3721
3722
3723
3724
3725
3726
3727
3728
3729
3730
3731
3732
3733
3734
3735
3736
3737
3738
3739
3740
3741
3742
3743
3744
3745
3746
3747
3748
3749
3750
3751
3752
3753
3754
3755
3756
3757
3758
3759
3760
3761
3762
3763
3764
3765
3766
3767
3768
3769
3770
3771
3772
3773
3774
3775
3776
3777
3778
3779
3780
3781
3782
3783
3784
3785
3786
3787
3788
3789
3790
3791
3792
3793
3794
3795
3796
3797
3798
3799
3800
3801
3802
3803
3804
3805
3806
3807
3808
3809
3810
3811
3812
3813
3814
3815
3816
3817
3818
3819
3820
3821
3822
3823
3824
3825
3826
3827
3828
3829
3830
3831
3832
3833
3834
3835
3836
3837
3838
3839
3840
3841
3842
3843
3844
3845
3846
3847
3848
3849
3850
3851
3852
3853
3854
3855
3856
3857
3858
3859
3860
3861
3862
3863
3864
3865
3866
3867
3868
3869
3870
3871
3872
3873
3874
3875
3876
3877
3878
3879
3880
3881
3882
3883
3884
3885
3886
3887
3888
3889
3890
3891
3892
3893
3894
3895
3896
3897
3898
3899
3900
3901
3902
3903
3904
3905
3906
3907
3908
3909
3910
3911
3912
3913
3914
3915
3916
3917
3918
3919
3920
3921
3922
3923
3924
3925
3926
3927
3928
3929
3930
3931
3932
3933
3934
3935
3936
3937
3938
3939
3940
3941
3942
3943
3944
3945
3946
3947
3948
3949
3950
3951
3952
3953
3954
3955
3956
3957
3958
3959
3960
3961
3962
3963
3964
3965
3966
3967
3968
3969
3970
3971
3972
3973
3974
3975
3976
3977
3978
3979
3980
3981
3982
3983
3984
3985
3986
3987
3988
3989
3990
3991
3992
3993
3994
3995
3996
3997
3998
3999
4000
4001
4002
4003
4004
4005
4006
4007
4008
4009
4010
4011
4012
4013
4014
4015
4016
4017
4018
4019
4020
4021
4022
4023
4024
4025
4026
4027
4028
4029
4030
4031
4032
4033
4034
4035
4036
4037
4038
4039
4040
4041
4042
4043
4044
4045
4046
4047
4048
4049
4050
4051
4052
4053
4054
4055
4056
4057
4058
4059
4060
4061
4062
4063
4064
4065
4066
4067
4068
4069
4070
4071
4072
4073
4074
4075
4076
4077
4078
4079
4080
4081
4082
4083
4084
4085
4086
4087
4088
4089
4090
4091
4092
4093
4094
4095
4096
4097
4098
4099
4100
4101
4102
4103
4104
4105
4106
4107
4108
4109
4110
4111
4112
4113
4114
4115
4116
4117
4118
4119
4120
4121
4122
4123
4124
4125
4126
4127
4128
4129
4130
4131
4132
4133
4134
4135
4136
4137
4138
4139
4140
4141
4142
4143
4144
4145
4146
4147
4148
4149
4150
4151
4152
4153
4154
4155
4156
4157
4158
4159
4160
4161
4162
4163
4164
4165
4166
4167
4168
4169
4170
4171
4172
4173
4174
4175
4176
4177
4178
4179
4180
4181
4182
4183
4184
4185
4186
4187
4188
4189
4190
4191
4192
4193
4194
4195
4196
4197
4198
4199
4200
4201
4202
4203
4204
4205
4206
4207
4208
4209
4210
4211
4212
4213
4214
4215
4216
4217
4218
4219
4220
4221
4222
4223
4224
4225
4226
4227
4228
4229
4230
4231
4232
4233
4234
4235
4236
4237
4238
4239
4240
4241
4242
4243
4244
4245
4246
4247
4248
4249
4250
4251
4252
4253
4254
4255
4256
4257
4258
4259
4260
4261
4262
4263
4264
4265
4266
4267
4268
4269
4270
4271
4272
4273
4274
4275
4276
4277
4278
4279
4280
4281
4282
4283
4284
4285
4286
4287
4288
4289
4290
4291
4292
4293
4294
4295
4296
4297
4298
4299
4300
4301
4302
4303
4304
4305
4306
4307
4308
4309
4310
4311
4312
4313
4314
4315
4316
4317
4318
4319
4320
4321
4322
4323
4324
4325
4326
4327
4328
4329
4330
4331
4332
4333
4334
4335
4336
4337
4338
4339
4340
4341
4342
4343
4344
4345
4346
4347
4348
4349
4350
4351
4352
4353
4354
4355
4356
4357
4358
4359
4360
4361
4362
4363
4364
4365
4366
4367
4368
4369
4370
4371
4372
4373
4374
4375
4376
4377
4378
4379
4380
4381
4382
4383
4384
4385
4386
4387
4388
4389
4390
4391
4392
4393
4394
4395
4396
4397
4398
4399
4400
4401
4402
4403
4404
4405
4406
4407
4408
4409
4410
4411
4412
4413
4414
4415
4416
4417
4418
4419
4420
4421
4422
4423
4424
4425
4426
4427
4428
4429
4430
4431
4432
4433
4434
4435
4436
4437
4438
4439
4440
4441
4442
4443
4444
4445
4446
4447
4448
4449
4450
4451
4452
4453
4454
4455
4456
4457
4458
4459
4460
4461
4462
4463
4464
4465
4466
4467
4468
4469
4470
4471
4472
4473
4474
4475
4476
4477
4478
4479
4480
4481
4482
4483
4484
4485
4486
4487
4488
4489
4490
4491
4492
4493
4494
4495
4496
4497
4498
4499
4500
4501
4502
4503
4504
4505
4506
4507
4508
4509
4510
4511
4512
4513
4514
4515
4516
4517
4518
4519
4520
4521
4522
4523
4524
4525
4526
4527
4528
4529
4530
4531
4532
4533
4534
4535
4536
4537
4538
4539
4540
4541
4542
4543
4544
4545
4546
4547
4548
4549
4550
4551
4552
4553
4554
4555
4556
4557
4558
4559
4560
4561
4562
4563
4564
4565
4566
4567
4568
4569
4570
4571
4572
4573
4574
4575
4576
4577
4578
4579
4580
4581
4582
4583
4584
4585
4586
4587
4588
4589
4590
4591
4592
4593
4594
4595
4596
4597
4598
4599
4600
4601
4602
4603
4604
4605
4606
4607
4608
4609
4610
4611
4612
4613
4614
4615
4616
4617
4618
4619
4620
4621
4622
4623
4624
4625
4626
4627
4628
4629
4630
4631
4632
4633
4634
4635
4636
4637
4638
4639
4640
4641
4642
4643
4644
4645
4646
4647
4648
4649
4650
4651
4652
4653
4654
4655
4656
4657
4658
4659
4660
4661
4662
4663
4664
4665
4666
4667
4668
4669
4670
4671
4672
4673
4674
4675
4676
4677
4678
4679
4680
4681
4682
4683
4684
4685
4686
4687
4688
4689
4690
4691
4692
4693
4694
4695
4696
4697
4698
4699
4700
4701
4702
4703
4704
4705
4706
4707
4708
4709
4710
4711
4712
4713
4714
4715
4716
4717
4718
4719
4720
4721
4722
4723
4724
4725
4726
4727
4728
4729
4730
4731
4732
4733
4734
4735
4736
4737
4738
4739
4740
4741
4742
4743
4744
4745
4746
4747
4748
4749
4750
4751
4752
4753
4754
4755
4756
4757
4758
4759
4760
4761
4762
4763
4764
4765
4766
4767
4768
4769
4770
4771
4772
4773
4774
4775
4776
4777
4778
4779
4780
4781
4782
4783
4784
4785
4786
4787
4788
4789
4790
4791
4792
4793
4794
4795
4796
4797
4798
4799
4800
4801
4802
4803
4804
4805
4806
4807
4808
4809
4810
4811
4812
4813
4814
4815
4816
4817
4818
4819
4820
4821
4822
4823
4824
4825
4826
4827
4828
4829
4830
4831
4832
4833
4834
4835
4836
4837
4838
4839
4840
4841
4842
4843
4844
4845
4846
4847
4848
4849
4850
4851
4852
4853
4854
4855
4856
4857
4858
4859
4860
4861
4862
4863
4864
4865
4866
4867
4868
4869
4870
4871
4872
4873
4874
4875
4876
4877
4878
4879
4880
4881
4882
4883
4884
4885
4886
4887
4888
4889
4890
4891
4892
4893
4894
4895
4896
4897
4898
4899
4900
4901
4902
4903
4904
4905
4906
4907
4908
4909
4910
4911
4912
4913
4914
4915
4916
4917
4918
4919
4920
4921
4922
4923
4924
4925
4926
4927
4928
4929
4930
4931
4932
4933
4934
4935
4936
4937
4938
4939
4940
4941
4942
4943
4944
4945
4946
4947
4948
4949
4950
4951
4952
4953
4954
4955
4956
4957
4958
4959
4960
4961
4962
4963
4964
4965
4966
4967
4968
4969
4970
4971
4972
4973
4974
4975
4976
4977
4978
4979
4980
4981
4982
4983
4984
4985
4986
4987
4988
4989
4990
4991
4992
4993
4994
4995
4996
4997
4998
4999
5000
5001
5002
5003
5004
5005
5006
5007
5008
5009
5010
5011
5012
5013
5014
5015
5016
5017
5018
5019
5020
5021
5022
5023
5024
5025
5026
5027
5028
5029
5030
5031
5032
5033
5034
5035
5036
5037
5038
5039
5040
5041
5042
5043
5044
5045
5046
5047
5048
5049
5050
5051
5052
5053
5054
5055
5056
5057
5058
5059
5060
5061
5062
5063
5064
5065
5066
5067
5068
5069
5070
5071
5072
5073
5074
5075
5076
5077
5078
5079
5080
5081
5082
5083
5084
5085
5086
5087
5088
5089
5090
5091
5092
5093
5094
5095
5096
5097
5098
5099
5100
5101
5102
5103
5104
5105
5106
5107
5108
5109
5110
5111
5112
5113
5114
5115
5116
5117
5118
5119
5120
5121
5122
5123
5124
5125
5126
5127
5128
5129
5130
5131
5132
5133
5134
5135
5136
5137
5138
5139
5140
5141
5142
5143
5144
5145
5146
5147
5148
5149
5150
5151
5152
5153
5154
5155
5156
5157
5158
5159
5160
5161
5162
5163
5164
5165
5166
5167
5168
5169
5170
5171
5172
5173
5174
5175
5176
5177
5178
5179
5180
5181
5182
5183
5184
5185
5186
5187
5188
5189
5190
5191
5192
5193
5194
5195
5196
5197
5198
5199
5200
5201
5202
5203
5204
5205
5206
5207
5208
5209
5210
5211
5212
5213
5214
5215
5216
5217
5218
5219
5220
5221
5222
5223
5224
5225
5226
5227
5228
5229
5230
5231
5232
5233
5234
5235
5236
5237
5238
5239
5240
5241
5242
5243
5244
5245
5246
5247
5248
5249
5250
5251
5252
5253
5254
5255
5256
5257
5258
5259
5260
5261
5262
5263
5264
5265
5266
5267
5268
5269
5270
5271
5272
5273
5274
5275
5276
5277
5278
5279
5280
5281
5282
5283
5284
5285
5286
5287
5288
5289
5290
5291
5292
5293
5294
5295
5296
5297
5298
5299
5300
5301
5302
5303
5304
5305
5306
5307
5308
5309
5310
5311
5312
5313
5314
5315
5316
5317
5318
5319
5320
5321
5322
5323
5324
5325
5326
5327
5328
5329
5330
5331
5332
5333
5334
5335
5336
5337
5338
5339
5340
5341
5342
5343
5344
5345
5346
5347
5348
5349
5350
5351
5352
5353
5354
5355
5356
5357
5358
5359
5360
5361
5362
5363
5364
5365
5366
5367
5368
5369
5370
5371
5372
5373
5374
5375
5376
5377
5378
5379
5380
5381
5382
5383
5384
5385
5386
5387
5388
5389
5390
5391
5392
5393
5394
5395
5396
5397
5398
5399
5400
5401
5402
5403
5404
5405
5406
5407
5408
5409
5410
5411
5412
5413
5414
5415
5416
5417
5418
5419
5420
5421
5422
5423
5424
5425
5426
5427
5428
5429
5430
5431
5432
5433
5434
5435
5436
5437
5438
5439
5440
5441
5442
5443
5444
5445
5446
5447
5448
5449
5450
5451
5452
5453
5454
5455
5456
5457
5458
5459
5460
5461
5462
5463
5464
5465
5466
5467
5468
5469
5470
5471
5472
5473
5474
5475
5476
5477
5478
5479
5480
5481
5482
5483
5484
5485
5486
5487
5488
5489
5490
5491
5492
5493
5494
5495
5496
5497
5498
5499
5500
5501
5502
5503
5504
5505
5506
5507
5508
5509
5510
5511
5512
5513
5514
5515
5516
5517
5518
5519
5520
5521
5522
5523
5524
5525
5526
5527
5528
5529
5530
5531
5532
5533
5534
5535
5536
5537
5538
5539
5540
5541
5542
5543
5544
5545
5546
5547
5548
5549
5550
5551
5552
5553
5554
5555
5556
5557
5558
5559
5560
5561
5562
5563
5564
5565
5566
5567
5568
5569
5570
5571
5572
5573
5574
5575
5576
5577
5578
5579
5580
5581
5582
5583
5584
5585
5586
5587
5588
5589
5590
5591
5592
5593
5594
5595
5596
5597
5598
5599
5600
5601
5602
5603
5604
5605
5606
5607
5608
5609
5610
5611
5612
5613
5614
5615
5616
5617
5618
5619
5620
5621
5622
5623
5624
5625
5626
5627
5628
5629
5630
5631
5632
5633
5634
5635
5636
5637
5638
5639
5640
5641
5642
5643
5644
5645
5646
5647
5648
5649
5650
5651
5652
5653
5654
5655
5656
5657
5658
5659
5660
5661
5662
5663
5664
5665
5666
5667
5668
5669
5670
5671
5672
5673
5674
5675
5676
5677
5678
5679
5680
5681
5682
5683
5684
5685
5686
5687
5688
5689
5690
5691
5692
5693
5694
5695
5696
5697
5698
5699
5700
5701
5702
5703
5704
5705
5706
5707
5708
5709
5710
5711
5712
5713
5714
5715
5716
5717
5718
5719
5720
5721
5722
5723
5724
5725
5726
5727
5728
5729
5730
5731
5732
5733
5734
5735
5736
5737
5738
5739
5740
5741
5742
5743
5744
5745
5746
5747
5748
5749
5750
5751
5752
5753
5754
5755
5756
5757
5758
5759
5760
5761
5762
5763
5764
5765
5766
5767
5768
5769
5770
5771
5772
5773
5774
5775
5776
5777
5778
5779
5780
5781
5782
5783
5784
5785
5786
5787
5788
5789
5790
5791
5792
5793
5794
5795
5796
5797
5798
5799
5800
5801
5802
5803
5804
5805
5806
5807
5808
5809
5810
5811
5812
5813
5814
5815
5816
5817
5818
5819
5820
5821
5822
5823
5824
5825
5826
5827
5828
5829
5830
5831
5832
5833
5834
5835
5836
5837
5838
5839
5840
5841
5842
5843
5844
5845
5846
5847
5848
5849
5850
5851
5852
5853
5854
5855
5856
5857
5858
5859
5860
5861
5862
5863
5864
5865
5866
5867
5868
5869
5870
5871
5872
5873
5874
5875
5876
5877
5878
5879
5880
5881
5882
5883
5884
5885
5886
5887
5888
5889
5890
5891
5892
5893
5894
5895
5896
5897
5898
5899
5900
5901
5902
5903
5904
5905
5906
5907
5908
5909
5910
5911
5912
5913
5914
5915
5916
5917
5918
5919
5920
5921
5922
5923
5924
5925
5926
5927
5928
5929
5930
5931
5932
5933
5934
5935
5936
5937
5938
5939
5940
5941
5942
5943
5944
5945
5946
5947
5948
5949
5950
5951
5952
5953
5954
5955
5956
5957
5958
5959
5960
5961
5962
5963
5964
5965
5966
5967
5968
5969
5970
5971
5972
5973
5974
5975
5976
5977
5978
5979
5980
5981
5982
5983
5984
5985
5986
5987
5988
5989
5990
5991
5992
5993
5994
5995
5996
5997
5998
5999
6000
6001
6002
6003
6004
6005
6006
6007
6008
6009
6010
6011
6012
6013
6014
6015
6016
6017
6018
6019
6020
6021
6022
6023
6024
6025
6026
6027
6028
6029
6030
6031
6032
6033
6034
6035
6036
6037
6038
6039
6040
6041
6042
6043
6044
6045
6046
6047
6048
6049
6050
6051
6052
6053
6054
6055
6056
6057
6058
6059
6060
6061
6062
6063
6064
6065
6066
6067
6068
6069
6070
6071
6072
6073
6074
6075
6076
6077
6078
6079
6080
6081
6082
6083
6084
6085
6086
6087
6088
6089
6090
6091
6092
6093
6094
6095
6096
6097
6098
6099
6100
6101
6102
6103
6104
6105
6106
6107
6108
6109
6110
6111
6112
6113
6114
6115
6116
6117
6118
6119
6120
6121
6122
6123
6124
6125
6126
6127
6128
6129
6130
6131
6132
6133
6134
6135
6136
6137
6138
6139
6140
6141
6142
6143
6144
6145
6146
6147
6148
6149
6150
6151
6152
6153
6154
6155
6156
6157
6158
6159
6160
6161
6162
6163
6164
6165
6166
6167
6168
6169
6170
6171
6172
6173
6174
6175
6176
6177
6178
6179
6180
6181
6182
6183
6184
6185
6186
6187
6188
6189
6190
6191
6192
6193
6194
6195
6196
6197
6198
6199
6200
6201
6202
6203
6204
6205
6206
6207
6208
6209
6210
6211
6212
6213
6214
6215
6216
6217
6218
6219
6220
6221
6222
6223
6224
6225
6226
6227
6228
6229
6230
6231
6232
6233
6234
6235
6236
6237
6238
6239
6240
6241
6242
6243
6244
6245
6246
6247
6248
6249
6250
6251
6252
6253
6254
6255
6256
6257
6258
6259
6260
6261
6262
6263
6264
6265
6266
6267
6268
6269
6270
6271
6272
6273
6274
6275
6276
6277
6278
6279
6280
6281
6282
6283
6284
6285
6286
6287
6288
6289
6290
6291
6292
6293
6294
6295
6296
6297
6298
6299
6300
6301
6302
6303
6304
6305
6306
6307
6308
6309
6310
6311
6312
6313
6314
6315
6316
6317
6318
6319
6320
6321
6322
6323
6324
6325
6326
6327
6328
6329
6330
6331
6332
6333
6334
6335
6336
6337
6338
6339
6340
6341
6342
6343
6344
6345
6346
6347
6348
6349
6350
6351
6352
6353
6354
6355
6356
6357
6358
6359
6360
6361
6362
6363
6364
6365
6366
6367
6368
6369
6370
6371
6372
6373
6374
6375
6376
6377
6378
6379
6380
6381
6382
6383
6384
6385
6386
6387
6388
6389
6390
6391
6392
6393
6394
6395
6396
6397
6398
6399
6400
6401
6402
6403
6404
6405
6406
6407
6408
6409
6410
6411
6412
6413
6414
6415
6416
6417
6418
6419
6420
6421
6422
6423
6424
6425
6426
6427
6428
6429
6430
6431
6432
6433
6434
6435
6436
6437
6438
6439
6440
6441
6442
6443
6444
6445
6446
6447
6448
6449
6450
6451
6452
6453
6454
6455
6456
6457
6458
6459
6460
6461
6462
6463
6464
6465
6466
6467
6468
6469
6470
6471
6472
6473
6474
6475
6476
6477
6478
6479
6480
6481
6482
6483
6484
6485
6486
6487
6488
6489
6490
6491
6492
6493
6494
6495
6496
6497
6498
6499
6500
6501
6502
6503
6504
6505
6506
6507
6508
6509
6510
6511
6512
6513
6514
6515
6516
6517
6518
6519
6520
6521
6522
6523
6524
6525
6526
6527
6528
6529
6530
6531
6532
6533
6534
6535
6536
6537
6538
6539
6540
6541
6542
6543
6544
6545
6546
6547
6548
6549
6550
6551
6552
6553
6554
6555
6556
6557
6558
6559
6560
6561
6562
6563
6564
6565
6566
6567
6568
6569
6570
6571
6572
6573
6574
6575
6576
6577
6578
6579
6580
6581
6582
6583
6584
6585
6586
6587
6588
6589
6590
6591
6592
6593
6594
6595
6596
6597
6598
6599
6600
6601
6602
6603
6604
6605
6606
6607
6608
6609
6610
6611
6612
6613
6614
6615
6616
6617
6618
6619
6620
6621
6622
6623
6624
6625
6626
6627
6628
6629
6630
6631
6632
6633
6634
6635
6636
6637
6638
6639
6640
6641
6642
6643
6644
6645
6646
6647
6648
6649
6650
6651
6652
6653
6654
6655
6656
6657
6658
6659
6660
6661
6662
6663
6664
6665
6666
6667
6668
6669
6670
6671
6672
6673
6674
6675
6676
6677
6678
6679
6680
6681
6682
6683
6684
6685
6686
6687
6688
6689
6690
6691
6692
6693
6694
6695
6696
6697
6698
6699
6700
6701
6702
6703
6704
6705
6706
6707
6708
6709
6710
6711
6712
6713
6714
6715
6716
6717
6718
6719
6720
6721
6722
6723
6724
6725
6726
6727
6728
6729
6730
6731
6732
6733
6734
6735
6736
6737
6738
6739
6740
6741
6742
6743
6744
6745
6746
6747
6748
6749
6750
6751
6752
6753
6754
6755
6756
6757
6758
6759
6760
6761
6762
6763
6764
6765
6766
6767
6768
6769
6770
6771
6772
6773
6774
6775
6776
6777
6778
6779
6780
6781
6782
6783
6784
6785
6786
6787
6788
6789
6790
6791
6792
6793
6794
6795
6796
6797
6798
6799
6800
6801
6802
6803
6804
6805
6806
6807
6808
6809
6810
6811
6812
6813
6814
6815
6816
6817
6818
6819
6820
6821
6822
6823
6824
6825
6826
6827
6828
6829
6830
6831
6832
6833
6834
6835
6836
6837
6838
6839
6840
6841
6842
6843
6844
6845
6846
6847
6848
6849
6850
6851
6852
6853
6854
6855
6856
6857
6858
6859
6860
6861
6862
6863
6864
6865
6866
6867
6868
6869
6870
6871
6872
6873
6874
6875
6876
6877
6878
6879
6880
6881
6882
6883
6884
6885
6886
6887
6888
6889
6890
6891
6892
6893
6894
6895
6896
6897
6898
6899
6900
6901
6902
6903
6904
6905
6906
6907
6908
6909
6910
6911
6912
6913
6914
6915
6916
6917
6918
6919
6920
6921
6922
6923
6924
6925
6926
6927
6928
6929
6930
6931
6932
6933
6934
6935
6936
6937
6938
6939
6940
6941
6942
6943
6944
6945
6946
6947
6948
6949
6950
6951
6952
6953
6954
6955
6956
6957
6958
6959
6960
6961
6962
6963
6964
6965
6966
6967
6968
6969
6970
6971
6972
6973
6974
6975
6976
6977
6978
6979
6980
6981
6982
6983
6984
6985
6986
6987
6988
6989
6990
6991
6992
6993
6994
6995
6996
6997
6998
6999
7000
7001
7002
7003
7004
7005
7006
7007
7008
7009
7010
7011
7012
7013
7014
7015
7016
7017
7018
7019
7020
7021
7022
7023
7024
7025
7026
7027
7028
7029
7030
7031
7032
7033
7034
7035
7036
7037
7038
7039
7040
7041
7042
7043
7044
7045
7046
7047
7048
7049
7050
7051
7052
7053
7054
7055
7056
7057
7058
7059
7060
7061
7062
7063
7064
7065
7066
7067
7068
7069
7070
7071
7072
7073
7074
7075
7076
7077
7078
7079
7080
7081
7082
7083
7084
7085
7086
7087
7088
7089
7090
7091
7092
7093
7094
7095
7096
7097
7098
7099
7100
7101
7102
7103
7104
7105
7106
7107
7108
7109
7110
7111
7112
7113
7114
7115
7116
7117
7118
7119
7120
7121
7122
7123
7124
7125
7126
7127
7128
7129
7130
7131
7132
7133
7134
7135
7136
7137
7138
7139
7140
7141
7142
7143
7144
7145
7146
7147
7148
7149
7150
7151
7152
7153
7154
7155
7156
7157
7158
7159
7160
7161
7162
7163
7164
7165
7166
7167
7168
7169
7170
7171
7172
7173
7174
7175
7176
7177
7178
7179
7180
7181
7182
7183
7184
7185
7186
7187
7188
7189
7190
7191
7192
7193
7194
7195
7196
7197
7198
7199
7200
7201
7202
7203
7204
7205
7206
7207
7208
7209
7210
7211
7212
7213
7214
7215
7216
7217
7218
7219
7220
7221
7222
7223
7224
7225
7226
7227
7228
7229
7230
7231
7232
7233
7234
7235
7236
7237
7238
7239
7240
7241
7242
7243
7244
7245
7246
7247
7248
7249
7250
7251
7252
7253
7254
7255
7256
7257
7258
7259
7260
7261
7262
7263
7264
7265
7266
7267
7268
7269
7270
7271
7272
7273
7274
7275
7276
7277
7278
7279
7280
7281
7282
7283
7284
7285
7286
7287
7288
7289
7290
7291
7292
7293
7294
7295
7296
7297
7298
7299
7300
7301
7302
7303
7304
7305
7306
7307
7308
7309
7310
7311
7312
7313
7314
7315
7316
7317
7318
7319
7320
7321
7322
7323
7324
7325
7326
7327
7328
7329
7330
7331
7332
7333
7334
7335
7336
7337
7338
7339
7340
7341
7342
7343
7344
7345
7346
7347
7348
7349
7350
7351
7352
7353
7354
7355
7356
7357
7358
7359
7360
7361
7362
7363
7364
7365
7366
7367
7368
7369
7370
7371
7372
7373
7374
7375
7376
7377
7378
7379
7380
7381
7382
7383
7384
7385
7386
7387
7388
7389
7390
7391
7392
7393
7394
7395
7396
7397
7398
7399
7400
7401
7402
7403
7404
7405
7406
7407
7408
7409
7410
7411
7412
7413
7414
7415
7416
7417
7418
7419
7420
7421
7422
7423
7424
7425
7426
7427
7428
7429
7430
7431
7432
7433
7434
7435
7436
7437
7438
7439
7440
7441
7442
7443
7444
7445
7446
7447
7448
7449
7450
7451
7452
7453
7454
7455
7456
7457
7458
7459
7460
7461
7462
7463
7464
7465
7466
7467
7468
7469
7470
7471
7472
7473
7474
7475
7476
7477
7478
7479
7480
7481
7482
7483
7484
7485
7486
7487
7488
7489
7490
7491
7492
7493
7494
7495
7496
7497
7498
7499
7500
7501
7502
7503
7504
7505
7506
7507
7508
7509
7510
7511
7512
7513
7514
7515
7516
7517
7518
7519
7520
7521
7522
7523
7524
7525
7526
7527
7528
7529
7530
7531
7532
7533
7534
7535
7536
7537
7538
7539
7540
7541
7542
7543
7544
7545
7546
7547
7548
7549
7550
7551
7552
7553
7554
7555
7556
7557
7558
7559
7560
7561
7562
7563
7564
7565
7566
7567
7568
7569
7570
7571
7572
7573
7574
7575
7576
7577
7578
7579
7580
7581
7582
7583
7584
7585
7586
7587
7588
7589
7590
7591
7592
7593
7594
7595
7596
7597
7598
7599
7600
7601
7602
7603
7604
7605
7606
7607
7608
7609
7610
7611
7612
7613
7614
7615
7616
7617
7618
7619
7620
7621
7622
7623
7624
7625
7626
7627
7628
7629
7630
7631
7632
7633
7634
7635
7636
7637
7638
7639
7640
7641
7642
7643
7644
7645
7646
7647
7648
7649
7650
7651
7652
7653
7654
7655
7656
7657
7658
7659
7660
7661
7662
7663
7664
7665
7666
7667
7668
7669
7670
7671
7672
7673
7674
7675
7676
7677
7678
7679
7680
7681
7682
7683
7684
7685
7686
7687
7688
7689
7690
7691
7692
7693
7694
7695
7696
7697
7698
7699
7700
7701
7702
7703
7704
7705
7706
7707
7708
7709
7710
7711
7712
7713
7714
7715
7716
7717
7718
7719
7720
7721
7722
7723
7724
7725
7726
7727
7728
7729
7730
7731
7732
7733
7734
7735
7736
7737
7738
7739
7740
7741
7742
7743
7744
7745
7746
7747
7748
7749
7750
7751
7752
7753
7754
7755
7756
7757
7758
7759
7760
7761
7762
7763
7764
7765
7766
7767
7768
7769
7770
7771
7772
7773
7774
7775
7776
7777
7778
7779
7780
7781
7782
7783
7784
7785
7786
7787
7788
7789
7790
7791
7792
7793
7794
7795
7796
7797
7798
7799
7800
7801
7802
7803
7804
7805
7806
7807
7808
7809
7810
7811
7812
7813
7814
7815
7816
7817
7818
7819
7820
7821
7822
7823
7824
7825
7826
7827
7828
7829
7830
7831
7832
7833
7834
7835
7836
7837
7838
7839
7840
7841
7842
7843
7844
7845
7846
7847
7848
7849
7850
7851
7852
7853
7854
7855
7856
7857
7858
7859
7860
7861
7862
7863
7864
7865
7866
7867
7868
7869
7870
7871
7872
7873
7874
7875
7876
7877
7878
7879
7880
7881
7882
7883
7884
7885
7886
7887
7888
7889
7890
7891
7892
7893
7894
7895
7896
7897
7898
7899
7900
7901
7902
7903
7904
7905
7906
7907
7908
7909
7910
7911
7912
7913
7914
7915
7916
7917
7918
7919
7920
7921
7922
7923
7924
7925
7926
7927
7928
7929
7930
7931
7932
7933
7934
7935
7936
7937
7938
7939
7940
7941
7942
7943
7944
7945
7946
7947
7948
7949
7950
7951
7952
7953
7954
7955
7956
7957
7958
7959
7960
7961
7962
7963
7964
7965
7966
7967
7968
7969
7970
7971
7972
7973
7974
7975
7976
7977
7978
7979
7980
7981
7982
7983
7984
7985
7986
7987
7988
7989
7990
7991
7992
7993
7994
7995
7996
7997
7998
7999
8000
8001
8002
8003
8004
8005
8006
8007
8008
8009
8010
8011
8012
8013
8014
8015
8016
8017
8018
8019
8020
8021
8022
8023
8024
8025
8026
8027
8028
8029
8030
8031
8032
8033
8034
8035
8036
8037
8038
8039
8040
8041
8042
8043
8044
8045
8046
8047
8048
8049
8050
8051
8052
8053
8054
8055
8056
8057
8058
8059
8060
8061
8062
8063
8064
8065
8066
8067
8068
8069
8070
8071
8072
8073
8074
8075
8076
8077
8078
8079
8080
8081
8082
8083
8084
8085
8086
8087
8088
8089
8090
8091
8092
8093
8094
8095
8096
8097
8098
8099
8100
8101
8102
8103
8104
8105
8106
8107
8108
8109
8110
8111
8112
8113
8114
8115
8116
8117
8118
8119
8120
8121
8122
8123
8124
8125
8126
8127
8128
8129
8130
8131
8132
8133
8134
8135
8136
8137
8138
8139
8140
8141
8142
8143
8144
8145
8146
8147
8148
8149
8150
8151
8152
8153
8154
8155
8156
8157
8158
8159
8160
8161
8162
8163
8164
8165
8166
8167
8168
8169
8170
8171
8172
8173
8174
8175
8176
8177
8178
8179
8180
8181
8182
8183
8184
8185
8186
8187
8188
8189
8190
8191
8192
8193
8194
8195
8196
8197
8198
8199
8200
8201
8202
8203
8204
8205
8206
8207
8208
8209
8210
8211
8212
8213
8214
8215
8216
8217
8218
8219
8220
8221
8222
8223
8224
8225
8226
8227
8228
8229
8230
8231
8232
8233
8234
8235
8236
8237
8238
8239
8240
8241
8242
8243
8244
8245
8246
8247
8248
8249
8250
8251
8252
8253
8254
8255
8256
8257
8258
8259
8260
8261
8262
8263
8264
8265
8266
8267
8268
8269
8270
8271
8272
8273
8274
8275
8276
8277
8278
8279
8280
8281
8282
8283
8284
8285
8286
8287
8288
8289
8290
8291
8292
8293
8294
8295
8296
8297
8298
8299
8300
8301
8302
8303
8304
8305
8306
8307
8308
8309
8310
8311
8312
8313
8314
8315
8316
8317
8318
8319
8320
8321
8322
8323
8324
8325
8326
8327
8328
8329
8330
8331
8332
8333
8334
8335
8336
8337
8338
8339
8340
8341
8342
8343
8344
8345
8346
8347
8348
8349
8350
8351
8352
8353
8354
8355
8356
8357
8358
8359
8360
8361
8362
8363
8364
8365
8366
8367
8368
8369
8370
8371
8372
8373
8374
8375
8376
8377
8378
8379
8380
8381
8382
8383
8384
8385
8386
8387
8388
8389
8390
8391
8392
8393
8394
8395
8396
8397
8398
8399
8400
8401
8402
8403
8404
8405
8406
8407
8408
8409
8410
8411
8412
8413
8414
8415
8416
8417
8418
8419
8420
8421
8422
8423
8424
8425
8426
8427
8428
8429
8430
8431
8432
8433
8434
8435
8436
8437
8438
8439
8440
8441
8442
8443
8444
8445
8446
8447
8448
8449
8450
8451
8452
8453
8454
8455
8456
8457
8458
8459
8460
8461
8462
8463
8464
8465
8466
8467
8468
8469
8470
8471
8472
8473
8474
8475
8476
8477
8478
8479
8480
8481
8482
8483
8484
8485
8486
8487
8488
8489
8490
8491
8492
8493
8494
8495
8496
8497
8498
8499
8500
8501
8502
8503
8504
8505
8506
8507
8508
8509
8510
8511
8512
8513
8514
8515
8516
8517
8518
8519
8520
8521
8522
8523
8524
8525
8526
8527
8528
8529
8530
8531
8532
8533
8534
8535
8536
8537
8538
8539
8540
8541
8542
8543
8544
8545
8546
8547
8548
8549
8550
8551
8552
8553
8554
8555
8556
8557
8558
8559
8560
8561
8562
8563
8564
8565
8566
8567
8568
8569
8570
8571
8572
8573
8574
8575
8576
8577
8578
8579
8580
8581
8582
8583
8584
8585
8586
8587
8588
8589
8590
8591
8592
8593
8594
8595
8596
8597
8598
8599
8600
8601
8602
8603
8604
8605
8606
8607
8608
8609
8610
8611
8612
8613
8614
8615
8616
8617
8618
8619
8620
8621
8622
8623
8624
8625
8626
8627
8628
8629
8630
8631
8632
8633
8634
8635
8636
8637
8638
8639
8640
8641
8642
8643
8644
8645
8646
8647
8648
8649
8650
8651
8652
8653
8654
8655
8656
8657
8658
8659
8660
8661
8662
8663
8664
8665
8666
8667
8668
8669
8670
8671
8672
8673
8674
8675
8676
8677
8678
8679
8680
8681
8682
8683
8684
8685
8686
8687
8688
8689
8690
8691
8692
8693
8694
8695
8696
8697
8698
8699
8700
8701
8702
8703
8704
8705
8706
8707
8708
8709
8710
8711
8712
8713
8714
8715
8716
8717
8718
8719
8720
8721
8722
8723
8724
8725
8726
8727
8728
8729
8730
8731
8732
8733
8734
8735
8736
8737
8738
8739
8740
8741
8742
8743
8744
8745
8746
8747
8748
8749
8750
8751
8752
8753
8754
8755
8756
8757
8758
8759
8760
8761
8762
8763
8764
8765
8766
8767
8768
8769
8770
8771
8772
8773
8774
8775
8776
8777
8778
8779
8780
8781
8782
8783
8784
8785
8786
8787
8788
8789
8790
8791
8792
8793
8794
8795
8796
8797
8798
8799
8800
8801
8802
8803
8804
8805
8806
8807
8808
8809
8810
8811
8812
8813
8814
8815
8816
8817
8818
8819
8820
8821
8822
8823
8824
8825
8826
8827
8828
8829
8830
8831
8832
8833
8834
8835
8836
8837
8838
8839
8840
8841
8842
8843
8844
8845
8846
8847
8848
8849
8850
8851
8852
8853
8854
8855
8856
8857
8858
8859
8860
8861
8862
8863
8864
8865
8866
8867
8868
8869
8870
8871
8872
8873
8874
8875
8876
8877
8878
8879
8880
8881
8882
8883
8884
8885
8886
8887
8888
8889
8890
8891
8892
8893
8894
8895
8896
8897
8898
8899
8900
8901
8902
8903
8904
8905
8906
8907
8908
8909
8910
8911
8912
8913
8914
8915
8916
8917
8918
8919
8920
8921
8922
8923
8924
8925
8926
8927
8928
8929
8930
8931
8932
8933
8934
8935
8936
8937
8938
8939
8940
8941
8942
8943
8944
8945
8946
8947
8948
8949
8950
8951
8952
8953
8954
8955
8956
8957
8958
8959
8960
8961
8962
8963
8964
8965
8966
8967
8968
8969
8970
8971
8972
8973
8974
8975
8976
8977
8978
8979
8980
8981
8982
8983
8984
8985
8986
8987
8988
8989
8990
8991
8992
8993
8994
8995
8996
8997
8998
8999
9000
9001
9002
9003
9004
9005
9006
9007
9008
9009
9010
9011
9012
9013
9014
9015
9016
9017
9018
9019
9020
9021
9022
9023
9024
9025
9026
9027
9028
9029
9030
9031
9032
9033
9034
9035
9036
9037
9038
9039
9040
9041
9042
9043
9044
9045
9046
9047
9048
9049
9050
9051
9052
9053
9054
9055
9056
9057
9058
9059
9060
9061
9062
9063
9064
9065
9066
9067
9068
9069
9070
9071
9072
9073
9074
9075
9076
9077
9078
9079
9080
9081
9082
9083
9084
9085
9086
9087
9088
9089
9090
9091
9092
9093
9094
9095
9096
9097
9098
9099
9100
9101
9102
9103
9104
9105
9106
9107
9108
9109
9110
9111
9112
9113
9114
9115
9116
9117
9118
9119
9120
9121
9122
9123
9124
9125
9126
9127
9128
9129
9130
9131
9132
9133
9134
9135
9136
9137
9138
9139
9140
9141
9142
9143
9144
9145
9146
9147
9148
9149
9150
9151
9152
9153
9154
9155
9156
9157
9158
9159
9160
9161
9162
9163
9164
9165
9166
9167
9168
9169
9170
9171
9172
9173
9174
9175
9176
9177
9178
9179
9180
9181
9182
9183
9184
9185
9186
9187
9188
9189
9190
9191
9192
9193
9194
9195
9196
9197
9198
9199
9200
9201
9202
9203
9204
9205
9206
9207
9208
9209
9210
9211
9212
9213
9214
9215
9216
9217
9218
9219
9220
9221
9222
9223
9224
9225
9226
9227
9228
9229
9230
9231
9232
9233
9234
9235
9236
9237
9238
9239
9240
9241
9242
9243
9244
9245
9246
9247
9248
9249
9250
9251
9252
9253
9254
9255
9256
9257
9258
9259
9260
9261
9262
9263
9264
9265
9266
9267
9268
9269
9270
9271
9272
9273
9274
9275
9276
9277
9278
9279
9280
9281
9282
9283
9284
9285
9286
9287
9288
9289
9290
9291
9292
9293
9294
9295
9296
9297
9298
9299
9300
9301
9302
9303
9304
9305
9306
9307
9308
9309
9310
9311
9312
9313
9314
9315
9316
9317
9318
9319
9320
9321
9322
9323
9324
9325
9326
9327
9328
9329
9330
9331
9332
9333
9334
9335
9336
9337
9338
9339
9340
9341
9342
9343
9344
9345
9346
9347
9348
9349
9350
9351
9352
9353
9354
9355
9356
9357
9358
9359
9360
9361
9362
9363
9364
9365
9366
9367
9368
9369
9370
9371
9372
9373
9374
9375
9376
9377
9378
9379
9380
9381
9382
9383
9384
9385
9386
9387
9388
9389
9390
9391
9392
9393
9394
9395
9396
9397
9398
9399
9400
9401
9402
9403
9404
9405
9406
9407
9408
9409
9410
9411
9412
9413
9414
9415
9416
9417
9418
9419
9420
9421
9422
9423
9424
9425
9426
9427
9428
9429
9430
9431
9432
9433
9434
9435
9436
9437
9438
9439
9440
9441
9442
9443
9444
9445
9446
9447
9448
9449
9450
9451
9452
9453
9454
9455
9456
9457
9458
9459
9460
9461
9462
9463
9464
9465
9466
9467
9468
9469
9470
9471
9472
9473
9474
9475
9476
9477
9478
9479
9480
9481
9482
9483
9484
9485
9486
9487
9488
9489
9490
9491
9492
9493
9494
9495
9496
9497
9498
9499
9500
9501
9502
9503
9504
9505
9506
9507
9508
9509
9510
9511
9512
9513
9514
9515
9516
9517
9518
9519
9520
9521
9522
9523
9524
9525
9526
9527
9528
9529
9530
9531
9532
9533
9534
9535
9536
9537
9538
9539
9540
9541
9542
9543
9544
9545
9546
9547
9548
9549
9550
9551
9552
9553
9554
9555
9556
9557
9558
9559
9560
9561
9562
9563
9564
9565
9566
9567
9568
9569
9570
9571
9572
9573
9574
9575
9576
9577
9578
9579
9580
9581
9582
9583
9584
9585
9586
9587
9588
9589
9590
9591
9592
9593
9594
9595
9596
9597
9598
9599
9600
9601
9602
9603
9604
9605
9606
9607
9608
9609
9610
9611
9612
9613
9614
9615
9616
9617
9618
9619
9620
9621
9622
9623
9624
9625
9626
9627
9628
9629
9630
9631
9632
9633
9634
9635
9636
9637
9638
9639
9640
9641
9642
9643
9644
9645
9646
9647
9648
9649
9650
9651
9652
9653
9654
9655
9656
9657
9658
9659
9660
9661
9662
9663
9664
9665
9666
9667
9668
9669
9670
9671
9672
9673
9674
9675
9676
9677
9678
9679
9680
9681
9682
9683
9684
9685
9686
9687
9688
9689
9690
9691
9692
9693
9694
9695
9696
9697
9698
9699
9700
9701
9702
9703
9704
9705
9706
9707
9708
9709
9710
9711
9712
9713
9714
9715
9716
9717
9718
9719
9720
9721
9722
9723
9724
9725
9726
9727
9728
9729
9730
9731
9732
9733
9734
9735
9736
9737
9738
9739
9740
9741
9742
9743
9744
9745
9746
9747
9748
9749
9750
9751
9752
9753
9754
9755
9756
9757
9758
9759
9760
9761
9762
9763
9764
9765
9766
9767
9768
9769
9770
9771
9772
9773
9774
9775
9776
9777
9778
9779
9780
9781
9782
9783
9784
9785
9786
9787
9788
9789
9790
9791
9792
9793
9794
9795
9796
9797
9798
9799
9800
9801
9802
9803
9804
9805
9806
9807
9808
9809
9810
9811
9812
9813
9814
9815
9816
9817
9818
9819
9820
9821
9822
9823
9824
9825
9826
9827
9828
9829
9830
9831
9832
9833
9834
9835
9836
9837
9838
9839
9840
9841
9842
9843
9844
9845
9846
9847
9848
9849
9850
9851
9852
9853
9854
9855
9856
9857
9858
9859
9860
9861
9862
9863
9864
9865
9866
9867
9868
9869
9870
9871
9872
9873
9874
9875
9876
9877
9878
9879
9880
9881
9882
9883
9884
9885
9886
9887
9888
9889
9890
9891
9892
9893
9894
9895
9896
9897
9898
9899
9900
9901
9902
9903
9904
9905
9906
9907
9908
9909
9910
9911
9912
9913
9914
9915
9916
9917
9918
9919
9920
9921
9922
9923
9924
9925
9926
9927
9928
9929
9930
9931
9932
9933
9934
9935
9936
9937
9938
9939
9940
9941
9942
9943
9944
9945
9946
9947
9948
9949
9950
9951
9952
9953
9954
9955
9956
9957
9958
9959
9960
9961
9962
9963
9964
9965
9966
9967
9968
9969
9970
9971
9972
9973
9974
9975
9976
9977
9978
9979
9980
9981
9982
9983
9984
9985
9986
9987
9988
9989
9990
9991
9992
9993
9994
9995
9996
9997
9998
9999
10000
10001
10002
10003
10004
10005
10006
10007
10008
10009
10010
10011
10012
10013
10014
10015
10016
10017
10018
10019
10020
10021
10022
10023
10024
10025
10026
10027
10028
10029
10030
10031
10032
10033
10034
10035
10036
10037
10038
10039
10040
10041
10042
10043
10044
10045
10046
10047
10048
10049
10050
10051
10052
10053
10054
10055
10056
10057
10058
10059
10060
10061
10062
10063
10064
10065
10066
10067
10068
10069
10070
10071
10072
10073
10074
10075
10076
10077
10078
10079
10080
10081
10082
10083
10084
10085
10086
10087
10088
10089
10090
10091
10092
10093
10094
10095
10096
10097
10098
10099
10100
10101
10102
10103
10104
10105
10106
10107
10108
10109
10110
10111
10112
10113
10114
10115
10116
10117
10118
10119
10120
10121
10122
10123
10124
10125
10126
10127
10128
10129
10130
10131
10132
10133
10134
10135
10136
10137
10138
10139
10140
10141
10142
10143
10144
10145
10146
10147
10148
10149
10150
10151
10152
10153
10154
10155
10156
10157
10158
10159
10160
10161
10162
10163
10164
10165
10166
10167
10168
10169
10170
10171
10172
10173
10174
10175
10176
10177
10178
10179
10180
10181
10182
10183
10184
10185
10186
10187
10188
10189
10190
10191
10192
10193
10194
10195
10196
10197
10198
10199
10200
10201
10202
10203
10204
10205
10206
10207
10208
10209
10210
10211
10212
10213
10214
10215
10216
10217
10218
10219
10220
10221
10222
10223
10224
10225
10226
10227
10228
10229
10230
10231
10232
10233
10234
10235
10236
10237
10238
10239
10240
10241
10242
10243
10244
10245
10246
10247
10248
10249
10250
10251
10252
10253
10254
10255
10256
10257
10258
10259
10260
10261
10262
10263
10264
10265
10266
10267
10268
10269
10270
10271
10272
10273
10274
10275
10276
10277
10278
10279
10280
10281
10282
10283
10284
10285
10286
10287
10288
10289
10290
10291
10292
10293
10294
10295
10296
10297
10298
10299
10300
10301
10302
10303
10304
10305
10306
10307
10308
10309
10310
10311
10312
10313
10314
10315
10316
10317
10318
10319
10320
10321
10322
10323
10324
10325
10326
10327
10328
10329
10330
10331
10332
10333
10334
10335
10336
10337
10338
10339
10340
10341
10342
10343
10344
10345
10346
10347
10348
10349
10350
10351
10352
10353
10354
10355
10356
10357
10358
10359
10360
10361
10362
10363
10364
10365
10366
10367
10368
10369
10370
10371
10372
10373
10374
10375
10376
10377
10378
10379
10380
10381
10382
10383
10384
10385
10386
10387
10388
10389
10390
10391
10392
10393
10394
10395
10396
10397
10398
10399
10400
10401
10402
10403
10404
10405
10406
10407
10408
10409
10410
10411
10412
10413
10414
10415
10416
10417
10418
10419
10420
10421
10422
10423
10424
10425
10426
10427
10428
10429
10430
10431
10432
10433
10434
10435
10436
10437
10438
10439
10440
10441
10442
10443
10444
10445
10446
10447
10448
10449
10450
10451
10452
10453
10454
10455
10456
10457
10458
10459
10460
10461
10462
10463
10464
10465
10466
10467
10468
10469
10470
10471
10472
10473
10474
10475
10476
10477
10478
10479
10480
10481
10482
10483
10484
10485
10486
10487
10488
10489
10490
10491
10492
10493
10494
10495
10496
10497
10498
10499
10500
10501
10502
10503
10504
10505
10506
10507
10508
10509
10510
10511
10512
10513
10514
10515
10516
10517
10518
10519
10520
10521
10522
10523
10524
10525
10526
10527
10528
10529
10530
10531
10532
10533
10534
10535
10536
10537
10538
10539
10540
10541
10542
10543
10544
10545
10546
10547
10548
10549
10550
10551
10552
10553
10554
10555
10556
10557
10558
10559
10560
10561
10562
10563
10564
10565
10566
10567
10568
10569
10570
10571
10572
10573
10574
10575
10576
10577
10578
10579
10580
10581
10582
10583
10584
10585
10586
10587
10588
10589
10590
10591
10592
10593
10594
10595
10596
10597
10598
10599
10600
10601
10602
10603
10604
10605
10606
10607
10608
10609
10610
10611
10612
10613
10614
10615
10616
10617
10618
10619
10620
10621
10622
10623
10624
10625
10626
10627
10628
10629
10630
10631
10632
10633
10634
10635
10636
10637
10638
10639
10640
10641
10642
10643
10644
10645
10646
10647
10648
10649
10650
10651
10652
10653
10654
10655
10656
10657
10658
10659
10660
10661
10662
10663
10664
10665
10666
10667
10668
10669
10670
10671
10672
10673
10674
10675
10676
10677
10678
10679
10680
10681
10682
10683
10684
10685
10686
10687
10688
10689
10690
10691
10692
10693
10694
10695
10696
10697
10698
10699
10700
10701
10702
10703
10704
10705
10706
10707
10708
10709
10710
10711
10712
10713
10714
10715
10716
10717
10718
10719
10720
10721
10722
10723
10724
10725
10726
10727
10728
10729
10730
10731
10732
10733
10734
10735
10736
10737
10738
10739
10740
10741
10742
10743
10744
10745
10746
10747
10748
10749
10750
10751
10752
10753
10754
10755
10756
10757
10758
10759
10760
10761
10762
10763
10764
10765
10766
10767
10768
10769
10770
10771
10772
10773
10774
10775
10776
10777
10778
10779
10780
10781
10782
10783
10784
10785
10786
10787
10788
10789
10790
10791
10792
10793
10794
10795
10796
10797
10798
10799
10800
10801
10802
10803
10804
10805
10806
10807
10808
10809
10810
10811
10812
10813
10814
10815
10816
10817
10818
10819
10820
10821
10822
10823
10824
10825
10826
10827
10828
10829
10830
10831
10832
10833
10834
10835
10836
10837
10838
10839
10840
10841
10842
10843
10844
10845
10846
10847
10848
10849
10850
10851
10852
10853
10854
10855
10856
10857
10858
10859
10860
10861
10862
10863
10864
10865
10866
10867
10868
10869
10870
10871
10872
10873
10874
10875
10876
10877
10878
10879
10880
10881
10882
10883
10884
10885
10886
10887
10888
10889
10890
10891
10892
10893
10894
10895
10896
10897
10898
10899
10900
10901
10902
10903
10904
10905
10906
10907
10908
10909
10910
10911
10912
10913
10914
10915
10916
10917
10918
10919
10920
10921
10922
10923
10924
10925
10926
10927
10928
10929
10930
10931
10932
10933
10934
10935
10936
10937
10938
10939
10940
10941
10942
10943
10944
10945
10946
10947
10948
10949
10950
10951
10952
10953
10954
10955
10956
10957
10958
10959
10960
10961
10962
10963
10964
10965
10966
10967
10968
10969
10970
10971
10972
10973
10974
10975
10976
10977
10978
10979
10980
10981
10982
10983
10984
10985
10986
10987
10988
10989
10990
10991
10992
10993
10994
10995
10996
10997
10998
10999
11000
11001
11002
11003
11004
11005
11006
11007
11008
11009
11010
11011
11012
11013
11014
11015
11016
11017
11018
11019
11020
11021
11022
11023
11024
11025
11026
11027
11028
11029
11030
11031
11032
11033
11034
11035
11036
11037
11038
11039
11040
11041
11042
11043
11044
11045
11046
11047
11048
11049
11050
11051
11052
11053
11054
11055
11056
11057
11058
11059
11060
11061
11062
11063
11064
11065
11066
11067
11068
11069
11070
11071
11072
11073
11074
11075
11076
11077
11078
11079
11080
11081
11082
11083
11084
11085
11086
11087
11088
11089
11090
11091
11092
11093
11094
11095
11096
11097
11098
11099
11100
11101
11102
11103
11104
11105
11106
11107
11108
11109
11110
11111
11112
11113
11114
11115
11116
11117
11118
11119
11120
11121
11122
11123
11124
11125
11126
11127
11128
11129
11130
11131
11132
11133
11134
11135
11136
11137
11138
11139
11140
11141
11142
11143
11144
11145
11146
11147
11148
11149
11150
11151
11152
11153
11154
11155
11156
11157
11158
11159
11160
11161
11162
11163
11164
11165
11166
11167
11168
11169
11170
11171
11172
11173
11174
11175
11176
11177
11178
11179
11180
11181
11182
11183
11184
11185
11186
11187
11188
11189
11190
11191
11192
11193
11194
11195
11196
11197
11198
11199
11200
11201
11202
11203
11204
11205
11206
11207
11208
11209
11210
11211
11212
11213
11214
11215
11216
11217
11218
11219
11220
11221
11222
11223
11224
11225
11226
11227
11228
11229
11230
11231
11232
11233
11234
11235
11236
11237
11238
11239
11240
11241
11242
11243
11244
11245
11246
11247
11248
11249
11250
11251
11252
11253
11254
11255
11256
11257
11258
11259
11260
11261
11262
11263
11264
11265
11266
11267
11268
11269
11270
11271
11272
11273
11274
11275
11276
11277
11278
11279
11280
11281
11282
11283
11284
11285
11286
11287
11288
11289
11290
11291
11292
11293
11294
11295
11296
11297
11298
11299
11300
11301
11302
11303
11304
11305
11306
11307
11308
11309
11310
11311
11312
11313
11314
11315
11316
11317
11318
11319
11320
11321
11322
11323
11324
11325
11326
11327
11328
11329
11330
11331
11332
11333
11334
11335
11336
11337
11338
11339
11340
11341
11342
11343
11344
11345
11346
11347
11348
11349
11350
11351
11352
11353
11354
11355
11356
11357
11358
11359
11360
11361
11362
11363
11364
11365
11366
11367
11368
11369
11370
11371
11372
11373
11374
11375
11376
11377
11378
11379
11380
11381
11382
11383
11384
11385
11386
11387
11388
11389
11390
11391
11392
11393
11394
11395
11396
11397
11398
11399
11400
11401
11402
11403
11404
11405
11406
11407
11408
11409
11410
11411
11412
11413
11414
11415
11416
11417
11418
11419
11420
11421
11422
11423
11424
11425
11426
11427
11428
11429
11430
11431
11432
11433
11434
11435
11436
11437
11438
11439
11440
11441
11442
11443
11444
11445
11446
11447
11448
11449
11450
11451
11452
11453
11454
11455
11456
11457
11458
11459
11460
11461
11462
11463
11464
11465
11466
11467
11468
11469
11470
11471
11472
11473
11474
11475
11476
11477
11478
11479
11480
11481
11482
11483
11484
11485
11486
11487
11488
11489
11490
11491
11492
11493
11494
11495
11496
11497
11498
11499
11500
11501
11502
11503
11504
11505
11506
11507
11508
11509
11510
11511
11512
11513
11514
11515
11516
11517
11518
11519
11520
11521
11522
11523
11524
11525
11526
11527
11528
11529
11530
11531
11532
11533
11534
11535
11536
11537
11538
11539
11540
11541
11542
11543
11544
11545
11546
11547
11548
11549
11550
11551
11552
11553
11554
11555
11556
11557
11558
11559
11560
11561
11562
11563
11564
11565
11566
11567
11568
11569
11570
11571
11572
11573
11574
11575
11576
11577
11578
11579
11580
11581
11582
11583
11584
11585
11586
11587
11588
11589
11590
11591
11592
11593
11594
11595
11596
11597
11598
11599
11600
11601
11602
11603
11604
11605
11606
11607
11608
11609
11610
11611
11612
11613
11614
11615
11616
11617
11618
11619
11620
11621
11622
11623
11624
11625
11626
11627
11628
11629
11630
11631
11632
11633
11634
11635
11636
11637
11638
11639
11640
11641
11642
11643
11644
11645
11646
11647
11648
11649
11650
11651
11652
11653
11654
11655
11656
11657
11658
11659
11660
11661
11662
11663
11664
11665
11666
11667
11668
11669
11670
11671
11672
11673
11674
11675
11676
11677
11678
11679
11680
11681
11682
11683
11684
11685
11686
11687
11688
11689
11690
11691
11692
11693
11694
11695
11696
11697
11698
11699
11700
11701
11702
11703
11704
11705
11706
11707
11708
11709
11710
11711
11712
11713
11714
11715
11716
11717
11718
11719
11720
11721
11722
11723
11724
11725
11726
11727
11728
11729
11730
11731
11732
11733
11734
11735
11736
11737
11738
11739
11740
11741
11742
11743
11744
11745
11746
11747
11748
11749
11750
11751
11752
11753
11754
11755
11756
11757
11758
11759
11760
11761
11762
11763
11764
11765
11766
11767
11768
11769
11770
11771
11772
11773
11774
11775
11776
11777
11778
11779
11780
11781
11782
11783
11784
11785
11786
11787
11788
11789
11790
11791
11792
11793
11794
11795
11796
11797
11798
11799
11800
11801
11802
11803
11804
11805
11806
11807
11808
11809
11810
11811
11812
11813
11814
11815
11816
11817
11818
11819
11820
11821
11822
11823
11824
11825
11826
11827
11828
11829
11830
11831
11832
11833
11834
11835
11836
11837
11838
11839
11840
11841
11842
11843
11844
11845
11846
11847
11848
11849
11850
11851
11852
11853
11854
11855
11856
11857
11858
11859
11860
11861
11862
11863
11864
11865
11866
11867
11868
11869
11870
11871
11872
11873
11874
11875
11876
11877
11878
11879
11880
11881
11882
11883
11884
11885
11886
11887
11888
11889
11890
11891
11892
11893
11894
11895
11896
11897
11898
11899
11900
11901
11902
11903
11904
11905
11906
11907
11908
11909
11910
11911
11912
11913
11914
11915
11916
11917
11918
11919
11920
11921
11922
11923
11924
11925
11926
11927
11928
11929
11930
11931
11932
11933
11934
11935
11936
11937
11938
11939
11940
11941
11942
11943
11944
11945
11946
11947
11948
11949
11950
11951
11952
11953
11954
11955
11956
11957
11958
11959
11960
11961
11962
11963
11964
11965
11966
11967
11968
11969
11970
11971
11972
11973
11974
11975
11976
11977
11978
11979
11980
11981
11982
11983
11984
11985
11986
11987
11988
11989
11990
11991
11992
11993
11994
11995
11996
11997
11998
11999
12000
12001
12002
12003
12004
12005
12006
12007
12008
12009
12010
12011
12012
12013
12014
12015
12016
12017
12018
12019
12020
12021
12022
12023
12024
12025
12026
12027
12028
12029
12030
12031
12032
12033
12034
12035
12036
12037
12038
12039
12040
12041
12042
12043
12044
12045
12046
12047
12048
12049
12050
12051
12052
12053
12054
12055
12056
12057
12058
12059
12060
12061
12062
12063
12064
12065
12066
12067
12068
12069
12070
12071
12072
12073
12074
12075
12076
12077
12078
12079
12080
12081
12082
12083
12084
12085
12086
12087
12088
12089
12090
12091
12092
12093
12094
12095
12096
12097
12098
12099
12100
12101
12102
12103
12104
12105
12106
12107
12108
12109
12110
12111
12112
12113
12114
12115
12116
12117
12118
12119
12120
12121
12122
12123
12124
12125
12126
12127
12128
12129
12130
12131
12132
12133
12134
12135
12136
12137
12138
12139
12140
12141
12142
12143
12144
12145
12146
12147
12148
12149
12150
12151
12152
12153
12154
12155
12156
12157
12158
12159
12160
12161
12162
12163
12164
12165
12166
12167
12168
12169
12170
12171
12172
12173
12174
12175
12176
12177
12178
12179
12180
12181
12182
12183
12184
12185
12186
12187
12188
12189
12190
12191
12192
12193
12194
12195
12196
12197
12198
12199
12200
12201
12202
12203
12204
12205
12206
12207
12208
12209
12210
12211
12212
12213
12214
12215
12216
12217
12218
12219
12220
12221
12222
12223
12224
12225
12226
12227
12228
12229
12230
12231
12232
12233
12234
12235
12236
12237
12238
12239
12240
12241
12242
12243
12244
12245
12246
12247
12248
12249
12250
12251
12252
12253
12254
12255
12256
12257
12258
12259
12260
12261
12262
12263
12264
12265
12266
12267
12268
12269
12270
12271
12272
12273
12274
12275
12276
12277
12278
12279
12280
12281
12282
12283
12284
12285
12286
12287
12288
12289
12290
12291
12292
12293
12294
12295
12296
12297
12298
12299
12300
12301
12302
12303
12304
12305
12306
12307
12308
12309
12310
12311
12312
12313
12314
12315
12316
12317
12318
12319
12320
12321
12322
12323
12324
12325
12326
12327
12328
12329
12330
12331
12332
12333
12334
12335
12336
12337
12338
12339
12340
12341
12342
12343
12344
12345
12346
12347
12348
12349
12350
12351
12352
12353
12354
12355
12356
12357
12358
12359
12360
12361
12362
12363
12364
12365
12366
12367
12368
12369
12370
12371
12372
12373
12374
12375
12376
12377
12378
12379
12380
12381
12382
12383
12384
12385
12386
12387
12388
12389
12390
12391
12392
12393
12394
12395
12396
12397
12398
12399
12400
12401
12402
12403
12404
12405
12406
12407
12408
12409
12410
12411
12412
12413
12414
12415
12416
12417
12418
12419
12420
12421
12422
12423
12424
12425
12426
12427
12428
12429
12430
12431
12432
12433
12434
12435
12436
12437
12438
12439
12440
12441
12442
12443
12444
12445
12446
12447
12448
12449
12450
12451
12452
12453
12454
12455
12456
12457
12458
12459
12460
12461
12462
12463
12464
12465
12466
12467
12468
12469
12470
12471
12472
12473
12474
12475
12476
12477
12478
12479
12480
12481
12482
12483
12484
12485
12486
12487
12488
12489
12490
12491
12492
12493
12494
12495
12496
12497
12498
12499
12500
12501
12502
12503
12504
12505
12506
12507
12508
12509
12510
12511
12512
12513
12514
12515
12516
12517
12518
12519
12520
12521
12522
12523
12524
12525
12526
12527
12528
12529
12530
12531
12532
12533
12534
12535
12536
12537
12538
12539
12540
12541
12542
12543
12544
12545
12546
12547
12548
12549
12550
12551
12552
12553
12554
12555
12556
12557
12558
12559
12560
12561
12562
12563
12564
12565
12566
12567
12568
12569
12570
12571
12572
12573
12574
12575
12576
12577
12578
12579
12580
12581
12582
12583
12584
12585
12586
12587
12588
12589
12590
12591
12592
12593
12594
12595
12596
12597
12598
12599
12600
12601
12602
12603
12604
12605
12606
12607
12608
12609
12610
12611
12612
12613
12614
12615
12616
12617
12618
12619
12620
12621
12622
12623
12624
12625
12626
12627
12628
12629
12630
12631
12632
12633
12634
12635
12636
12637
12638
12639
12640
12641
12642
12643
12644
12645
12646
12647
12648
12649
12650
12651
12652
12653
12654
12655
12656
12657
12658
12659
12660
12661
12662
12663
12664
12665
12666
12667
12668
12669
12670
12671
12672
12673
12674
12675
12676
12677
12678
12679
12680
12681
12682
12683
12684
12685
12686
12687
12688
12689
12690
12691
12692
12693
12694
12695
12696
12697
12698
12699
12700
12701
12702
12703
12704
12705
12706
12707
12708
12709
12710
12711
12712
12713
12714
12715
12716
12717
12718
12719
12720
12721
12722
12723
12724
12725
12726
12727
12728
12729
12730
12731
12732
12733
12734
12735
12736
12737
12738
12739
12740
12741
12742
12743
12744
12745
12746
12747
12748
12749
12750
12751
12752
12753
12754
12755
12756
12757
12758
12759
12760
12761
12762
12763
12764
12765
12766
12767
12768
12769
12770
12771
12772
12773
12774
12775
12776
12777
12778
12779
12780
12781
12782
12783
12784
12785
12786
12787
12788
12789
12790
12791
12792
12793
12794
12795
12796
12797
12798
12799
12800
12801
12802
12803
12804
12805
12806
12807
12808
12809
12810
12811
12812
12813
12814
12815
12816
12817
12818
12819
12820
12821
12822
12823
12824
12825
12826
12827
12828
12829
12830
12831
12832
12833
12834
12835
12836
12837
12838
12839
12840
12841
12842
12843
12844
12845
12846
12847
12848
12849
12850
12851
12852
12853
12854
12855
12856
12857
12858
12859
12860
12861
12862
12863
12864
12865
12866
12867
12868
12869
12870
12871
12872
12873
12874
12875
12876
12877
12878
12879
12880
12881
12882
12883
12884
12885
12886
12887
12888
12889
12890
12891
12892
12893
12894
12895
12896
12897
12898
12899
12900
12901
12902
12903
12904
12905
12906
12907
12908
12909
12910
12911
12912
12913
12914
12915
12916
12917
12918
12919
12920
12921
12922
12923
12924
12925
12926
12927
12928
12929
12930
12931
12932
12933
12934
12935
12936
12937
12938
12939
12940
12941
12942
12943
12944
12945
12946
12947
12948
12949
12950
12951
12952
12953
12954
12955
12956
12957
12958
12959
12960
12961
12962
12963
12964
12965
12966
12967
12968
12969
12970
12971
12972
12973
12974
12975
12976
12977
|
<?xml version="1.0" encoding="iso-8859-1"?>
<para>
<indexterm><primary>language, GHC</primary></indexterm>
<indexterm><primary>extensions, GHC</primary></indexterm>
As with all known Haskell systems, GHC implements some extensions to
the language. They can all be enabled or disabled by command line flags
or language pragmas. By default GHC understands the most recent Haskell
version it supports, plus a handful of extensions.
</para>
<para>
Some of the Glasgow extensions serve to give you access to the
underlying facilities with which we implement Haskell. Thus, you can
get at the Raw Iron, if you are willing to write some non-portable
code at a more primitive level. You need not be “stuck”
on performance because of the implementation costs of Haskell's
“high-level” features—you can always code
“under” them. In an extreme case, you can write all your
time-critical code in C, and then just glue it together with Haskell!
</para>
<para>
Before you get too carried away working at the lowest level (e.g.,
sloshing <literal>MutableByteArray#</literal>s around your
program), you may wish to check if there are libraries that provide a
“Haskellised veneer” over the features you want. The
separate <ulink url="../libraries/index.html">libraries
documentation</ulink> describes all the libraries that come with GHC.
</para>
<!-- LANGUAGE OPTIONS -->
<sect1 id="options-language">
<title>Language options</title>
<indexterm><primary>language</primary><secondary>option</secondary>
</indexterm>
<indexterm><primary>options</primary><secondary>language</secondary>
</indexterm>
<indexterm><primary>extensions</primary><secondary>options controlling</secondary>
</indexterm>
<para>The language option flags control what variation of the language are
permitted.</para>
<para>Language options can be controlled in two ways:
<itemizedlist>
<listitem><para>Every language option can switched on by a command-line flag "<option>-X...</option>"
(e.g. <option>-XTemplateHaskell</option>), and switched off by the flag "<option>-XNo...</option>";
(e.g. <option>-XNoTemplateHaskell</option>).</para></listitem>
<listitem><para>
Language options recognised by Cabal can also be enabled using the <literal>LANGUAGE</literal> pragma,
thus <literal>{-# LANGUAGE TemplateHaskell #-}</literal> (see <xref linkend="language-pragma"/>). </para>
</listitem>
</itemizedlist></para>
<para>The flag <option>-fglasgow-exts</option>
<indexterm><primary><option>-fglasgow-exts</option></primary></indexterm>
is equivalent to enabling the following extensions:
&what_glasgow_exts_does;
Enabling these options is the <emphasis>only</emphasis>
effect of <option>-fglasgow-exts</option>.
We are trying to move away from this portmanteau flag,
and towards enabling features individually.</para>
</sect1>
<!-- UNBOXED TYPES AND PRIMITIVE OPERATIONS -->
<sect1 id="primitives">
<title>Unboxed types and primitive operations</title>
<para>GHC is built on a raft of primitive data types and operations;
"primitive" in the sense that they cannot be defined in Haskell itself.
While you really can use this stuff to write fast code,
we generally find it a lot less painful, and more satisfying in the
long run, to use higher-level language features and libraries. With
any luck, the code you write will be optimised to the efficient
unboxed version in any case. And if it isn't, we'd like to know
about it.</para>
<para>All these primitive data types and operations are exported by the
library <literal>GHC.Prim</literal>, for which there is
<ulink url="&libraryGhcPrimLocation;/GHC-Prim.html">detailed online documentation</ulink>.
(This documentation is generated from the file <filename>compiler/prelude/primops.txt.pp</filename>.)
</para>
<para>
If you want to mention any of the primitive data types or operations in your
program, you must first import <literal>GHC.Prim</literal> to bring them
into scope. Many of them have names ending in "#", and to mention such
names you need the <option>-XMagicHash</option> extension (<xref linkend="magic-hash"/>).
</para>
<para>The primops make extensive use of <link linkend="glasgow-unboxed">unboxed types</link>
and <link linkend="unboxed-tuples">unboxed tuples</link>, which
we briefly summarise here. </para>
<sect2 id="glasgow-unboxed">
<title>Unboxed types</title>
<para>
<indexterm><primary>Unboxed types (Glasgow extension)</primary></indexterm>
</para>
<para>Most types in GHC are <firstterm>boxed</firstterm>, which means
that values of that type are represented by a pointer to a heap
object. The representation of a Haskell <literal>Int</literal>, for
example, is a two-word heap object. An <firstterm>unboxed</firstterm>
type, however, is represented by the value itself, no pointers or heap
allocation are involved.
</para>
<para>
Unboxed types correspond to the “raw machine” types you
would use in C: <literal>Int#</literal> (long int),
<literal>Double#</literal> (double), <literal>Addr#</literal>
(void *), etc. The <emphasis>primitive operations</emphasis>
(PrimOps) on these types are what you might expect; e.g.,
<literal>(+#)</literal> is addition on
<literal>Int#</literal>s, and is the machine-addition that we all
know and love—usually one instruction.
</para>
<para>
Primitive (unboxed) types cannot be defined in Haskell, and are
therefore built into the language and compiler. Primitive types are
always unlifted; that is, a value of a primitive type cannot be
bottom. We use the convention (but it is only a convention)
that primitive types, values, and
operations have a <literal>#</literal> suffix (see <xref linkend="magic-hash"/>).
For some primitive types we have special syntax for literals, also
described in the <link linkend="magic-hash">same section</link>.
</para>
<para>
Primitive values are often represented by a simple bit-pattern, such
as <literal>Int#</literal>, <literal>Float#</literal>,
<literal>Double#</literal>. But this is not necessarily the case:
a primitive value might be represented by a pointer to a
heap-allocated object. Examples include
<literal>Array#</literal>, the type of primitive arrays. A
primitive array is heap-allocated because it is too big a value to fit
in a register, and would be too expensive to copy around; in a sense,
it is accidental that it is represented by a pointer. If a pointer
represents a primitive value, then it really does point to that value:
no unevaluated thunks, no indirections…nothing can be at the
other end of the pointer than the primitive value.
A numerically-intensive program using unboxed types can
go a <emphasis>lot</emphasis> faster than its “standard”
counterpart—we saw a threefold speedup on one example.
</para>
<para>
There are some restrictions on the use of primitive types:
<itemizedlist>
<listitem><para>The main restriction
is that you can't pass a primitive value to a polymorphic
function or store one in a polymorphic data type. This rules out
things like <literal>[Int#]</literal> (i.e. lists of primitive
integers). The reason for this restriction is that polymorphic
arguments and constructor fields are assumed to be pointers: if an
unboxed integer is stored in one of these, the garbage collector would
attempt to follow it, leading to unpredictable space leaks. Or a
<function>seq</function> operation on the polymorphic component may
attempt to dereference the pointer, with disastrous results. Even
worse, the unboxed value might be larger than a pointer
(<literal>Double#</literal> for instance).
</para>
</listitem>
<listitem><para> You cannot define a newtype whose representation type
(the argument type of the data constructor) is an unboxed type. Thus,
this is illegal:
<programlisting>
newtype A = MkA Int#
</programlisting>
</para></listitem>
<listitem><para> You cannot bind a variable with an unboxed type
in a <emphasis>top-level</emphasis> binding.
</para></listitem>
<listitem><para> You cannot bind a variable with an unboxed type
in a <emphasis>recursive</emphasis> binding.
</para></listitem>
<listitem><para> You may bind unboxed variables in a (non-recursive,
non-top-level) pattern binding, but you must make any such pattern-match
strict. For example, rather than:
<programlisting>
data Foo = Foo Int Int#
f x = let (Foo a b, w) = ..rhs.. in ..body..
</programlisting>
you must write:
<programlisting>
data Foo = Foo Int Int#
f x = let !(Foo a b, w) = ..rhs.. in ..body..
</programlisting>
since <literal>b</literal> has type <literal>Int#</literal>.
</para>
</listitem>
</itemizedlist>
</para>
</sect2>
<sect2 id="unboxed-tuples">
<title>Unboxed tuples</title>
<para>
Unboxed tuples aren't really exported by <literal>GHC.Exts</literal>;
they are a syntactic extension enabled by the language flag <option>-XUnboxedTuples</option>. An
unboxed tuple looks like this:
</para>
<para>
<programlisting>
(# e_1, ..., e_n #)
</programlisting>
</para>
<para>
where <literal>e_1..e_n</literal> are expressions of any
type (primitive or non-primitive). The type of an unboxed tuple looks
the same.
</para>
<para>
Note that when unboxed tuples are enabled,
<literal>(#</literal> is a single lexeme, so for example when using
operators like <literal>#</literal> and <literal>#-</literal> you need
to write <literal>( # )</literal> and <literal>( #- )</literal> rather than
<literal>(#)</literal> and <literal>(#-)</literal>.
</para>
<para>
Unboxed tuples are used for functions that need to return multiple
values, but they avoid the heap allocation normally associated with
using fully-fledged tuples. When an unboxed tuple is returned, the
components are put directly into registers or on the stack; the
unboxed tuple itself does not have a composite representation. Many
of the primitive operations listed in <literal>primops.txt.pp</literal> return unboxed
tuples.
In particular, the <literal>IO</literal> and <literal>ST</literal> monads use unboxed
tuples to avoid unnecessary allocation during sequences of operations.
</para>
<para>
There are some restrictions on the use of unboxed tuples:
<itemizedlist>
<listitem>
<para>
Values of unboxed tuple types are subject to the same restrictions as
other unboxed types; i.e. they may not be stored in polymorphic data
structures or passed to polymorphic functions.
</para>
</listitem>
<listitem>
<para>
The typical use of unboxed tuples is simply to return multiple values,
binding those multiple results with a <literal>case</literal> expression, thus:
<programlisting>
f x y = (# x+1, y-1 #)
g x = case f x x of { (# a, b #) -> a + b }
</programlisting>
You can have an unboxed tuple in a pattern binding, thus
<programlisting>
f x = let (# p,q #) = h x in ..body..
</programlisting>
If the types of <literal>p</literal> and <literal>q</literal> are not unboxed,
the resulting binding is lazy like any other Haskell pattern binding. The
above example desugars like this:
<programlisting>
f x = let t = case h x of { (# p,q #) -> (p,q) }
p = fst t
q = snd t
in ..body..
</programlisting>
Indeed, the bindings can even be recursive.
</para>
</listitem>
</itemizedlist>
</para>
</sect2>
</sect1>
<!-- ====================== SYNTACTIC EXTENSIONS ======================= -->
<sect1 id="syntax-extns">
<title>Syntactic extensions</title>
<sect2 id="unicode-syntax">
<title>Unicode syntax</title>
<para>The language
extension <option>-XUnicodeSyntax</option><indexterm><primary><option>-XUnicodeSyntax</option></primary></indexterm>
enables Unicode characters to be used to stand for certain ASCII
character sequences. The following alternatives are provided:</para>
<informaltable>
<tgroup cols="2" align="left" colsep="1" rowsep="1">
<thead>
<row>
<entry>ASCII</entry>
<entry>Unicode alternative</entry>
<entry>Code point</entry>
<entry>Name</entry>
</row>
</thead>
<!--
to find the DocBook entities for these characters, find
the Unicode code point (e.g. 0x2237), and grep for it in
/usr/share/sgml/docbook/xml-dtd-*/ent/* (or equivalent on
your system. Some of these Unicode code points don't have
equivalent DocBook entities.
-->
<tbody>
<row>
<entry><literal>::</literal></entry>
<entry>∷</entry>
<entry>0x2237</entry>
<entry>PROPORTION</entry>
</row>
</tbody>
<tbody>
<row>
<entry><literal>=></literal></entry>
<entry>⇒</entry>
<entry>0x21D2</entry>
<entry>RIGHTWARDS DOUBLE ARROW</entry>
</row>
</tbody>
<tbody>
<row>
<entry><literal>forall</literal></entry>
<entry>∀</entry>
<entry>0x2200</entry>
<entry>FOR ALL</entry>
</row>
</tbody>
<tbody>
<row>
<entry><literal>-></literal></entry>
<entry>→</entry>
<entry>0x2192</entry>
<entry>RIGHTWARDS ARROW</entry>
</row>
</tbody>
<tbody>
<row>
<entry><literal><-</literal></entry>
<entry>←</entry>
<entry>0x2190</entry>
<entry>LEFTWARDS ARROW</entry>
</row>
</tbody>
<tbody>
<row>
<entry>-<</entry>
<entry>⤙</entry>
<entry>0x2919</entry>
<entry>LEFTWARDS ARROW-TAIL</entry>
</row>
</tbody>
<tbody>
<row>
<entry>>-</entry>
<entry>⤚</entry>
<entry>0x291A</entry>
<entry>RIGHTWARDS ARROW-TAIL</entry>
</row>
</tbody>
<tbody>
<row>
<entry>-<<</entry>
<entry>⤛</entry>
<entry>0x291B</entry>
<entry>LEFTWARDS DOUBLE ARROW-TAIL</entry>
</row>
</tbody>
<tbody>
<row>
<entry>>>-</entry>
<entry>⤜</entry>
<entry>0x291C</entry>
<entry>RIGHTWARDS DOUBLE ARROW-TAIL</entry>
</row>
</tbody>
<tbody>
<row>
<entry>*</entry>
<entry>★</entry>
<entry>0x2605</entry>
<entry>BLACK STAR</entry>
</row>
</tbody>
</tgroup>
</informaltable>
</sect2>
<sect2 id="magic-hash">
<title>The magic hash</title>
<para>The language extension <option>-XMagicHash</option> allows "#" as a
postfix modifier to identifiers. Thus, "x#" is a valid variable, and "T#" is
a valid type constructor or data constructor.</para>
<para>The hash sign does not change semantics at all. We tend to use variable
names ending in "#" for unboxed values or types (e.g. <literal>Int#</literal>),
but there is no requirement to do so; they are just plain ordinary variables.
Nor does the <option>-XMagicHash</option> extension bring anything into scope.
For example, to bring <literal>Int#</literal> into scope you must
import <literal>GHC.Prim</literal> (see <xref linkend="primitives"/>);
the <option>-XMagicHash</option> extension
then allows you to <emphasis>refer</emphasis> to the <literal>Int#</literal>
that is now in scope. Note that with this option, the meaning of <literal>x#y = 0</literal>
is changed: it defines a function <literal>x#</literal> taking a single argument <literal>y</literal>;
to define the operator <literal>#</literal>, put a space: <literal>x # y = 0</literal>.
</para>
<para> The <option>-XMagicHash</option> also enables some new forms of literals (see <xref linkend="glasgow-unboxed"/>):
<itemizedlist>
<listitem><para> <literal>'x'#</literal> has type <literal>Char#</literal></para> </listitem>
<listitem><para> <literal>"foo"#</literal> has type <literal>Addr#</literal></para> </listitem>
<listitem><para> <literal>3#</literal> has type <literal>Int#</literal>. In general,
any Haskell integer lexeme followed by a <literal>#</literal> is an <literal>Int#</literal> literal, e.g.
<literal>-0x3A#</literal> as well as <literal>32#</literal>.</para></listitem>
<listitem><para> <literal>3##</literal> has type <literal>Word#</literal>. In general,
any non-negative Haskell integer lexeme followed by <literal>##</literal>
is a <literal>Word#</literal>. </para> </listitem>
<listitem><para> <literal>3.2#</literal> has type <literal>Float#</literal>.</para> </listitem>
<listitem><para> <literal>3.2##</literal> has type <literal>Double#</literal></para> </listitem>
</itemizedlist>
</para>
</sect2>
<sect2 id="negative-literals">
<title>Negative literals</title>
<para>
The literal <literal>-123</literal> is, according to
Haskell98 and Haskell 2010, desugared as
<literal>negate (fromInteger 123)</literal>.
The language extension <option>-XNegativeLiterals</option>
means that it is instead desugared as
<literal>fromInteger (-123)</literal>.
</para>
<para>
This can make a difference when the positive and negative range of
a numeric data type don't match up. For example,
in 8-bit arithmetic -128 is representable, but +128 is not.
So <literal>negate (fromInteger 128)</literal> will elicit an
unexpected integer-literal-overflow message.
</para>
</sect2>
<sect2 id="num-decimals">
<title>Fractional looking integer literals</title>
<para>
Haskell 2010 and Haskell 98 define floating literals with
the syntax <literal>1.2e6</literal>. These literals have the
type <literal>Fractional a => a</literal>.
</para>
<para>
The language extension <option>-XNumDecimals</option> allows
you to also use the floating literal syntax for instances of
<literal>Integral</literal>, and have values like
<literal>(1.2e6 :: Num a => a)</literal>
</para>
</sect2>
<sect2 id="binary-literals">
<title>Binary integer literals</title>
<para>
Haskell 2010 and Haskell 98 allows for integer literals to
be given in decimal, octal (prefixed by
<literal>0o</literal> or <literal>0O</literal>), or
hexadecimal notation (prefixed by <literal>0x</literal> or
<literal>0X</literal>).
</para>
<para>
The language extension <option>-XBinaryLiterals</option>
adds support for expressing integer literals in binary
notation with the prefix <literal>0b</literal> or
<literal>0B</literal>. For instance, the binary integer
literal <literal>0b11001001</literal> will be desugared into
<literal>fromInteger 201</literal> when
<option>-XBinaryLiterals</option> is enabled.
</para>
</sect2>
<!-- ====================== HIERARCHICAL MODULES ======================= -->
<sect2 id="hierarchical-modules">
<title>Hierarchical Modules</title>
<para>GHC supports a small extension to the syntax of module
names: a module name is allowed to contain a dot
<literal>‘.’</literal>. This is also known as the
“hierarchical module namespace” extension, because
it extends the normally flat Haskell module namespace into a
more flexible hierarchy of modules.</para>
<para>This extension has very little impact on the language
itself; modules names are <emphasis>always</emphasis> fully
qualified, so you can just think of the fully qualified module
name as <quote>the module name</quote>. In particular, this
means that the full module name must be given after the
<literal>module</literal> keyword at the beginning of the
module; for example, the module <literal>A.B.C</literal> must
begin</para>
<programlisting>module A.B.C</programlisting>
<para>It is a common strategy to use the <literal>as</literal>
keyword to save some typing when using qualified names with
hierarchical modules. For example:</para>
<programlisting>
import qualified Control.Monad.ST.Strict as ST
</programlisting>
<para>For details on how GHC searches for source and interface
files in the presence of hierarchical modules, see <xref
linkend="search-path"/>.</para>
<para>GHC comes with a large collection of libraries arranged
hierarchically; see the accompanying <ulink
url="../libraries/index.html">library
documentation</ulink>. More libraries to install are available
from <ulink
url="http://hackage.haskell.org/packages/hackage.html">HackageDB</ulink>.</para>
</sect2>
<!-- ====================== PATTERN GUARDS ======================= -->
<sect2 id="pattern-guards">
<title>Pattern guards</title>
<para>
<indexterm><primary>Pattern guards (Glasgow extension)</primary></indexterm>
The discussion that follows is an abbreviated version of Simon Peyton Jones's original <ulink url="http://research.microsoft.com/~simonpj/Haskell/guards.html">proposal</ulink>. (Note that the proposal was written before pattern guards were implemented, so refers to them as unimplemented.)
</para>
<para>
Suppose we have an abstract data type of finite maps, with a
lookup operation:
<programlisting>
lookup :: FiniteMap -> Int -> Maybe Int
</programlisting>
The lookup returns <function>Nothing</function> if the supplied key is not in the domain of the mapping, and <function>(Just v)</function> otherwise,
where <varname>v</varname> is the value that the key maps to. Now consider the following definition:
</para>
<programlisting>
clunky env var1 var2 | ok1 && ok2 = val1 + val2
| otherwise = var1 + var2
where
m1 = lookup env var1
m2 = lookup env var2
ok1 = maybeToBool m1
ok2 = maybeToBool m2
val1 = expectJust m1
val2 = expectJust m2
</programlisting>
<para>
The auxiliary functions are
</para>
<programlisting>
maybeToBool :: Maybe a -> Bool
maybeToBool (Just x) = True
maybeToBool Nothing = False
expectJust :: Maybe a -> a
expectJust (Just x) = x
expectJust Nothing = error "Unexpected Nothing"
</programlisting>
<para>
What is <function>clunky</function> doing? The guard <literal>ok1 &&
ok2</literal> checks that both lookups succeed, using
<function>maybeToBool</function> to convert the <function>Maybe</function>
types to booleans. The (lazily evaluated) <function>expectJust</function>
calls extract the values from the results of the lookups, and binds the
returned values to <varname>val1</varname> and <varname>val2</varname>
respectively. If either lookup fails, then clunky takes the
<literal>otherwise</literal> case and returns the sum of its arguments.
</para>
<para>
This is certainly legal Haskell, but it is a tremendously verbose and
un-obvious way to achieve the desired effect. Arguably, a more direct way
to write clunky would be to use case expressions:
</para>
<programlisting>
clunky env var1 var2 = case lookup env var1 of
Nothing -> fail
Just val1 -> case lookup env var2 of
Nothing -> fail
Just val2 -> val1 + val2
where
fail = var1 + var2
</programlisting>
<para>
This is a bit shorter, but hardly better. Of course, we can rewrite any set
of pattern-matching, guarded equations as case expressions; that is
precisely what the compiler does when compiling equations! The reason that
Haskell provides guarded equations is because they allow us to write down
the cases we want to consider, one at a time, independently of each other.
This structure is hidden in the case version. Two of the right-hand sides
are really the same (<function>fail</function>), and the whole expression
tends to become more and more indented.
</para>
<para>
Here is how I would write clunky:
</para>
<programlisting>
clunky env var1 var2
| Just val1 <- lookup env var1
, Just val2 <- lookup env var2
= val1 + val2
...other equations for clunky...
</programlisting>
<para>
The semantics should be clear enough. The qualifiers are matched in order.
For a <literal><-</literal> qualifier, which I call a pattern guard, the
right hand side is evaluated and matched against the pattern on the left.
If the match fails then the whole guard fails and the next equation is
tried. If it succeeds, then the appropriate binding takes place, and the
next qualifier is matched, in the augmented environment. Unlike list
comprehensions, however, the type of the expression to the right of the
<literal><-</literal> is the same as the type of the pattern to its
left. The bindings introduced by pattern guards scope over all the
remaining guard qualifiers, and over the right hand side of the equation.
</para>
<para>
Just as with list comprehensions, boolean expressions can be freely mixed
with among the pattern guards. For example:
</para>
<programlisting>
f x | [y] <- x
, y > 3
, Just z <- h y
= ...
</programlisting>
<para>
Haskell's current guards therefore emerge as a special case, in which the
qualifier list has just one element, a boolean expression.
</para>
</sect2>
<!-- ===================== View patterns =================== -->
<sect2 id="view-patterns">
<title>View patterns
</title>
<para>
View patterns are enabled by the flag <literal>-XViewPatterns</literal>.
More information and examples of view patterns can be found on the
<ulink url="http://ghc.haskell.org/trac/ghc/wiki/ViewPatterns">Wiki
page</ulink>.
</para>
<para>
View patterns are somewhat like pattern guards that can be nested inside
of other patterns. They are a convenient way of pattern-matching
against values of abstract types. For example, in a programming language
implementation, we might represent the syntax of the types of the
language as follows:
<programlisting>
type Typ
data TypView = Unit
| Arrow Typ Typ
view :: Typ -> TypView
-- additional operations for constructing Typ's ...
</programlisting>
The representation of Typ is held abstract, permitting implementations
to use a fancy representation (e.g., hash-consing to manage sharing).
Without view patterns, using this signature a little inconvenient:
<programlisting>
size :: Typ -> Integer
size t = case view t of
Unit -> 1
Arrow t1 t2 -> size t1 + size t2
</programlisting>
It is necessary to iterate the case, rather than using an equational
function definition. And the situation is even worse when the matching
against <literal>t</literal> is buried deep inside another pattern.
</para>
<para>
View patterns permit calling the view function inside the pattern and
matching against the result:
<programlisting>
size (view -> Unit) = 1
size (view -> Arrow t1 t2) = size t1 + size t2
</programlisting>
That is, we add a new form of pattern, written
<replaceable>expression</replaceable> <literal>-></literal>
<replaceable>pattern</replaceable> that means "apply the expression to
whatever we're trying to match against, and then match the result of
that application against the pattern". The expression can be any Haskell
expression of function type, and view patterns can be used wherever
patterns are used.
</para>
<para>
The semantics of a pattern <literal>(</literal>
<replaceable>exp</replaceable> <literal>-></literal>
<replaceable>pat</replaceable> <literal>)</literal> are as follows:
<itemizedlist>
<listitem> Scoping:
<para>The variables bound by the view pattern are the variables bound by
<replaceable>pat</replaceable>.
</para>
<para>
Any variables in <replaceable>exp</replaceable> are bound occurrences,
but variables bound "to the left" in a pattern are in scope. This
feature permits, for example, one argument to a function to be used in
the view of another argument. For example, the function
<literal>clunky</literal> from <xref linkend="pattern-guards" /> can be
written using view patterns as follows:
<programlisting>
clunky env (lookup env -> Just val1) (lookup env -> Just val2) = val1 + val2
...other equations for clunky...
</programlisting>
</para>
<para>
More precisely, the scoping rules are:
<itemizedlist>
<listitem>
<para>
In a single pattern, variables bound by patterns to the left of a view
pattern expression are in scope. For example:
<programlisting>
example :: Maybe ((String -> Integer,Integer), String) -> Bool
example Just ((f,_), f -> 4) = True
</programlisting>
Additionally, in function definitions, variables bound by matching earlier curried
arguments may be used in view pattern expressions in later arguments:
<programlisting>
example :: (String -> Integer) -> String -> Bool
example f (f -> 4) = True
</programlisting>
That is, the scoping is the same as it would be if the curried arguments
were collected into a tuple.
</para>
</listitem>
<listitem>
<para>
In mutually recursive bindings, such as <literal>let</literal>,
<literal>where</literal>, or the top level, view patterns in one
declaration may not mention variables bound by other declarations. That
is, each declaration must be self-contained. For example, the following
program is not allowed:
<programlisting>
let {(x -> y) = e1 ;
(y -> x) = e2 } in x
</programlisting>
(For some amplification on this design choice see
<ulink url="http://ghc.haskell.org/trac/ghc/ticket/4061">Trac #4061</ulink>.)
</para>
</listitem>
</itemizedlist>
</para>
</listitem>
<listitem><para> Typing: If <replaceable>exp</replaceable> has type
<replaceable>T1</replaceable> <literal>-></literal>
<replaceable>T2</replaceable> and <replaceable>pat</replaceable> matches
a <replaceable>T2</replaceable>, then the whole view pattern matches a
<replaceable>T1</replaceable>.
</para></listitem>
<listitem><para> Matching: To the equations in Section 3.17.3 of the
<ulink url="http://www.haskell.org/onlinereport/">Haskell 98
Report</ulink>, add the following:
<programlisting>
case v of { (e -> p) -> e1 ; _ -> e2 }
=
case (e v) of { p -> e1 ; _ -> e2 }
</programlisting>
That is, to match a variable <replaceable>v</replaceable> against a pattern
<literal>(</literal> <replaceable>exp</replaceable>
<literal>-></literal> <replaceable>pat</replaceable>
<literal>)</literal>, evaluate <literal>(</literal>
<replaceable>exp</replaceable> <replaceable> v</replaceable>
<literal>)</literal> and match the result against
<replaceable>pat</replaceable>.
</para></listitem>
<listitem><para> Efficiency: When the same view function is applied in
multiple branches of a function definition or a case expression (e.g.,
in <literal>size</literal> above), GHC makes an attempt to collect these
applications into a single nested case expression, so that the view
function is only applied once. Pattern compilation in GHC follows the
matrix algorithm described in Chapter 4 of <ulink
url="http://research.microsoft.com/~simonpj/Papers/slpj-book-1987/">The
Implementation of Functional Programming Languages</ulink>. When the
top rows of the first column of a matrix are all view patterns with the
"same" expression, these patterns are transformed into a single nested
case. This includes, for example, adjacent view patterns that line up
in a tuple, as in
<programlisting>
f ((view -> A, p1), p2) = e1
f ((view -> B, p3), p4) = e2
</programlisting>
</para>
<para> The current notion of when two view pattern expressions are "the
same" is very restricted: it is not even full syntactic equality.
However, it does include variables, literals, applications, and tuples;
e.g., two instances of <literal>view ("hi", "there")</literal> will be
collected. However, the current implementation does not compare up to
alpha-equivalence, so two instances of <literal>(x, view x ->
y)</literal> will not be coalesced.
</para>
</listitem>
</itemizedlist>
</para>
</sect2>
<!-- ===================== Pattern synonyms =================== -->
<sect2 id="pattern-synonyms">
<title>Pattern synonyms
</title>
<para>
Pattern synonyms are enabled by the flag
<literal>-XPatternSynonyms</literal>, which is required for defining
them, but <emphasis>not</emphasis> for using them. More information
and examples of view patterns can be found on the <ulink
url="http://ghc.haskell.org/trac/ghc/wiki/PatternSynonyms">Wiki
page</ulink>.
</para>
<para>
Pattern synonyms enable giving names to parametrized pattern
schemes. They can also be thought of as abstract constructors that
don't have a bearing on data representation. For example, in a
programming language implementation, we might represent types of the
language as follows:
</para>
<programlisting>
data Type = App String [Type]
</programlisting>
<para>
Here are some examples of using said representation.
Consider a few types of the <literal>Type</literal> universe encoded
like this:
</para>
<programlisting>
App "->" [t1, t2] -- t1 -> t2
App "Int" [] -- Int
App "Maybe" [App "Int" []] -- Maybe Int
</programlisting>
<para>
This representation is very generic in that no types are given special
treatment. However, some functions might need to handle some known
types specially, for example the following two functions collect all
argument types of (nested) arrow types, and recognize the
<literal>Int</literal> type, respectively:
</para>
<programlisting>
collectArgs :: Type -> [Type]
collectArgs (App "->" [t1, t2]) = t1 : collectArgs t2
collectArgs _ = []
isInt :: Type -> Bool
isInt (App "Int" []) = True
isInt _ = False
</programlisting>
<para>
Matching on <literal>App</literal> directly is both hard to read and
error prone to write. And the situation is even worse when the
matching is nested:
</para>
<programlisting>
isIntEndo :: Type -> Bool
isIntEndo (App "->" [App "Int" [], App "Int" []]) = True
isIntEndo _ = False
</programlisting>
<para>
Pattern synonyms permit abstracting from the representation to expose
matchers that behave in a constructor-like manner with respect to
pattern matching. We can create pattern synonyms for the known types
we care about, without committing the representation to them (note
that these don't have to be defined in the same module as the
<literal>Type</literal> type):
</para>
<programlisting>
pattern Arrow t1 t2 = App "->" [t1, t2]
pattern Int = App "Int" []
pattern Maybe t = App "Maybe" [t]
</programlisting>
<para>
Which enables us to rewrite our functions in a much cleaner style:
</para>
<programlisting>
collectArgs :: Type -> [Type]
collectArgs (Arrow t1 t2) = t1 : collectArgs t2
collectArgs _ = []
isInt :: Type -> Bool
isInt Int = True
isInt _ = False
isIntEndo :: Type -> Bool
isIntEndo (Arrow Int Int) = True
isIntEndo _ = False
</programlisting>
<para>
Note that in this example, the pattern synonyms
<literal>Int</literal> and <literal>Arrow</literal> can also be used
as expressions (they are <emphasis>bidirectional</emphasis>). This
is not necessarily the case: <emphasis>unidirectional</emphasis>
pattern synonyms can also be declared with the following syntax:
</para>
<programlisting>
pattern Head x <- x:xs
</programlisting>
<para>
In this case, <literal>Head</literal> <replaceable>x</replaceable>
cannot be used in expressions, only patterns, since it wouldn't
specify a value for the <replaceable>xs</replaceable> on the
right-hand side. We can give an explicit inversion of a pattern
synonym using the following syntax:
</para>
<programlisting>
pattern Head x <- x:xs where
Head x = [x]
</programlisting>
<para>
The syntax and semantics of pattern synonyms are elaborated in the
following subsections.
See the <ulink
url="http://ghc.haskell.org/trac/ghc/wiki/PatternSynonyms">Wiki
page</ulink> for more details.
</para>
<sect3> <title>Syntax and scoping of pattern synonyms</title>
<para>
A pattern synonym declaration can be either unidirectional or
bidirectional. The syntax for unidirectional pattern synonyms is:
<programlisting>
pattern Name args <- pat
</programlisting>
and the syntax for bidirectional pattern synonyms is:
<programlisting>
pattern Name args = pat
</programlisting> or
<programlisting>
pattern Name args <- pat where
Name args = expr
</programlisting>
Either prefix or infix syntax can be
used.
</para>
<para>
Pattern synonym declarations can only occur in the top level of a
module. In particular, they are not allowed as local
definitions.
</para>
<para>
The variables in the left-hand side of the definition are bound by
the pattern on the right-hand side. For implicitly bidirectional
pattern synonyms, all the variables of the right-hand side must also
occur on the left-hand side; also, wildcard patterns and view
patterns are not allowed. For unidirectional and
explicitly-bidirectional pattern synonyms, there is no restriction
on the right-hand side pattern.
</para>
<para>
Pattern synonyms cannot be defined recursively.
</para>
</sect3>
<sect3 id="patsyn-impexp"> <title>Import and export of pattern synonyms</title>
<para>
The name of the pattern synonym itself is in the same namespace as
proper data constructors. In an export or import specification,
you must prefix pattern
names with the <literal>pattern</literal> keyword, e.g.:
<programlisting>
module Example (pattern Single) where
pattern Single x = [x]
</programlisting>
Without the <literal>pattern</literal> prefix, <literal>Single</literal> would
be interpreted as a type constructor in the export list.
</para>
<para>
You may also use the <literal>pattern</literal> keyword in an import/export
specification to import or export an ordinary data constructor. For example:
<programlisting>
import Data.Maybe( pattern Just )
</programlisting>
would bring into scope the data constructor <literal>Just</literal> from the
<literal>Maybe</literal> type, without also bringing the type constructor
<literal>Maybe</literal> into scope.
</para>
</sect3>
<sect3> <title>Typing of pattern synonyms</title>
<para>
Given a pattern synonym definition of the form
<programlisting>
pattern P var1 var2 ... varN <- pat
</programlisting>
it is assigned a <emphasis>pattern type</emphasis> of the form
<programlisting>
pattern P :: CProv => CReq => t1 -> t2 -> ... -> tN -> t
</programlisting>
where <replaceable>CProv</replaceable> and
<replaceable>CReq</replaceable> are type contexts, and
<replaceable>t1</replaceable>, <replaceable>t2</replaceable>, ...,
<replaceable>tN</replaceable> and <replaceable>t</replaceable> are
types.
Notice the unusual form of the type, with two contexts <replaceable>CProv</replaceable> and <replaceable>CReq</replaceable>:
<itemizedlist>
<listitem><para><replaceable>CReq</replaceable> are the constraints <emphasis>required</emphasis> to match the pattern.</para></listitem>
<listitem><para><replaceable>CProv</replaceable> are the constraints <emphasis>made available (provided)</emphasis>
by a successful pattern match.</para></listitem>
</itemizedlist>
For example, consider
<programlisting>
data T a where
MkT :: (Show b) => a -> b -> T a
f1 :: (Eq a, Num a) => MkT a -> String
f1 (MkT 42 x) = show x
pattern ExNumPat :: (Show b) => (Num a, Eq a) => b -> T a
pattern ExNumPat x = MkT 42 x
f2 :: (Eq a, Num a) => MkT a -> String
f2 (ExNumPat x) = show x
</programlisting>
Here <literal>f1</literal> does not use pattern synonyms. To match against the
numeric pattern <literal>42</literal> <emphasis>requires</emphasis> the caller to
satisfy the constraints <literal>(Num a, Eq a)</literal>,
so they appear in <literal>f1</literal>'s type. The call to <literal>show</literal> generates a <literal>(Show b)</literal>
constraint, where <literal>b</literal> is an existentially type variable bound by the pattern match
on <literal>MkT</literal>. But the same pattern match also <emphasis>provides</emphasis> the constraint
<literal>(Show b)</literal> (see <literal>MkT</literal>'s type), and so all is well.
</para>
<para>
Exactly the same reasoning applies to <literal>ExNumPat</literal>:
matching against <literal>ExNumPat</literal> <emphasis>requires</emphasis>
the constraints <literal>(Num a, Eq a)</literal>, and <emphasis>provides</emphasis>
the constraint <literal>(Show b)</literal>.
</para>
<para>
Note also the following points
<itemizedlist>
<listitem><para>
In the common case where <replaceable>CReq</replaceable> is empty,
<literal>()</literal>, it can be omitted altogether.
</para> </listitem>
<listitem><para>
You may specify an explicit <emphasis>pattern signature</emphasis>, as
we did for <literal>ExNumPat</literal> above, to specify the type of a pattern,
just as you can for a function. As usual, the type signature can be less polymorphic
than the inferred type. For example
<programlisting>
-- Inferred type would be 'a -> [a]'
pattern SinglePair :: (a, a) -> [(a, a)]
pattern SinglePair x = [x]
</programlisting>
</para> </listitem>
<listitem><para>
The GHCi <literal>:info</literal> command shows pattern types in this format.
</para> </listitem>
<listitem><para>
For a bidirectional pattern synonym, a use of the pattern synonym as an expression has the type
<programlisting>
(CProv, CReq) => t1 -> t2 -> ... -> tN -> t
</programlisting>
So in the previous example, when used in an expression, <literal>ExNumPat</literal> has type
<programlisting>
ExNumPat :: (Show b, Num a, Eq a) => b -> T t
</programlisting>
Notice that this is a tiny bit more restrictive than the expression <literal>MkT 42 x</literal>
which would not require <literal>(Eq a)</literal>.
</para> </listitem>
<listitem><para>
Consider these two pattern synonyms:
<programlisting>
data S a where
S1 :: Bool -> S Bool
pattern P1 b = Just b -- P1 :: Bool -> Maybe Bool
pattern P2 b = S1 b -- P2 :: (b~Bool) => Bool -> S b
f :: Maybe a -> String
f (P1 x) = "no no no" -- Type-incorrect
g :: S a -> String
g (P2 b) = "yes yes yes" -- Fine
</programlisting>
Pattern <literal>P1</literal> can only match against a value of type <literal>Maybe Bool</literal>,
so function <literal>f</literal> is rejected because the type signature is <literal>Maybe a</literal>.
(To see this, imagine expanding the pattern synonym.)
</para>
<para>
On the other hand, function <literal>g</literal> works fine, because matching against <literal>P2</literal>
(which wraps the GADT <literal>S</literal>) provides the local equality <literal>(a~Bool)</literal>.
If you were to give an explicit pattern signature <literal>P2 :: Bool -> S Bool</literal>, then <literal>P2</literal>
would become less polymorphic, and would behave exactly like <literal>P1</literal> so that <literal>g</literal>
would then be rejected.
</para>
<para>
In short, if you want GADT-like behaviour for pattern synonyms,
then (unlike unlike concrete data constructors like <literal>S1</literal>)
you must write its type with explicit provided equalities.
For a concrete data constructor like <literal>S1</literal> you can write
its type signature as either <literal>S1 :: Bool -> S Bool</literal> or
<literal>S1 :: (b~Bool) => Bool -> S b</literal>; the two are equivalent.
Not so for pattern synonyms: the two forms are different, in order to
distinguish the two cases above. (See <ulink url="https://ghc.haskell.org/trac/ghc/ticket/9953">Trac #9953</ulink> for
discussion of this choice.)
</para></listitem>
</itemizedlist>
</para>
</sect3>
<sect3><title>Matching of pattern synonyms</title>
<para>
A pattern synonym occurrence in a pattern is evaluated by first
matching against the pattern synonym itself, and then on the argument
patterns. For example, in the following program, <literal>f</literal>
and <literal>f'</literal> are equivalent:
</para>
<programlisting>
pattern Pair x y <- [x, y]
f (Pair True True) = True
f _ = False
f' [x, y] | True <- x, True <- y = True
f' _ = False
</programlisting>
<para>
Note that the strictness of <literal>f</literal> differs from that
of <literal>g</literal> defined below:
<programlisting>
g [True, True] = True
g _ = False
*Main> f (False:undefined)
*** Exception: Prelude.undefined
*Main> g (False:undefined)
False
</programlisting>
</para>
</sect3>
</sect2>
<!-- ===================== n+k patterns =================== -->
<sect2 id="n-k-patterns">
<title>n+k patterns</title>
<indexterm><primary><option>-XNPlusKPatterns</option></primary></indexterm>
<para>
<literal>n+k</literal> pattern support is disabled by default. To enable
it, you can use the <option>-XNPlusKPatterns</option> flag.
</para>
</sect2>
<!-- ===================== Traditional record syntax =================== -->
<sect2 id="traditional-record-syntax">
<title>Traditional record syntax</title>
<indexterm><primary><option>-XNoTraditionalRecordSyntax</option></primary></indexterm>
<para>
Traditional record syntax, such as <literal>C {f = x}</literal>, is enabled by default.
To disable it, you can use the <option>-XNoTraditionalRecordSyntax</option> flag.
</para>
</sect2>
<!-- ===================== Recursive do-notation =================== -->
<sect2 id="recursive-do-notation">
<title>The recursive do-notation
</title>
<para>
The do-notation of Haskell 98 does not allow <emphasis>recursive bindings</emphasis>,
that is, the variables bound in a do-expression are visible only in the textually following
code block. Compare this to a let-expression, where bound variables are visible in the entire binding
group.
</para>
<para>
It turns out that such recursive bindings do indeed make sense for a variety of monads, but
not all. In particular, recursion in this sense requires a fixed-point operator for the underlying
monad, captured by the <literal>mfix</literal> method of the <literal>MonadFix</literal> class, defined in <literal>Control.Monad.Fix</literal> as follows:
<programlisting>
class Monad m => MonadFix m where
mfix :: (a -> m a) -> m a
</programlisting>
Haskell's
<literal>Maybe</literal>, <literal>[]</literal> (list), <literal>ST</literal> (both strict and lazy versions),
<literal>IO</literal>, and many other monads have <literal>MonadFix</literal> instances. On the negative
side, the continuation monad, with the signature <literal>(a -> r) -> r</literal>, does not.
</para>
<para>
For monads that do belong to the <literal>MonadFix</literal> class, GHC provides
an extended version of the do-notation that allows recursive bindings.
The <option>-XRecursiveDo</option> (language pragma: <literal>RecursiveDo</literal>)
provides the necessary syntactic support, introducing the keywords <literal>mdo</literal> and
<literal>rec</literal> for higher and lower levels of the notation respectively. Unlike
bindings in a <literal>do</literal> expression, those introduced by <literal>mdo</literal> and <literal>rec</literal>
are recursively defined, much like in an ordinary let-expression. Due to the new
keyword <literal>mdo</literal>, we also call this notation the <emphasis>mdo-notation</emphasis>.
</para>
<para>
Here is a simple (albeit contrived) example:
<programlisting>
{-# LANGUAGE RecursiveDo #-}
justOnes = mdo { xs <- Just (1:xs)
; return (map negate xs) }
</programlisting>
or equivalently
<programlisting>
{-# LANGUAGE RecursiveDo #-}
justOnes = do { rec { xs <- Just (1:xs) }
; return (map negate xs) }
</programlisting>
As you can guess <literal>justOnes</literal> will evaluate to <literal>Just [-1,-1,-1,...</literal>.
</para>
<para>
GHC's implementation the mdo-notation closely follows the original translation as described in the paper
<ulink url="https://sites.google.com/site/leventerkok/recdo.pdf">A recursive do for Haskell</ulink>, which
in turn is based on the work <ulink url="http://sites.google.com/site/leventerkok/erkok-thesis.pdf">Value Recursion
in Monadic Computations</ulink>. Furthermore, GHC extends the syntax described in the former paper
with a lower level syntax flagged by the <literal>rec</literal> keyword, as we describe next.
</para>
<sect3>
<title>Recursive binding groups</title>
<para>
The flag <option>-XRecursiveDo</option> also introduces a new keyword <literal>rec</literal>, which wraps a
mutually-recursive group of monadic statements inside a <literal>do</literal> expression, producing a single statement.
Similar to a <literal>let</literal> statement inside a <literal>do</literal>, variables bound in
the <literal>rec</literal> are visible throughout the <literal>rec</literal> group, and below it. For example, compare
<programlisting>
do { a <- getChar do { a <- getChar
; let { r1 = f a r2 ; rec { r1 <- f a r2
; ; r2 = g r1 } ; ; r2 <- g r1 }
; return (r1 ++ r2) } ; return (r1 ++ r2) }
</programlisting>
In both cases, <literal>r1</literal> and <literal>r2</literal> are available both throughout
the <literal>let</literal> or <literal>rec</literal> block, and in the statements that follow it.
The difference is that <literal>let</literal> is non-monadic, while <literal>rec</literal> is monadic.
(In Haskell <literal>let</literal> is really <literal>letrec</literal>, of course.)
</para>
<para>
The semantics of <literal>rec</literal> is fairly straightforward. Whenever GHC finds a <literal>rec</literal>
group, it will compute its set of bound variables, and will introduce an appropriate call
to the underlying monadic value-recursion operator <literal>mfix</literal>, belonging to the
<literal>MonadFix</literal> class. Here is an example:
<programlisting>
rec { b <- f a c ===> (b,c) <- mfix (\ ~(b,c) -> do { b <- f a c
; c <- f b a } ; c <- f b a
; return (b,c) })
</programlisting>
As usual, the meta-variables <literal>b</literal>, <literal>c</literal> etc., can be arbitrary patterns.
In general, the statement <literal>rec <replaceable>ss</replaceable></literal> is desugared to the statement
<programlisting>
<replaceable>vs</replaceable> <- mfix (\ ~<replaceable>vs</replaceable> -> do { <replaceable>ss</replaceable>; return <replaceable>vs</replaceable> })
</programlisting>
where <replaceable>vs</replaceable> is a tuple of the variables bound by <replaceable>ss</replaceable>.
</para>
<para>
Note in particular that the translation for a <literal>rec</literal> block only involves wrapping a call
to <literal>mfix</literal>: it performs no other analysis on the bindings. The latter is the task
for the <literal>mdo</literal> notation, which is described next.
</para>
</sect3>
<sect3>
<title>The <literal>mdo</literal> notation</title>
<para>
A <literal>rec</literal>-block tells the compiler where precisely the recursive knot should be tied. It turns out that
the placement of the recursive knots can be rather delicate: in particular, we would like the knots to be wrapped
around as minimal groups as possible. This process is known as <emphasis>segmentation</emphasis>, and is described
in detail in Section 3.2 of <ulink url="https://sites.google.com/site/leventerkok/recdo.pdf">A recursive do for
Haskell</ulink>. Segmentation improves polymorphism and reduces the size of the recursive knot. Most importantly, it avoids
unnecessary interference caused by a fundamental issue with the so-called <emphasis>right-shrinking</emphasis>
axiom for monadic recursion. In brief, most monads of interest (IO, strict state, etc.) do <emphasis>not</emphasis>
have recursion operators that satisfy this axiom, and thus not performing segmentation can cause unnecessary
interference, changing the termination behavior of the resulting translation.
(Details can be found in Sections 3.1 and 7.2.2 of
<ulink url="http://sites.google.com/site/leventerkok/erkok-thesis.pdf">Value Recursion in Monadic Computations</ulink>.)
</para>
<para>
The <literal>mdo</literal> notation removes the burden of placing
explicit <literal>rec</literal> blocks in the code. Unlike an
ordinary <literal>do</literal> expression, in which variables bound by
statements are only in scope for later statements, variables bound in
an <literal>mdo</literal> expression are in scope for all statements
of the expression. The compiler then automatically identifies minimal
mutually recursively dependent segments of statements, treating them as
if the user had wrapped a <literal>rec</literal> qualifier around them.
</para>
<para>
The definition is syntactic:
</para>
<itemizedlist>
<listitem>
<para>
A generator <replaceable>g</replaceable>
<emphasis>depends</emphasis> on a textually following generator
<replaceable>g'</replaceable>, if
</para>
<itemizedlist>
<listitem>
<para>
<replaceable>g'</replaceable> defines a variable that
is used by <replaceable>g</replaceable>, or
</para>
</listitem>
<listitem>
<para>
<replaceable>g'</replaceable> textually appears between
<replaceable>g</replaceable> and
<replaceable>g''</replaceable>, where <replaceable>g</replaceable>
depends on <replaceable>g''</replaceable>.
</para>
</listitem>
</itemizedlist>
</listitem>
<listitem>
<para>
A <emphasis>segment</emphasis> of a given
<literal>mdo</literal>-expression is a minimal sequence of generators
such that no generator of the sequence depends on an outside
generator. As a special case, although it is not a generator,
the final expression in an <literal>mdo</literal>-expression is
considered to form a segment by itself.
</para>
</listitem>
</itemizedlist>
<para>
Segments in this sense are
related to <emphasis>strongly-connected components</emphasis> analysis,
with the exception that bindings in a segment cannot be reordered and
must be contiguous.
</para>
<para>
Here is an example <literal>mdo</literal>-expression, and its translation to <literal>rec</literal> blocks:
<programlisting>
mdo { a <- getChar ===> do { a <- getChar
; b <- f a c ; rec { b <- f a c
; c <- f b a ; ; c <- f b a }
; z <- h a b ; z <- h a b
; d <- g d e ; rec { d <- g d e
; e <- g a z ; ; e <- g a z }
; putChar c } ; putChar c }
</programlisting>
Note that a given <literal>mdo</literal> expression can cause the creation of multiple <literal>rec</literal> blocks.
If there are no recursive dependencies, <literal>mdo</literal> will introduce no <literal>rec</literal> blocks. In this
latter case an <literal>mdo</literal> expression is precisely the same as a <literal>do</literal> expression, as one
would expect.
</para>
<para>
In summary, given an <literal>mdo</literal> expression, GHC first performs segmentation, introducing
<literal>rec</literal> blocks to wrap over minimal recursive groups. Then, each resulting
<literal>rec</literal> is desugared, using a call to <literal>Control.Monad.Fix.mfix</literal> as described
in the previous section. The original <literal>mdo</literal>-expression typechecks exactly when the desugared
version would do so.
</para>
<para>
Here are some other important points in using the recursive-do notation:
<itemizedlist>
<listitem>
<para>
It is enabled with the flag <literal>-XRecursiveDo</literal>, or the <literal>LANGUAGE RecursiveDo</literal>
pragma. (The same flag enables both <literal>mdo</literal>-notation, and the use of <literal>rec</literal>
blocks inside <literal>do</literal> expressions.)
</para>
</listitem>
<listitem>
<para>
<literal>rec</literal> blocks can also be used inside <literal>mdo</literal>-expressions, which will be
treated as a single statement. However, it is good style to either use <literal>mdo</literal> or
<literal>rec</literal> blocks in a single expression.
</para>
</listitem>
<listitem>
<para>
If recursive bindings are required for a monad, then that monad must be declared an instance of
the <literal>MonadFix</literal> class.
</para>
</listitem>
<listitem>
<para>
The following instances of <literal>MonadFix</literal> are automatically provided: List, Maybe, IO.
Furthermore, the <literal>Control.Monad.ST</literal> and <literal>Control.Monad.ST.Lazy</literal>
modules provide the instances of the <literal>MonadFix</literal> class for Haskell's internal
state monad (strict and lazy, respectively).
</para>
</listitem>
<listitem>
<para>
Like <literal>let</literal> and <literal>where</literal> bindings, name shadowing is not allowed within
an <literal>mdo</literal>-expression or a <literal>rec</literal>-block; that is, all the names bound in
a single <literal>rec</literal> must be distinct. (GHC will complain if this is not the case.)
</para>
</listitem>
</itemizedlist>
</para>
</sect3>
</sect2>
<!-- ===================== PARALLEL LIST COMPREHENSIONS =================== -->
<sect2 id="parallel-list-comprehensions">
<title>Parallel List Comprehensions</title>
<indexterm><primary>list comprehensions</primary><secondary>parallel</secondary>
</indexterm>
<indexterm><primary>parallel list comprehensions</primary>
</indexterm>
<para>Parallel list comprehensions are a natural extension to list
comprehensions. List comprehensions can be thought of as a nice
syntax for writing maps and filters. Parallel comprehensions
extend this to include the <literal>zipWith</literal> family.</para>
<para>A parallel list comprehension has multiple independent
branches of qualifier lists, each separated by a `|' symbol. For
example, the following zips together two lists:</para>
<programlisting>
[ (x, y) | x <- xs | y <- ys ]
</programlisting>
<para>The behaviour of parallel list comprehensions follows that of
zip, in that the resulting list will have the same length as the
shortest branch.</para>
<para>We can define parallel list comprehensions by translation to
regular comprehensions. Here's the basic idea:</para>
<para>Given a parallel comprehension of the form: </para>
<programlisting>
[ e | p1 <- e11, p2 <- e12, ...
| q1 <- e21, q2 <- e22, ...
...
]
</programlisting>
<para>This will be translated to: </para>
<programlisting>
[ e | ((p1,p2), (q1,q2), ...) <- zipN [(p1,p2) | p1 <- e11, p2 <- e12, ...]
[(q1,q2) | q1 <- e21, q2 <- e22, ...]
...
]
</programlisting>
<para>where `zipN' is the appropriate zip for the given number of
branches.</para>
</sect2>
<!-- ===================== TRANSFORM LIST COMPREHENSIONS =================== -->
<sect2 id="generalised-list-comprehensions">
<title>Generalised (SQL-Like) List Comprehensions</title>
<indexterm><primary>list comprehensions</primary><secondary>generalised</secondary>
</indexterm>
<indexterm><primary>extended list comprehensions</primary>
</indexterm>
<indexterm><primary>group</primary></indexterm>
<indexterm><primary>sql</primary></indexterm>
<para>Generalised list comprehensions are a further enhancement to the
list comprehension syntactic sugar to allow operations such as sorting
and grouping which are familiar from SQL. They are fully described in the
paper <ulink url="http://research.microsoft.com/~simonpj/papers/list-comp">
Comprehensive comprehensions: comprehensions with "order by" and "group by"</ulink>,
except that the syntax we use differs slightly from the paper.</para>
<para>The extension is enabled with the flag <option>-XTransformListComp</option>.</para>
<para>Here is an example:
<programlisting>
employees = [ ("Simon", "MS", 80)
, ("Erik", "MS", 100)
, ("Phil", "Ed", 40)
, ("Gordon", "Ed", 45)
, ("Paul", "Yale", 60)]
output = [ (the dept, sum salary)
| (name, dept, salary) <- employees
, then group by dept using groupWith
, then sortWith by (sum salary)
, then take 5 ]
</programlisting>
In this example, the list <literal>output</literal> would take on
the value:
<programlisting>
[("Yale", 60), ("Ed", 85), ("MS", 180)]
</programlisting>
</para>
<para>There are three new keywords: <literal>group</literal>, <literal>by</literal>, and <literal>using</literal>.
(The functions <literal>sortWith</literal> and <literal>groupWith</literal> are not keywords; they are ordinary
functions that are exported by <literal>GHC.Exts</literal>.)</para>
<para>There are five new forms of comprehension qualifier,
all introduced by the (existing) keyword <literal>then</literal>:
<itemizedlist>
<listitem>
<programlisting>
then f
</programlisting>
This statement requires that <literal>f</literal> have the type <literal>
forall a. [a] -> [a]</literal>. You can see an example of its use in the
motivating example, as this form is used to apply <literal>take 5</literal>.
</listitem>
<listitem>
<para>
<programlisting>
then f by e
</programlisting>
This form is similar to the previous one, but allows you to create a function
which will be passed as the first argument to f. As a consequence f must have
the type <literal>forall a. (a -> t) -> [a] -> [a]</literal>. As you can see
from the type, this function lets f "project out" some information
from the elements of the list it is transforming.</para>
<para>An example is shown in the opening example, where <literal>sortWith</literal>
is supplied with a function that lets it find out the <literal>sum salary</literal>
for any item in the list comprehension it transforms.</para>
</listitem>
<listitem>
<programlisting>
then group by e using f
</programlisting>
<para>This is the most general of the grouping-type statements. In this form,
f is required to have type <literal>forall a. (a -> t) -> [a] -> [[a]]</literal>.
As with the <literal>then f by e</literal> case above, the first argument
is a function supplied to f by the compiler which lets it compute e on every
element of the list being transformed. However, unlike the non-grouping case,
f additionally partitions the list into a number of sublists: this means that
at every point after this statement, binders occurring before it in the comprehension
refer to <emphasis>lists</emphasis> of possible values, not single values. To help understand
this, let's look at an example:</para>
<programlisting>
-- This works similarly to groupWith in GHC.Exts, but doesn't sort its input first
groupRuns :: Eq b => (a -> b) -> [a] -> [[a]]
groupRuns f = groupBy (\x y -> f x == f y)
output = [ (the x, y)
| x <- ([1..3] ++ [1..2])
, y <- [4..6]
, then group by x using groupRuns ]
</programlisting>
<para>This results in the variable <literal>output</literal> taking on the value below:</para>
<programlisting>
[(1, [4, 5, 6]), (2, [4, 5, 6]), (3, [4, 5, 6]), (1, [4, 5, 6]), (2, [4, 5, 6])]
</programlisting>
<para>Note that we have used the <literal>the</literal> function to change the type
of x from a list to its original numeric type. The variable y, in contrast, is left
unchanged from the list form introduced by the grouping.</para>
</listitem>
<listitem>
<programlisting>
then group using f
</programlisting>
<para>With this form of the group statement, f is required to simply have the type
<literal>forall a. [a] -> [[a]]</literal>, which will be used to group up the
comprehension so far directly. An example of this form is as follows:</para>
<programlisting>
output = [ x
| y <- [1..5]
, x <- "hello"
, then group using inits]
</programlisting>
<para>This will yield a list containing every prefix of the word "hello" written out 5 times:</para>
<programlisting>
["","h","he","hel","hell","hello","helloh","hellohe","hellohel","hellohell","hellohello","hellohelloh",...]
</programlisting>
</listitem>
</itemizedlist>
</para>
</sect2>
<!-- ===================== MONAD COMPREHENSIONS ===================== -->
<sect2 id="monad-comprehensions">
<title>Monad comprehensions</title>
<indexterm><primary>monad comprehensions</primary></indexterm>
<para>
Monad comprehensions generalise the list comprehension notation,
including parallel comprehensions
(<xref linkend="parallel-list-comprehensions"/>) and
transform comprehensions (<xref linkend="generalised-list-comprehensions"/>)
to work for any monad.
</para>
<para>Monad comprehensions support:</para>
<itemizedlist>
<listitem>
<para>
Bindings:
</para>
<programlisting>
[ x + y | x <- Just 1, y <- Just 2 ]
</programlisting>
<para>
Bindings are translated with the <literal>(>>=)</literal> and
<literal>return</literal> functions to the usual do-notation:
</para>
<programlisting>
do x <- Just 1
y <- Just 2
return (x+y)
</programlisting>
</listitem>
<listitem>
<para>
Guards:
</para>
<programlisting>
[ x | x <- [1..10], x <= 5 ]
</programlisting>
<para>
Guards are translated with the <literal>guard</literal> function,
which requires a <literal>MonadPlus</literal> instance:
</para>
<programlisting>
do x <- [1..10]
guard (x <= 5)
return x
</programlisting>
</listitem>
<listitem>
<para>
Transform statements (as with <literal>-XTransformListComp</literal>):
</para>
<programlisting>
[ x+y | x <- [1..10], y <- [1..x], then take 2 ]
</programlisting>
<para>
This translates to:
</para>
<programlisting>
do (x,y) <- take 2 (do x <- [1..10]
y <- [1..x]
return (x,y))
return (x+y)
</programlisting>
</listitem>
<listitem>
<para>
Group statements (as with <literal>-XTransformListComp</literal>):
</para>
<programlisting>
[ x | x <- [1,1,2,2,3], then group by x using GHC.Exts.groupWith ]
[ x | x <- [1,1,2,2,3], then group using myGroup ]
</programlisting>
</listitem>
<listitem>
<para>
Parallel statements (as with <literal>-XParallelListComp</literal>):
</para>
<programlisting>
[ (x+y) | x <- [1..10]
| y <- [11..20]
]
</programlisting>
<para>
Parallel statements are translated using the
<literal>mzip</literal> function, which requires a
<literal>MonadZip</literal> instance defined in
<ulink url="&libraryBaseLocation;/Control-Monad-Zip.html"><literal>Control.Monad.Zip</literal></ulink>:
</para>
<programlisting>
do (x,y) <- mzip (do x <- [1..10]
return x)
(do y <- [11..20]
return y)
return (x+y)
</programlisting>
</listitem>
</itemizedlist>
<para>
All these features are enabled by default if the
<literal>MonadComprehensions</literal> extension is enabled. The types
and more detailed examples on how to use comprehensions are explained
in the previous chapters <xref
linkend="generalised-list-comprehensions"/> and <xref
linkend="parallel-list-comprehensions"/>. In general you just have
to replace the type <literal>[a]</literal> with the type
<literal>Monad m => m a</literal> for monad comprehensions.
</para>
<para>
Note: Even though most of these examples are using the list monad,
monad comprehensions work for any monad.
The <literal>base</literal> package offers all necessary instances for
lists, which make <literal>MonadComprehensions</literal> backward
compatible to built-in, transform and parallel list comprehensions.
</para>
<para> More formally, the desugaring is as follows. We write <literal>D[ e | Q]</literal>
to mean the desugaring of the monad comprehension <literal>[ e | Q]</literal>:
<programlisting>
Expressions: e
Declarations: d
Lists of qualifiers: Q,R,S
-- Basic forms
D[ e | ] = return e
D[ e | p <- e, Q ] = e >>= \p -> D[ e | Q ]
D[ e | e, Q ] = guard e >> \p -> D[ e | Q ]
D[ e | let d, Q ] = let d in D[ e | Q ]
-- Parallel comprehensions (iterate for multiple parallel branches)
D[ e | (Q | R), S ] = mzip D[ Qv | Q ] D[ Rv | R ] >>= \(Qv,Rv) -> D[ e | S ]
-- Transform comprehensions
D[ e | Q then f, R ] = f D[ Qv | Q ] >>= \Qv -> D[ e | R ]
D[ e | Q then f by b, R ] = f (\Qv -> b) D[ Qv | Q ] >>= \Qv -> D[ e | R ]
D[ e | Q then group using f, R ] = f D[ Qv | Q ] >>= \ys ->
case (fmap selQv1 ys, ..., fmap selQvn ys) of
Qv -> D[ e | R ]
D[ e | Q then group by b using f, R ] = f (\Qv -> b) D[ Qv | Q ] >>= \ys ->
case (fmap selQv1 ys, ..., fmap selQvn ys) of
Qv -> D[ e | R ]
where Qv is the tuple of variables bound by Q (and used subsequently)
selQvi is a selector mapping Qv to the ith component of Qv
Operator Standard binding Expected type
--------------------------------------------------------------------
return GHC.Base t1 -> m t2
(>>=) GHC.Base m1 t1 -> (t2 -> m2 t3) -> m3 t3
(>>) GHC.Base m1 t1 -> m2 t2 -> m3 t3
guard Control.Monad t1 -> m t2
fmap GHC.Base forall a b. (a->b) -> n a -> n b
mzip Control.Monad.Zip forall a b. m a -> m b -> m (a,b)
</programlisting>
The comprehension should typecheck when its desugaring would typecheck.
</para>
<para>
Monad comprehensions support rebindable syntax (<xref linkend="rebindable-syntax"/>).
Without rebindable
syntax, the operators from the "standard binding" module are used; with
rebindable syntax, the operators are looked up in the current lexical scope.
For example, parallel comprehensions will be typechecked and desugared
using whatever "<literal>mzip</literal>" is in scope.
</para>
<para>
The rebindable operators must have the "Expected type" given in the
table above. These types are surprisingly general. For example, you can
use a bind operator with the type
<programlisting>
(>>=) :: T x y a -> (a -> T y z b) -> T x z b
</programlisting>
In the case of transform comprehensions, notice that the groups are
parameterised over some arbitrary type <literal>n</literal> (provided it
has an <literal>fmap</literal>, as well as
the comprehension being over an arbitrary monad.
</para>
</sect2>
<!-- ===================== REBINDABLE SYNTAX =================== -->
<sect2 id="rebindable-syntax">
<title>Rebindable syntax and the implicit Prelude import</title>
<para><indexterm><primary>-XNoImplicitPrelude
option</primary></indexterm> GHC normally imports
<filename>Prelude.hi</filename> files for you. If you'd
rather it didn't, then give it a
<option>-XNoImplicitPrelude</option> option. The idea is
that you can then import a Prelude of your own. (But don't
call it <literal>Prelude</literal>; the Haskell module
namespace is flat, and you must not conflict with any
Prelude module.)</para>
<para>Suppose you are importing a Prelude of your own
in order to define your own numeric class
hierarchy. It completely defeats that purpose if the
literal "1" means "<literal>Prelude.fromInteger
1</literal>", which is what the Haskell Report specifies.
So the <option>-XRebindableSyntax</option>
flag causes
the following pieces of built-in syntax to refer to
<emphasis>whatever is in scope</emphasis>, not the Prelude
versions:
<itemizedlist>
<listitem>
<para>An integer literal <literal>368</literal> means
"<literal>fromInteger (368::Integer)</literal>", rather than
"<literal>Prelude.fromInteger (368::Integer)</literal>".
</para> </listitem>
<listitem><para>Fractional literals are handed in just the same way,
except that the translation is
<literal>fromRational (3.68::Rational)</literal>.
</para> </listitem>
<listitem><para>The equality test in an overloaded numeric pattern
uses whatever <literal>(==)</literal> is in scope.
</para> </listitem>
<listitem><para>The subtraction operation, and the
greater-than-or-equal test, in <literal>n+k</literal> patterns
use whatever <literal>(-)</literal> and <literal>(>=)</literal> are in scope.
</para></listitem>
<listitem>
<para>Negation (e.g. "<literal>- (f x)</literal>")
means "<literal>negate (f x)</literal>", both in numeric
patterns, and expressions.
</para></listitem>
<listitem>
<para>Conditionals (e.g. "<literal>if</literal> e1 <literal>then</literal> e2 <literal>else</literal> e3")
means "<literal>ifThenElse</literal> e1 e2 e3". However <literal>case</literal> expressions are unaffected.
</para></listitem>
<listitem>
<para>"Do" notation is translated using whatever
functions <literal>(>>=)</literal>,
<literal>(>>)</literal>, and <literal>fail</literal>,
are in scope (not the Prelude
versions). List comprehensions, <literal>mdo</literal>
(<xref linkend="recursive-do-notation"/>), and parallel array
comprehensions, are unaffected. </para></listitem>
<listitem>
<para>Arrow
notation (see <xref linkend="arrow-notation"/>)
uses whatever <literal>arr</literal>,
<literal>(>>>)</literal>, <literal>first</literal>,
<literal>app</literal>, <literal>(|||)</literal> and
<literal>loop</literal> functions are in scope. But unlike the
other constructs, the types of these functions must match the
Prelude types very closely. Details are in flux; if you want
to use this, ask!
</para></listitem>
</itemizedlist>
<option>-XRebindableSyntax</option> implies <option>-XNoImplicitPrelude</option>.
</para>
<para>
In all cases (apart from arrow notation), the static semantics should be that of the desugared form,
even if that is a little unexpected. For example, the
static semantics of the literal <literal>368</literal>
is exactly that of <literal>fromInteger (368::Integer)</literal>; it's fine for
<literal>fromInteger</literal> to have any of the types:
<programlisting>
fromInteger :: Integer -> Integer
fromInteger :: forall a. Foo a => Integer -> a
fromInteger :: Num a => a -> Integer
fromInteger :: Integer -> Bool -> Bool
</programlisting>
</para>
<para>Be warned: this is an experimental facility, with
fewer checks than usual. Use <literal>-dcore-lint</literal>
to typecheck the desugared program. If Core Lint is happy
you should be all right.</para>
</sect2>
<sect2 id="postfix-operators">
<title>Postfix operators</title>
<para>
The <option>-XPostfixOperators</option> flag enables a small
extension to the syntax of left operator sections, which allows you to
define postfix operators. The extension is this: the left section
<programlisting>
(e !)
</programlisting>
is equivalent (from the point of view of both type checking and execution) to the expression
<programlisting>
((!) e)
</programlisting>
(for any expression <literal>e</literal> and operator <literal>(!)</literal>.
The strict Haskell 98 interpretation is that the section is equivalent to
<programlisting>
(\y -> (!) e y)
</programlisting>
That is, the operator must be a function of two arguments. GHC allows it to
take only one argument, and that in turn allows you to write the function
postfix.
</para>
<para>The extension does not extend to the left-hand side of function
definitions; you must define such a function in prefix form.</para>
</sect2>
<sect2 id="tuple-sections">
<title>Tuple sections</title>
<para>
The <option>-XTupleSections</option> flag enables Python-style partially applied
tuple constructors. For example, the following program
<programlisting>
(, True)
</programlisting>
is considered to be an alternative notation for the more unwieldy alternative
<programlisting>
\x -> (x, True)
</programlisting>
You can omit any combination of arguments to the tuple, as in the following
<programlisting>
(, "I", , , "Love", , 1337)
</programlisting>
which translates to
<programlisting>
\a b c d -> (a, "I", b, c, "Love", d, 1337)
</programlisting>
</para>
<para>
If you have <link linkend="unboxed-tuples">unboxed tuples</link> enabled, tuple sections
will also be available for them, like so
<programlisting>
(# , True #)
</programlisting>
Because there is no unboxed unit tuple, the following expression
<programlisting>
(# #)
</programlisting>
continues to stand for the unboxed singleton tuple data constructor.
</para>
</sect2>
<sect2 id="lambda-case">
<title>Lambda-case</title>
<para>
The <option>-XLambdaCase</option> flag enables expressions of the form
<programlisting>
\case { p1 -> e1; ...; pN -> eN }
</programlisting>
which is equivalent to
<programlisting>
\freshName -> case freshName of { p1 -> e1; ...; pN -> eN }
</programlisting>
Note that <literal>\case</literal> starts a layout, so you can write
<programlisting>
\case
p1 -> e1
...
pN -> eN
</programlisting>
</para>
</sect2>
<sect2 id="empty-case">
<title>Empty case alternatives</title>
<para>
The <option>-XEmptyCase</option> flag enables
case expressions, or lambda-case expressions, that have no alternatives,
thus:
<programlisting>
case e of { } -- No alternatives
or
\case { } -- -XLambdaCase is also required
</programlisting>
This can be useful when you know that the expression being scrutinised
has no non-bottom values. For example:
<programlisting>
data Void
f :: Void -> Int
f x = case x of { }
</programlisting>
With dependently-typed features it is more useful
(see <ulink url="http://ghc.haskell.org/trac/ghc/ticket/2431">Trac</ulink>).
For example, consider these two candidate definitions of <literal>absurd</literal>:
<programlisting>
data a :==: b where
Refl :: a :==: a
absurd :: True :~: False -> a
absurd x = error "absurd" -- (A)
absurd x = case x of {} -- (B)
</programlisting>
We much prefer (B). Why? Because GHC can figure out that <literal>(True :~: False)</literal>
is an empty type. So (B) has no partiality and GHC should be able to compile with
<option>-fwarn-incomplete-patterns</option>. (Though the pattern match checking is not
yet clever enough to do that.)
On the other hand (A) looks dangerous, and GHC doesn't check to make
sure that, in fact, the function can never get called.
</para>
</sect2>
<sect2 id="multi-way-if">
<title>Multi-way if-expressions</title>
<para>
With <option>-XMultiWayIf</option> flag GHC accepts conditional expressions
with multiple branches:
<programlisting>
if | guard1 -> expr1
| ...
| guardN -> exprN
</programlisting>
which is roughly equivalent to
<programlisting>
case () of
_ | guard1 -> expr1
...
_ | guardN -> exprN
</programlisting>
</para>
<para>Multi-way if expressions introduce a new layout context. So the
example above is equivalent to:
<programlisting>
if { | guard1 -> expr1
; | ...
; | guardN -> exprN
}
</programlisting>
The following behaves as expected:
<programlisting>
if | guard1 -> if | guard2 -> expr2
| guard3 -> expr3
| guard4 -> expr4
</programlisting>
because layout translates it as
<programlisting>
if { | guard1 -> if { | guard2 -> expr2
; | guard3 -> expr3
}
; | guard4 -> expr4
}
</programlisting>
Layout with multi-way if works in the same way as other layout
contexts, except that the semi-colons between guards in a multi-way if
are optional. So it is not necessary to line up all the guards at the
same column; this is consistent with the way guards work in function
definitions and case expressions.
</para>
</sect2>
<sect2 id="disambiguate-fields">
<title>Record field disambiguation</title>
<para>
In record construction and record pattern matching
it is entirely unambiguous which field is referred to, even if there are two different
data types in scope with a common field name. For example:
<programlisting>
module M where
data S = MkS { x :: Int, y :: Bool }
module Foo where
import M
data T = MkT { x :: Int }
ok1 (MkS { x = n }) = n+1 -- Unambiguous
ok2 n = MkT { x = n+1 } -- Unambiguous
bad1 k = k { x = 3 } -- Ambiguous
bad2 k = x k -- Ambiguous
</programlisting>
Even though there are two <literal>x</literal>'s in scope,
it is clear that the <literal>x</literal> in the pattern in the
definition of <literal>ok1</literal> can only mean the field
<literal>x</literal> from type <literal>S</literal>. Similarly for
the function <literal>ok2</literal>. However, in the record update
in <literal>bad1</literal> and the record selection in <literal>bad2</literal>
it is not clear which of the two types is intended.
</para>
<para>
Haskell 98 regards all four as ambiguous, but with the
<option>-XDisambiguateRecordFields</option> flag, GHC will accept
the former two. The rules are precisely the same as those for instance
declarations in Haskell 98, where the method names on the left-hand side
of the method bindings in an instance declaration refer unambiguously
to the method of that class (provided they are in scope at all), even
if there are other variables in scope with the same name.
This reduces the clutter of qualified names when you import two
records from different modules that use the same field name.
</para>
<para>
Some details:
<itemizedlist>
<listitem><para>
Field disambiguation can be combined with punning (see <xref linkend="record-puns"/>). For example:
<programlisting>
module Foo where
import M
x=True
ok3 (MkS { x }) = x+1 -- Uses both disambiguation and punning
</programlisting>
</para></listitem>
<listitem><para>
With <option>-XDisambiguateRecordFields</option> you can use <emphasis>unqualified</emphasis>
field names even if the corresponding selector is only in scope <emphasis>qualified</emphasis>
For example, assuming the same module <literal>M</literal> as in our earlier example, this is legal:
<programlisting>
module Foo where
import qualified M -- Note qualified
ok4 (M.MkS { x = n }) = n+1 -- Unambiguous
</programlisting>
Since the constructor <literal>MkS</literal> is only in scope qualified, you must
name it <literal>M.MkS</literal>, but the field <literal>x</literal> does not need
to be qualified even though <literal>M.x</literal> is in scope but <literal>x</literal>
is not. (In effect, it is qualified by the constructor.)
</para></listitem>
</itemizedlist>
</para>
</sect2>
<!-- ===================== Record puns =================== -->
<sect2 id="record-puns">
<title>Record puns
</title>
<para>
Record puns are enabled by the flag <literal>-XNamedFieldPuns</literal>.
</para>
<para>
When using records, it is common to write a pattern that binds a
variable with the same name as a record field, such as:
<programlisting>
data C = C {a :: Int}
f (C {a = a}) = a
</programlisting>
</para>
<para>
Record punning permits the variable name to be elided, so one can simply
write
<programlisting>
f (C {a}) = a
</programlisting>
to mean the same pattern as above. That is, in a record pattern, the
pattern <literal>a</literal> expands into the pattern <literal>a =
a</literal> for the same name <literal>a</literal>.
</para>
<para>
Note that:
<itemizedlist>
<listitem><para>
Record punning can also be used in an expression, writing, for example,
<programlisting>
let a = 1 in C {a}
</programlisting>
instead of
<programlisting>
let a = 1 in C {a = a}
</programlisting>
The expansion is purely syntactic, so the expanded right-hand side
expression refers to the nearest enclosing variable that is spelled the
same as the field name.
</para></listitem>
<listitem><para>
Puns and other patterns can be mixed in the same record:
<programlisting>
data C = C {a :: Int, b :: Int}
f (C {a, b = 4}) = a
</programlisting>
</para></listitem>
<listitem><para>
Puns can be used wherever record patterns occur (e.g. in
<literal>let</literal> bindings or at the top-level).
</para></listitem>
<listitem><para>
A pun on a qualified field name is expanded by stripping off the module qualifier.
For example:
<programlisting>
f (C {M.a}) = a
</programlisting>
means
<programlisting>
f (M.C {M.a = a}) = a
</programlisting>
(This is useful if the field selector <literal>a</literal> for constructor <literal>M.C</literal>
is only in scope in qualified form.)
</para></listitem>
</itemizedlist>
</para>
</sect2>
<!-- ===================== Record wildcards =================== -->
<sect2 id="record-wildcards">
<title>Record wildcards
</title>
<para>
Record wildcards are enabled by the flag <literal>-XRecordWildCards</literal>.
This flag implies <literal>-XDisambiguateRecordFields</literal>.
</para>
<para>
For records with many fields, it can be tiresome to write out each field
individually in a record pattern, as in
<programlisting>
data C = C {a :: Int, b :: Int, c :: Int, d :: Int}
f (C {a = 1, b = b, c = c, d = d}) = b + c + d
</programlisting>
</para>
<para>
Record wildcard syntax permits a "<literal>..</literal>" in a record
pattern, where each elided field <literal>f</literal> is replaced by the
pattern <literal>f = f</literal>. For example, the above pattern can be
written as
<programlisting>
f (C {a = 1, ..}) = b + c + d
</programlisting>
</para>
<para>
More details:
<itemizedlist>
<listitem><para>
Record wildcards in patterns can be mixed with other patterns, including puns
(<xref linkend="record-puns"/>); for example, in a pattern <literal>(C {a
= 1, b, ..})</literal>. Additionally, record wildcards can be used
wherever record patterns occur, including in <literal>let</literal>
bindings and at the top-level. For example, the top-level binding
<programlisting>
C {a = 1, ..} = e
</programlisting>
defines <literal>b</literal>, <literal>c</literal>, and
<literal>d</literal>.
</para></listitem>
<listitem><para>
Record wildcards can also be used in an expression, when constructing a record. For example,
<programlisting>
let {a = 1; b = 2; c = 3; d = 4} in C {..}
</programlisting>
in place of
<programlisting>
let {a = 1; b = 2; c = 3; d = 4} in C {a=a, b=b, c=c, d=d}
</programlisting>
The expansion is purely syntactic, so the record wildcard
expression refers to the nearest enclosing variables that are spelled
the same as the omitted field names.
</para></listitem>
<listitem><para>
Record wildcards may <emphasis>not</emphasis> be used in record <emphasis>updates</emphasis>. For example this
is illegal:
<programlisting>
f r = r { x = 3, .. }
</programlisting>
</para></listitem>
<listitem><para>
For both pattern and expression wildcards, the "<literal>..</literal>" expands to the missing
<emphasis>in-scope</emphasis> record fields.
Specifically the expansion of "<literal>C {..}</literal>" includes
<literal>f</literal> if and only if:
<itemizedlist>
<listitem><para>
<literal>f</literal> is a record field of constructor <literal>C</literal>.
</para></listitem>
<listitem><para>
The record field <literal>f</literal> is in scope somehow (either qualified or unqualified).
</para></listitem>
<listitem><para>
In the case of expressions (but not patterns),
the variable <literal>f</literal> is in scope unqualified,
apart from the binding of the record selector itself.
</para></listitem>
</itemizedlist>
These rules restrict record wildcards to the situations in which the user
could have written the expanded version.
For example
<programlisting>
module M where
data R = R { a,b,c :: Int }
module X where
import M( R(a,c) )
f b = R { .. }
</programlisting>
The <literal>R{..}</literal> expands to <literal>R{M.a=a}</literal>,
omitting <literal>b</literal> since the record field is not in scope,
and omitting <literal>c</literal> since the variable <literal>c</literal>
is not in scope (apart from the binding of the
record selector <literal>c</literal>, of course).
</para></listitem>
<listitem><para>
Record wildcards cannot be used (a) in a record update construct, and (b) for data
constructors that are not declared with record fields. For example:
<programlisting>
f x = x { v=True, .. } -- Illegal (a)
data T = MkT Int Bool
g = MkT { .. } -- Illegal (b)
h (MkT { .. }) = True -- Illegal (b)
</programlisting>
</para></listitem>
</itemizedlist>
</para>
</sect2>
<!-- ===================== Local fixity declarations =================== -->
<sect2 id="local-fixity-declarations">
<title>Local Fixity Declarations
</title>
<para>A careful reading of the Haskell 98 Report reveals that fixity
declarations (<literal>infix</literal>, <literal>infixl</literal>, and
<literal>infixr</literal>) are permitted to appear inside local bindings
such those introduced by <literal>let</literal> and
<literal>where</literal>. However, the Haskell Report does not specify
the semantics of such bindings very precisely.
</para>
<para>In GHC, a fixity declaration may accompany a local binding:
<programlisting>
let f = ...
infixr 3 `f`
in
...
</programlisting>
and the fixity declaration applies wherever the binding is in scope.
For example, in a <literal>let</literal>, it applies in the right-hand
sides of other <literal>let</literal>-bindings and the body of the
<literal>let</literal>C. Or, in recursive <literal>do</literal>
expressions (<xref linkend="recursive-do-notation"/>), the local fixity
declarations of a <literal>let</literal> statement scope over other
statements in the group, just as the bound name does.
</para>
<para>
Moreover, a local fixity declaration *must* accompany a local binding of
that name: it is not possible to revise the fixity of name bound
elsewhere, as in
<programlisting>
let infixr 9 $ in ...
</programlisting>
Because local fixity declarations are technically Haskell 98, no flag is
necessary to enable them.
</para>
</sect2>
<sect2 id="package-imports">
<title>Import and export extensions</title>
<sect3>
<title>Hiding things the imported module doesn't export</title>
<para>
Technically in Haskell 2010 this is illegal:
<programlisting>
module A( f ) where
f = True
module B where
import A hiding( g ) -- A does not export g
g = f
</programlisting>
The <literal>import A hiding( g )</literal> in module <literal>B</literal>
is technically an error (<ulink url="http://www.haskell.org/onlinereport/haskell2010/haskellch5.html#x11-1020005.3.1">Haskell Report, 5.3.1</ulink>)
because <literal>A</literal> does not export <literal>g</literal>.
However GHC allows it, in the interests of supporting backward compatibility; for example, a newer version of
<literal>A</literal> might export <literal>g</literal>, and you want <literal>B</literal> to work
in either case.
</para>
<para>
The warning <literal>-fwarn-dodgy-imports</literal>, which is off by default but included with <literal>-W</literal>,
warns if you hide something that the imported module does not export.
</para>
</sect3>
<sect3>
<title id="package-qualified-imports">Package-qualified imports</title>
<para>With the <option>-XPackageImports</option> flag, GHC allows
import declarations to be qualified by the package name that the
module is intended to be imported from. For example:</para>
<programlisting>
import "network" Network.Socket
</programlisting>
<para>would import the module <literal>Network.Socket</literal> from
the package <literal>network</literal> (any version). This may
be used to disambiguate an import when the same module is
available from multiple packages, or is present in both the
current package being built and an external package.</para>
<para>The special package name <literal>this</literal> can be used to
refer to the current package being built.</para>
<para>Note: you probably don't need to use this feature, it was
added mainly so that we can build backwards-compatible versions of
packages when APIs change. It can lead to fragile dependencies in
the common case: modules occasionally move from one package to
another, rendering any package-qualified imports broken.
See also <xref linkend="package-thinning-and-renaming" /> for
an alternative way of disambiguating between module names.</para>
</sect3>
<sect3 id="safe-imports-ext">
<title>Safe imports</title>
<para>With the <option>-XSafe</option>, <option>-XTrustworthy</option>
and <option>-XUnsafe</option> language flags, GHC extends
the import declaration syntax to take an optional <literal>safe</literal>
keyword after the <literal>import</literal> keyword. This feature
is part of the Safe Haskell GHC extension. For example:</para>
<programlisting>
import safe qualified Network.Socket as NS
</programlisting>
<para>would import the module <literal>Network.Socket</literal>
with compilation only succeeding if Network.Socket can be
safely imported. For a description of when a import is
considered safe see <xref linkend="safe-haskell"/></para>
</sect3>
<sect3 id="explicit-namespaces">
<title>Explicit namespaces in import/export</title>
<para> In an import or export list, such as
<programlisting>
module M( f, (++) ) where ...
import N( f, (++) )
...
</programlisting>
the entities <literal>f</literal> and <literal>(++)</literal> are <emphasis>values</emphasis>.
However, with type operators (<xref linkend="type-operators"/>) it becomes possible
to declare <literal>(++)</literal> as a <emphasis>type constructor</emphasis>. In that
case, how would you export or import it?
</para>
<para>
The <option>-XExplicitNamespaces</option> extension allows you to prefix the name of
a type constructor in an import or export list with "<literal>type</literal>" to
disambiguate this case, thus:
<programlisting>
module M( f, type (++) ) where ...
import N( f, type (++) )
...
module N( f, type (++) ) where
data family a ++ b = L a | R b
</programlisting>
The extension <option>-XExplicitNamespaces</option>
is implied by <option>-XTypeOperators</option> and (for some reason) by <option>-XTypeFamilies</option>.
</para>
<para>
In addition, with <option>-XPatternSynonyms</option> you can prefix the name of
a data constructor in an import or export list with the keyword <literal>pattern</literal>,
to allow the import or export of a data constructor without its parent type constructor
(see <xref linkend="patsyn-impexp"/>).
</para>
</sect3>
</sect2>
<sect2 id="syntax-stolen">
<title>Summary of stolen syntax</title>
<para>Turning on an option that enables special syntax
<emphasis>might</emphasis> cause working Haskell 98 code to fail
to compile, perhaps because it uses a variable name which has
become a reserved word. This section lists the syntax that is
"stolen" by language extensions.
We use
notation and nonterminal names from the Haskell 98 lexical syntax
(see the Haskell 98 Report).
We only list syntax changes here that might affect
existing working programs (i.e. "stolen" syntax). Many of these
extensions will also enable new context-free syntax, but in all
cases programs written to use the new syntax would not be
compilable without the option enabled.</para>
<para>There are two classes of special
syntax:
<itemizedlist>
<listitem>
<para>New reserved words and symbols: character sequences
which are no longer available for use as identifiers in the
program.</para>
</listitem>
<listitem>
<para>Other special syntax: sequences of characters that have
a different meaning when this particular option is turned
on.</para>
</listitem>
</itemizedlist>
The following syntax is stolen:
<variablelist>
<varlistentry>
<term>
<literal>forall</literal>
<indexterm><primary><literal>forall</literal></primary></indexterm>
</term>
<listitem><para>
Stolen (in types) by: <option>-XExplicitForAll</option>, and hence by
<option>-XScopedTypeVariables</option>,
<option>-XLiberalTypeSynonyms</option>,
<option>-XRankNTypes</option>,
<option>-XExistentialQuantification</option>
</para></listitem>
</varlistentry>
<varlistentry>
<term>
<literal>mdo</literal>
<indexterm><primary><literal>mdo</literal></primary></indexterm>
</term>
<listitem><para>
Stolen by: <option>-XRecursiveDo</option>
</para></listitem>
</varlistentry>
<varlistentry>
<term>
<literal>foreign</literal>
<indexterm><primary><literal>foreign</literal></primary></indexterm>
</term>
<listitem><para>
Stolen by: <option>-XForeignFunctionInterface</option>
</para></listitem>
</varlistentry>
<varlistentry>
<term>
<literal>rec</literal>,
<literal>proc</literal>, <literal>-<</literal>,
<literal>>-</literal>, <literal>-<<</literal>,
<literal>>>-</literal>, and <literal>(|</literal>,
<literal>|)</literal> brackets
<indexterm><primary><literal>proc</literal></primary></indexterm>
</term>
<listitem><para>
Stolen by: <option>-XArrows</option>
</para></listitem>
</varlistentry>
<varlistentry>
<term>
<literal>?<replaceable>varid</replaceable></literal>
<indexterm><primary>implicit parameters</primary></indexterm>
</term>
<listitem><para>
Stolen by: <option>-XImplicitParams</option>
</para></listitem>
</varlistentry>
<varlistentry>
<term>
<literal>[|</literal>,
<literal>[e|</literal>, <literal>[p|</literal>,
<literal>[d|</literal>, <literal>[t|</literal>,
<literal>$(</literal>,
<literal>$$(</literal>,
<literal>[||</literal>,
<literal>[e||</literal>,
<literal>$<replaceable>varid</replaceable></literal>,
<literal>$$<replaceable>varid</replaceable></literal>
<indexterm><primary>Template Haskell</primary></indexterm>
</term>
<listitem><para>
Stolen by: <option>-XTemplateHaskell</option>
</para></listitem>
</varlistentry>
<varlistentry>
<term>
<literal>[<replaceable>varid</replaceable>|</literal>
<indexterm><primary>quasi-quotation</primary></indexterm>
</term>
<listitem><para>
Stolen by: <option>-XQuasiQuotes</option>
</para></listitem>
</varlistentry>
<varlistentry>
<term>
<replaceable>varid</replaceable>{<literal>#</literal>},
<replaceable>char</replaceable><literal>#</literal>,
<replaceable>string</replaceable><literal>#</literal>,
<replaceable>integer</replaceable><literal>#</literal>,
<replaceable>float</replaceable><literal>#</literal>,
<replaceable>float</replaceable><literal>##</literal>
</term>
<listitem><para>
Stolen by: <option>-XMagicHash</option>
</para></listitem>
</varlistentry>
<varlistentry>
<term>
<literal>(#</literal>, <literal>#)</literal>
</term>
<listitem><para>
Stolen by: <option>-XUnboxedTuples</option>
</para></listitem>
</varlistentry>
<varlistentry>
<term>
<replaceable>varid</replaceable><literal>!</literal><replaceable>varid</replaceable>
</term>
<listitem><para>
Stolen by: <option>-XBangPatterns</option>
</para></listitem>
</varlistentry>
<varlistentry>
<term>
<literal>pattern</literal>
</term>
<listitem><para>
Stolen by: <option>-XPatternSynonyms</option>
</para></listitem>
</varlistentry>
</variablelist>
</para>
</sect2>
</sect1>
<!-- TYPE SYSTEM EXTENSIONS -->
<sect1 id="data-type-extensions">
<title>Extensions to data types and type synonyms</title>
<sect2 id="nullary-types">
<title>Data types with no constructors</title>
<para>With the <option>-XEmptyDataDecls</option> flag (or equivalent LANGUAGE pragma),
GHC lets you declare a data type with no constructors. For example:</para>
<programlisting>
data S -- S :: *
data T a -- T :: * -> *
</programlisting>
<para>Syntactically, the declaration lacks the "= constrs" part. The
type can be parameterised over types of any kind, but if the kind is
not <literal>*</literal> then an explicit kind annotation must be used
(see <xref linkend="kinding"/>).</para>
<para>Such data types have only one value, namely bottom.
Nevertheless, they can be useful when defining "phantom types".</para>
</sect2>
<sect2 id="datatype-contexts">
<title>Data type contexts</title>
<para>Haskell allows datatypes to be given contexts, e.g.</para>
<programlisting>
data Eq a => Set a = NilSet | ConsSet a (Set a)
</programlisting>
<para>give constructors with types:</para>
<programlisting>
NilSet :: Set a
ConsSet :: Eq a => a -> Set a -> Set a
</programlisting>
<para>This is widely considered a misfeature, and is going to be removed from
the language. In GHC, it is controlled by the deprecated extension
<literal>DatatypeContexts</literal>.</para>
</sect2>
<sect2 id="infix-tycons">
<title>Infix type constructors, classes, and type variables</title>
<para>
GHC allows type constructors, classes, and type variables to be operators, and
to be written infix, very much like expressions. More specifically:
<itemizedlist>
<listitem><para>
A type constructor or class can be an operator, beginning with a colon; e.g. <literal>:*:</literal>.
The lexical syntax is the same as that for data constructors.
</para></listitem>
<listitem><para>
Data type and type-synonym declarations can be written infix, parenthesised
if you want further arguments. E.g.
<screen>
data a :*: b = Foo a b
type a :+: b = Either a b
class a :=: b where ...
data (a :**: b) x = Baz a b x
type (a :++: b) y = Either (a,b) y
</screen>
</para></listitem>
<listitem><para>
Types, and class constraints, can be written infix. For example
<screen>
x :: Int :*: Bool
f :: (a :=: b) => a -> b
</screen>
</para></listitem>
<listitem><para>
Back-quotes work
as for expressions, both for type constructors and type variables; e.g. <literal>Int `Either` Bool</literal>, or
<literal>Int `a` Bool</literal>. Similarly, parentheses work the same; e.g. <literal>(:*:) Int Bool</literal>.
</para></listitem>
<listitem><para>
Fixities may be declared for type constructors, or classes, just as for data constructors. However,
one cannot distinguish between the two in a fixity declaration; a fixity declaration
sets the fixity for a data constructor and the corresponding type constructor. For example:
<screen>
infixl 7 T, :*:
</screen>
sets the fixity for both type constructor <literal>T</literal> and data constructor <literal>T</literal>,
and similarly for <literal>:*:</literal>.
<literal>Int `a` Bool</literal>.
</para></listitem>
<listitem><para>
Function arrow is <literal>infixr</literal> with fixity 0. (This might change; I'm not sure what it should be.)
</para></listitem>
</itemizedlist>
</para>
</sect2>
<sect2 id="type-operators">
<title>Type operators</title>
<para>
In types, an operator symbol like <literal>(+)</literal> is normally treated as a type
<emphasis>variable</emphasis>, just like <literal>a</literal>. Thus in Haskell 98 you can say
<programlisting>
type T (+) = ((+), (+))
-- Just like: type T a = (a,a)
f :: T Int -> Int
f (x,y)= x
</programlisting>
As you can see, using operators in this way is not very useful, and Haskell 98 does not even
allow you to write them infix.
</para>
<para>
The language <option>-XTypeOperators</option> changes this behaviour:
<itemizedlist>
<listitem><para>
Operator symbols become type <emphasis>constructors</emphasis> rather than
type <emphasis>variables</emphasis>.
</para></listitem>
<listitem><para>
Operator symbols in types can be written infix, both in definitions and uses.
for example:
<programlisting>
data a + b = Plus a b
type Foo = Int + Bool
</programlisting>
</para></listitem>
<listitem><para>
There is now some potential ambiguity in import and export lists; for example
if you write <literal>import M( (+) )</literal> do you mean the
<emphasis>function</emphasis> <literal>(+)</literal> or the
<emphasis>type constructor</emphasis> <literal>(+)</literal>?
The default is the former, but with <option>-XExplicitNamespaces</option> (which is implied
by <option>-XTypeOperators</option>) GHC allows you to specify the latter
by preceding it with the keyword <literal>type</literal>, thus:
<programlisting>
import M( type (+) )
</programlisting>
See <xref linkend="explicit-namespaces"/>.
</para></listitem>
<listitem><para>
The fixity of a type operator may be set using the usual fixity declarations
but, as in <xref linkend="infix-tycons"/>, the function and type constructor share
a single fixity.
</para></listitem>
</itemizedlist>
</para>
</sect2>
<sect2 id="type-synonyms">
<title>Liberalised type synonyms</title>
<para>
Type synonyms are like macros at the type level, but Haskell 98 imposes many rules
on individual synonym declarations.
With the <option>-XLiberalTypeSynonyms</option> extension,
GHC does validity checking on types <emphasis>only after expanding type synonyms</emphasis>.
That means that GHC can be very much more liberal about type synonyms than Haskell 98.
<itemizedlist>
<listitem> <para>You can write a <literal>forall</literal> (including overloading)
in a type synonym, thus:
<programlisting>
type Discard a = forall b. Show b => a -> b -> (a, String)
f :: Discard a
f x y = (x, show y)
g :: Discard Int -> (Int,String) -- A rank-2 type
g f = f 3 True
</programlisting>
</para>
</listitem>
<listitem><para>
If you also use <option>-XUnboxedTuples</option>,
you can write an unboxed tuple in a type synonym:
<programlisting>
type Pr = (# Int, Int #)
h :: Int -> Pr
h x = (# x, x #)
</programlisting>
</para></listitem>
<listitem><para>
You can apply a type synonym to a forall type:
<programlisting>
type Foo a = a -> a -> Bool
f :: Foo (forall b. b->b)
</programlisting>
After expanding the synonym, <literal>f</literal> has the legal (in GHC) type:
<programlisting>
f :: (forall b. b->b) -> (forall b. b->b) -> Bool
</programlisting>
</para></listitem>
<listitem><para>
You can apply a type synonym to a partially applied type synonym:
<programlisting>
type Generic i o = forall x. i x -> o x
type Id x = x
foo :: Generic Id []
</programlisting>
After expanding the synonym, <literal>foo</literal> has the legal (in GHC) type:
<programlisting>
foo :: forall x. x -> [x]
</programlisting>
</para></listitem>
</itemizedlist>
</para>
<para>
GHC currently does kind checking before expanding synonyms (though even that
could be changed.)
</para>
<para>
After expanding type synonyms, GHC does validity checking on types, looking for
the following mal-formedness which isn't detected simply by kind checking:
<itemizedlist>
<listitem><para>
Type constructor applied to a type involving for-alls (if <literal>XImpredicativeTypes</literal>
is off)
</para></listitem>
<listitem><para>
Partially-applied type synonym.
</para></listitem>
</itemizedlist>
So, for example, this will be rejected:
<programlisting>
type Pr = forall a. a
h :: [Pr]
h = ...
</programlisting>
because GHC does not allow type constructors applied to for-all types.
</para>
</sect2>
<sect2 id="existential-quantification">
<title>Existentially quantified data constructors
</title>
<para>
The idea of using existential quantification in data type declarations
was suggested by Perry, and implemented in Hope+ (Nigel Perry, <emphasis>The Implementation
of Practical Functional Programming Languages</emphasis>, PhD Thesis, University of
London, 1991). It was later formalised by Laufer and Odersky
(<emphasis>Polymorphic type inference and abstract data types</emphasis>,
TOPLAS, 16(5), pp1411-1430, 1994).
It's been in Lennart
Augustsson's <command>hbc</command> Haskell compiler for several years, and
proved very useful. Here's the idea. Consider the declaration:
</para>
<para>
<programlisting>
data Foo = forall a. MkFoo a (a -> Bool)
| Nil
</programlisting>
</para>
<para>
The data type <literal>Foo</literal> has two constructors with types:
</para>
<para>
<programlisting>
MkFoo :: forall a. a -> (a -> Bool) -> Foo
Nil :: Foo
</programlisting>
</para>
<para>
Notice that the type variable <literal>a</literal> in the type of <function>MkFoo</function>
does not appear in the data type itself, which is plain <literal>Foo</literal>.
For example, the following expression is fine:
</para>
<para>
<programlisting>
[MkFoo 3 even, MkFoo 'c' isUpper] :: [Foo]
</programlisting>
</para>
<para>
Here, <literal>(MkFoo 3 even)</literal> packages an integer with a function
<function>even</function> that maps an integer to <literal>Bool</literal>; and <function>MkFoo 'c'
isUpper</function> packages a character with a compatible function. These
two things are each of type <literal>Foo</literal> and can be put in a list.
</para>
<para>
What can we do with a value of type <literal>Foo</literal>?. In particular,
what happens when we pattern-match on <function>MkFoo</function>?
</para>
<para>
<programlisting>
f (MkFoo val fn) = ???
</programlisting>
</para>
<para>
Since all we know about <literal>val</literal> and <function>fn</function> is that they
are compatible, the only (useful) thing we can do with them is to
apply <function>fn</function> to <literal>val</literal> to get a boolean. For example:
</para>
<para>
<programlisting>
f :: Foo -> Bool
f (MkFoo val fn) = fn val
</programlisting>
</para>
<para>
What this allows us to do is to package heterogeneous values
together with a bunch of functions that manipulate them, and then treat
that collection of packages in a uniform manner. You can express
quite a bit of object-oriented-like programming this way.
</para>
<sect3 id="existential">
<title>Why existential?
</title>
<para>
What has this to do with <emphasis>existential</emphasis> quantification?
Simply that <function>MkFoo</function> has the (nearly) isomorphic type
</para>
<para>
<programlisting>
MkFoo :: (exists a . (a, a -> Bool)) -> Foo
</programlisting>
</para>
<para>
But Haskell programmers can safely think of the ordinary
<emphasis>universally</emphasis> quantified type given above, thereby avoiding
adding a new existential quantification construct.
</para>
</sect3>
<sect3 id="existential-with-context">
<title>Existentials and type classes</title>
<para>
An easy extension is to allow
arbitrary contexts before the constructor. For example:
</para>
<para>
<programlisting>
data Baz = forall a. Eq a => Baz1 a a
| forall b. Show b => Baz2 b (b -> b)
</programlisting>
</para>
<para>
The two constructors have the types you'd expect:
</para>
<para>
<programlisting>
Baz1 :: forall a. Eq a => a -> a -> Baz
Baz2 :: forall b. Show b => b -> (b -> b) -> Baz
</programlisting>
</para>
<para>
But when pattern matching on <function>Baz1</function> the matched values can be compared
for equality, and when pattern matching on <function>Baz2</function> the first matched
value can be converted to a string (as well as applying the function to it).
So this program is legal:
</para>
<para>
<programlisting>
f :: Baz -> String
f (Baz1 p q) | p == q = "Yes"
| otherwise = "No"
f (Baz2 v fn) = show (fn v)
</programlisting>
</para>
<para>
Operationally, in a dictionary-passing implementation, the
constructors <function>Baz1</function> and <function>Baz2</function> must store the
dictionaries for <literal>Eq</literal> and <literal>Show</literal> respectively, and
extract it on pattern matching.
</para>
</sect3>
<sect3 id="existential-records">
<title>Record Constructors</title>
<para>
GHC allows existentials to be used with records syntax as well. For example:
<programlisting>
data Counter a = forall self. NewCounter
{ _this :: self
, _inc :: self -> self
, _display :: self -> IO ()
, tag :: a
}
</programlisting>
Here <literal>tag</literal> is a public field, with a well-typed selector
function <literal>tag :: Counter a -> a</literal>. The <literal>self</literal>
type is hidden from the outside; any attempt to apply <literal>_this</literal>,
<literal>_inc</literal> or <literal>_display</literal> as functions will raise a
compile-time error. In other words, <emphasis>GHC defines a record selector function
only for fields whose type does not mention the existentially-quantified variables</emphasis>.
(This example used an underscore in the fields for which record selectors
will not be defined, but that is only programming style; GHC ignores them.)
</para>
<para>
To make use of these hidden fields, we need to create some helper functions:
<programlisting>
inc :: Counter a -> Counter a
inc (NewCounter x i d t) = NewCounter
{ _this = i x, _inc = i, _display = d, tag = t }
display :: Counter a -> IO ()
display NewCounter{ _this = x, _display = d } = d x
</programlisting>
Now we can define counters with different underlying implementations:
<programlisting>
counterA :: Counter String
counterA = NewCounter
{ _this = 0, _inc = (1+), _display = print, tag = "A" }
counterB :: Counter String
counterB = NewCounter
{ _this = "", _inc = ('#':), _display = putStrLn, tag = "B" }
main = do
display (inc counterA) -- prints "1"
display (inc (inc counterB)) -- prints "##"
</programlisting>
Record update syntax is supported for existentials (and GADTs):
<programlisting>
setTag :: Counter a -> a -> Counter a
setTag obj t = obj{ tag = t }
</programlisting>
The rule for record update is this: <emphasis>
the types of the updated fields may
mention only the universally-quantified type variables
of the data constructor. For GADTs, the field may mention only types
that appear as a simple type-variable argument in the constructor's result
type</emphasis>. For example:
<programlisting>
data T a b where { T1 { f1::a, f2::b, f3::(b,c) } :: T a b } -- c is existential
upd1 t x = t { f1=x } -- OK: upd1 :: T a b -> a' -> T a' b
upd2 t x = t { f3=x } -- BAD (f3's type mentions c, which is
-- existentially quantified)
data G a b where { G1 { g1::a, g2::c } :: G a [c] }
upd3 g x = g { g1=x } -- OK: upd3 :: G a b -> c -> G c b
upd4 g x = g { g2=x } -- BAD (f2's type mentions c, which is not a simple
-- type-variable argument in G1's result type)
</programlisting>
</para>
</sect3>
<sect3>
<title>Restrictions</title>
<para>
There are several restrictions on the ways in which existentially-quantified
constructors can be use.
</para>
<para>
<itemizedlist>
<listitem>
<para>
When pattern matching, each pattern match introduces a new,
distinct, type for each existential type variable. These types cannot
be unified with any other type, nor can they escape from the scope of
the pattern match. For example, these fragments are incorrect:
<programlisting>
f1 (MkFoo a f) = a
</programlisting>
Here, the type bound by <function>MkFoo</function> "escapes", because <literal>a</literal>
is the result of <function>f1</function>. One way to see why this is wrong is to
ask what type <function>f1</function> has:
<programlisting>
f1 :: Foo -> a -- Weird!
</programlisting>
What is this "<literal>a</literal>" in the result type? Clearly we don't mean
this:
<programlisting>
f1 :: forall a. Foo -> a -- Wrong!
</programlisting>
The original program is just plain wrong. Here's another sort of error
<programlisting>
f2 (Baz1 a b) (Baz1 p q) = a==q
</programlisting>
It's ok to say <literal>a==b</literal> or <literal>p==q</literal>, but
<literal>a==q</literal> is wrong because it equates the two distinct types arising
from the two <function>Baz1</function> constructors.
</para>
</listitem>
<listitem>
<para>
You can't pattern-match on an existentially quantified
constructor in a <literal>let</literal> or <literal>where</literal> group of
bindings. So this is illegal:
<programlisting>
f3 x = a==b where { Baz1 a b = x }
</programlisting>
Instead, use a <literal>case</literal> expression:
<programlisting>
f3 x = case x of Baz1 a b -> a==b
</programlisting>
In general, you can only pattern-match
on an existentially-quantified constructor in a <literal>case</literal> expression or
in the patterns of a function definition.
The reason for this restriction is really an implementation one.
Type-checking binding groups is already a nightmare without
existentials complicating the picture. Also an existential pattern
binding at the top level of a module doesn't make sense, because it's
not clear how to prevent the existentially-quantified type "escaping".
So for now, there's a simple-to-state restriction. We'll see how
annoying it is.
</para>
</listitem>
<listitem>
<para>
You can't use existential quantification for <literal>newtype</literal>
declarations. So this is illegal:
<programlisting>
newtype T = forall a. Ord a => MkT a
</programlisting>
Reason: a value of type <literal>T</literal> must be represented as a
pair of a dictionary for <literal>Ord t</literal> and a value of type
<literal>t</literal>. That contradicts the idea that
<literal>newtype</literal> should have no concrete representation.
You can get just the same efficiency and effect by using
<literal>data</literal> instead of <literal>newtype</literal>. If
there is no overloading involved, then there is more of a case for
allowing an existentially-quantified <literal>newtype</literal>,
because the <literal>data</literal> version does carry an
implementation cost, but single-field existentially quantified
constructors aren't much use. So the simple restriction (no
existential stuff on <literal>newtype</literal>) stands, unless there
are convincing reasons to change it.
</para>
</listitem>
<listitem>
<para>
You can't use <literal>deriving</literal> to define instances of a
data type with existentially quantified data constructors.
Reason: in most cases it would not make sense. For example:;
<programlisting>
data T = forall a. MkT [a] deriving( Eq )
</programlisting>
To derive <literal>Eq</literal> in the standard way we would need to have equality
between the single component of two <function>MkT</function> constructors:
<programlisting>
instance Eq T where
(MkT a) == (MkT b) = ???
</programlisting>
But <varname>a</varname> and <varname>b</varname> have distinct types, and so can't be compared.
It's just about possible to imagine examples in which the derived instance
would make sense, but it seems altogether simpler simply to prohibit such
declarations. Define your own instances!
</para>
</listitem>
</itemizedlist>
</para>
</sect3>
</sect2>
<!-- ====================== Generalised algebraic data types ======================= -->
<sect2 id="gadt-style">
<title>Declaring data types with explicit constructor signatures</title>
<para>When the <literal>GADTSyntax</literal> extension is enabled,
GHC allows you to declare an algebraic data type by
giving the type signatures of constructors explicitly. For example:
<programlisting>
data Maybe a where
Nothing :: Maybe a
Just :: a -> Maybe a
</programlisting>
The form is called a "GADT-style declaration"
because Generalised Algebraic Data Types, described in <xref linkend="gadt"/>,
can only be declared using this form.</para>
<para>Notice that GADT-style syntax generalises existential types (<xref linkend="existential-quantification"/>).
For example, these two declarations are equivalent:
<programlisting>
data Foo = forall a. MkFoo a (a -> Bool)
data Foo' where { MKFoo :: a -> (a->Bool) -> Foo' }
</programlisting>
</para>
<para>Any data type that can be declared in standard Haskell-98 syntax
can also be declared using GADT-style syntax.
The choice is largely stylistic, but GADT-style declarations differ in one important respect:
they treat class constraints on the data constructors differently.
Specifically, if the constructor is given a type-class context, that
context is made available by pattern matching. For example:
<programlisting>
data Set a where
MkSet :: Eq a => [a] -> Set a
makeSet :: Eq a => [a] -> Set a
makeSet xs = MkSet (nub xs)
insert :: a -> Set a -> Set a
insert a (MkSet as) | a `elem` as = MkSet as
| otherwise = MkSet (a:as)
</programlisting>
A use of <literal>MkSet</literal> as a constructor (e.g. in the definition of <literal>makeSet</literal>)
gives rise to a <literal>(Eq a)</literal>
constraint, as you would expect. The new feature is that pattern-matching on <literal>MkSet</literal>
(as in the definition of <literal>insert</literal>) makes <emphasis>available</emphasis> an <literal>(Eq a)</literal>
context. In implementation terms, the <literal>MkSet</literal> constructor has a hidden field that stores
the <literal>(Eq a)</literal> dictionary that is passed to <literal>MkSet</literal>; so
when pattern-matching that dictionary becomes available for the right-hand side of the match.
In the example, the equality dictionary is used to satisfy the equality constraint
generated by the call to <literal>elem</literal>, so that the type of
<literal>insert</literal> itself has no <literal>Eq</literal> constraint.
</para>
<para>
For example, one possible application is to reify dictionaries:
<programlisting>
data NumInst a where
MkNumInst :: Num a => NumInst a
intInst :: NumInst Int
intInst = MkNumInst
plus :: NumInst a -> a -> a -> a
plus MkNumInst p q = p + q
</programlisting>
Here, a value of type <literal>NumInst a</literal> is equivalent
to an explicit <literal>(Num a)</literal> dictionary.
</para>
<para>
All this applies to constructors declared using the syntax of <xref linkend="existential-with-context"/>.
For example, the <literal>NumInst</literal> data type above could equivalently be declared
like this:
<programlisting>
data NumInst a
= Num a => MkNumInst (NumInst a)
</programlisting>
Notice that, unlike the situation when declaring an existential, there is
no <literal>forall</literal>, because the <literal>Num</literal> constrains the
data type's universally quantified type variable <literal>a</literal>.
A constructor may have both universal and existential type variables: for example,
the following two declarations are equivalent:
<programlisting>
data T1 a
= forall b. (Num a, Eq b) => MkT1 a b
data T2 a where
MkT2 :: (Num a, Eq b) => a -> b -> T2 a
</programlisting>
</para>
<para>All this behaviour contrasts with Haskell 98's peculiar treatment of
contexts on a data type declaration (Section 4.2.1 of the Haskell 98 Report).
In Haskell 98 the definition
<programlisting>
data Eq a => Set' a = MkSet' [a]
</programlisting>
gives <literal>MkSet'</literal> the same type as <literal>MkSet</literal> above. But instead of
<emphasis>making available</emphasis> an <literal>(Eq a)</literal> constraint, pattern-matching
on <literal>MkSet'</literal> <emphasis>requires</emphasis> an <literal>(Eq a)</literal> constraint!
GHC faithfully implements this behaviour, odd though it is. But for GADT-style declarations,
GHC's behaviour is much more useful, as well as much more intuitive.
</para>
<para>
The rest of this section gives further details about GADT-style data
type declarations.
<itemizedlist>
<listitem><para>
The result type of each data constructor must begin with the type constructor being defined.
If the result type of all constructors
has the form <literal>T a1 ... an</literal>, where <literal>a1 ... an</literal>
are distinct type variables, then the data type is <emphasis>ordinary</emphasis>;
otherwise is a <emphasis>generalised</emphasis> data type (<xref linkend="gadt"/>).
</para></listitem>
<listitem><para>
As with other type signatures, you can give a single signature for several data constructors.
In this example we give a single signature for <literal>T1</literal> and <literal>T2</literal>:
<programlisting>
data T a where
T1,T2 :: a -> T a
T3 :: T a
</programlisting>
</para></listitem>
<listitem><para>
The type signature of
each constructor is independent, and is implicitly universally quantified as usual.
In particular, the type variable(s) in the "<literal>data T a where</literal>" header
have no scope, and different constructors may have different universally-quantified type variables:
<programlisting>
data T a where -- The 'a' has no scope
T1,T2 :: b -> T b -- Means forall b. b -> T b
T3 :: T a -- Means forall a. T a
</programlisting>
</para></listitem>
<listitem><para>
A constructor signature may mention type class constraints, which can differ for
different constructors. For example, this is fine:
<programlisting>
data T a where
T1 :: Eq b => b -> b -> T b
T2 :: (Show c, Ix c) => c -> [c] -> T c
</programlisting>
When pattern matching, these constraints are made available to discharge constraints
in the body of the match. For example:
<programlisting>
f :: T a -> String
f (T1 x y) | x==y = "yes"
| otherwise = "no"
f (T2 a b) = show a
</programlisting>
Note that <literal>f</literal> is not overloaded; the <literal>Eq</literal> constraint arising
from the use of <literal>==</literal> is discharged by the pattern match on <literal>T1</literal>
and similarly the <literal>Show</literal> constraint arising from the use of <literal>show</literal>.
</para></listitem>
<listitem><para>
Unlike a Haskell-98-style
data type declaration, the type variable(s) in the "<literal>data Set a where</literal>" header
have no scope. Indeed, one can write a kind signature instead:
<programlisting>
data Set :: * -> * where ...
</programlisting>
or even a mixture of the two:
<programlisting>
data Bar a :: (* -> *) -> * where ...
</programlisting>
The type variables (if given) may be explicitly kinded, so we could also write the header for <literal>Foo</literal>
like this:
<programlisting>
data Bar a (b :: * -> *) where ...
</programlisting>
</para></listitem>
<listitem><para>
You can use strictness annotations, in the obvious places
in the constructor type:
<programlisting>
data Term a where
Lit :: !Int -> Term Int
If :: Term Bool -> !(Term a) -> !(Term a) -> Term a
Pair :: Term a -> Term b -> Term (a,b)
</programlisting>
</para></listitem>
<listitem><para>
You can use a <literal>deriving</literal> clause on a GADT-style data type
declaration. For example, these two declarations are equivalent
<programlisting>
data Maybe1 a where {
Nothing1 :: Maybe1 a ;
Just1 :: a -> Maybe1 a
} deriving( Eq, Ord )
data Maybe2 a = Nothing2 | Just2 a
deriving( Eq, Ord )
</programlisting>
</para></listitem>
<listitem><para>
The type signature may have quantified type variables that do not appear
in the result type:
<programlisting>
data Foo where
MkFoo :: a -> (a->Bool) -> Foo
Nil :: Foo
</programlisting>
Here the type variable <literal>a</literal> does not appear in the result type
of either constructor.
Although it is universally quantified in the type of the constructor, such
a type variable is often called "existential".
Indeed, the above declaration declares precisely the same type as
the <literal>data Foo</literal> in <xref linkend="existential-quantification"/>.
</para><para>
The type may contain a class context too, of course:
<programlisting>
data Showable where
MkShowable :: Show a => a -> Showable
</programlisting>
</para></listitem>
<listitem><para>
You can use record syntax on a GADT-style data type declaration:
<programlisting>
data Person where
Adult :: { name :: String, children :: [Person] } -> Person
Child :: Show a => { name :: !String, funny :: a } -> Person
</programlisting>
As usual, for every constructor that has a field <literal>f</literal>, the type of
field <literal>f</literal> must be the same (modulo alpha conversion).
The <literal>Child</literal> constructor above shows that the signature
may have a context, existentially-quantified variables, and strictness annotations,
just as in the non-record case. (NB: the "type" that follows the double-colon
is not really a type, because of the record syntax and strictness annotations.
A "type" of this form can appear only in a constructor signature.)
</para></listitem>
<listitem><para>
Record updates are allowed with GADT-style declarations,
only fields that have the following property: the type of the field
mentions no existential type variables.
</para></listitem>
<listitem><para>
As in the case of existentials declared using the Haskell-98-like record syntax
(<xref linkend="existential-records"/>),
record-selector functions are generated only for those fields that have well-typed
selectors.
Here is the example of that section, in GADT-style syntax:
<programlisting>
data Counter a where
NewCounter :: { _this :: self
, _inc :: self -> self
, _display :: self -> IO ()
, tag :: a
} -> Counter a
</programlisting>
As before, only one selector function is generated here, that for <literal>tag</literal>.
Nevertheless, you can still use all the field names in pattern matching and record construction.
</para></listitem>
<listitem><para>
In a GADT-style data type declaration there is no obvious way to specify that a data constructor
should be infix, which makes a difference if you derive <literal>Show</literal> for the type.
(Data constructors declared infix are displayed infix by the derived <literal>show</literal>.)
So GHC implements the following design: a data constructor declared in a GADT-style data type
declaration is displayed infix by <literal>Show</literal> iff (a) it is an operator symbol,
(b) it has two arguments, (c) it has a programmer-supplied fixity declaration. For example
<programlisting>
infix 6 (:--:)
data T a where
(:--:) :: Int -> Bool -> T Int
</programlisting>
</para></listitem>
</itemizedlist></para>
</sect2>
<sect2 id="gadt">
<title>Generalised Algebraic Data Types (GADTs)</title>
<para>Generalised Algebraic Data Types generalise ordinary algebraic data types
by allowing constructors to have richer return types. Here is an example:
<programlisting>
data Term a where
Lit :: Int -> Term Int
Succ :: Term Int -> Term Int
IsZero :: Term Int -> Term Bool
If :: Term Bool -> Term a -> Term a -> Term a
Pair :: Term a -> Term b -> Term (a,b)
</programlisting>
Notice that the return type of the constructors is not always <literal>Term a</literal>, as is the
case with ordinary data types. This generality allows us to
write a well-typed <literal>eval</literal> function
for these <literal>Terms</literal>:
<programlisting>
eval :: Term a -> a
eval (Lit i) = i
eval (Succ t) = 1 + eval t
eval (IsZero t) = eval t == 0
eval (If b e1 e2) = if eval b then eval e1 else eval e2
eval (Pair e1 e2) = (eval e1, eval e2)
</programlisting>
The key point about GADTs is that <emphasis>pattern matching causes type refinement</emphasis>.
For example, in the right hand side of the equation
<programlisting>
eval :: Term a -> a
eval (Lit i) = ...
</programlisting>
the type <literal>a</literal> is refined to <literal>Int</literal>. That's the whole point!
A precise specification of the type rules is beyond what this user manual aspires to,
but the design closely follows that described in
the paper <ulink
url="http://research.microsoft.com/%7Esimonpj/papers/gadt/">Simple
unification-based type inference for GADTs</ulink>,
(ICFP 2006).
The general principle is this: <emphasis>type refinement is only carried out
based on user-supplied type annotations</emphasis>.
So if no type signature is supplied for <literal>eval</literal>, no type refinement happens,
and lots of obscure error messages will
occur. However, the refinement is quite general. For example, if we had:
<programlisting>
eval :: Term a -> a -> a
eval (Lit i) j = i+j
</programlisting>
the pattern match causes the type <literal>a</literal> to be refined to <literal>Int</literal> (because of the type
of the constructor <literal>Lit</literal>), and that refinement also applies to the type of <literal>j</literal>, and
the result type of the <literal>case</literal> expression. Hence the addition <literal>i+j</literal> is legal.
</para>
<para>
These and many other examples are given in papers by Hongwei Xi, and
Tim Sheard. There is a longer introduction
<ulink url="http://www.haskell.org/haskellwiki/GADT">on the wiki</ulink>,
and Ralf Hinze's
<ulink url="http://www.cs.ox.ac.uk/ralf.hinze/publications/With.pdf">Fun with phantom types</ulink> also has a number of examples. Note that papers
may use different notation to that implemented in GHC.
</para>
<para>
The rest of this section outlines the extensions to GHC that support GADTs. The extension is enabled with
<option>-XGADTs</option>. The <option>-XGADTs</option> flag also sets <option>-XGADTSyntax</option>
and <option>-XMonoLocalBinds</option>.
<itemizedlist>
<listitem><para>
A GADT can only be declared using GADT-style syntax (<xref linkend="gadt-style"/>);
the old Haskell-98 syntax for data declarations always declares an ordinary data type.
The result type of each constructor must begin with the type constructor being defined,
but for a GADT the arguments to the type constructor can be arbitrary monotypes.
For example, in the <literal>Term</literal> data
type above, the type of each constructor must end with <literal>Term ty</literal>, but
the <literal>ty</literal> need not be a type variable (e.g. the <literal>Lit</literal>
constructor).
</para></listitem>
<listitem><para>
It is permitted to declare an ordinary algebraic data type using GADT-style syntax.
What makes a GADT into a GADT is not the syntax, but rather the presence of data constructors
whose result type is not just <literal>T a b</literal>.
</para></listitem>
<listitem><para>
You cannot use a <literal>deriving</literal> clause for a GADT; only for
an ordinary data type.
</para></listitem>
<listitem><para>
As mentioned in <xref linkend="gadt-style"/>, record syntax is supported.
For example:
<programlisting>
data Term a where
Lit :: { val :: Int } -> Term Int
Succ :: { num :: Term Int } -> Term Int
Pred :: { num :: Term Int } -> Term Int
IsZero :: { arg :: Term Int } -> Term Bool
Pair :: { arg1 :: Term a
, arg2 :: Term b
} -> Term (a,b)
If :: { cnd :: Term Bool
, tru :: Term a
, fls :: Term a
} -> Term a
</programlisting>
However, for GADTs there is the following additional constraint:
every constructor that has a field <literal>f</literal> must have
the same result type (modulo alpha conversion)
Hence, in the above example, we cannot merge the <literal>num</literal>
and <literal>arg</literal> fields above into a
single name. Although their field types are both <literal>Term Int</literal>,
their selector functions actually have different types:
<programlisting>
num :: Term Int -> Term Int
arg :: Term Bool -> Term Int
</programlisting>
</para></listitem>
<listitem><para>
When pattern-matching against data constructors drawn from a GADT,
for example in a <literal>case</literal> expression, the following rules apply:
<itemizedlist>
<listitem><para>The type of the scrutinee must be rigid.</para></listitem>
<listitem><para>The type of the entire <literal>case</literal> expression must be rigid.</para></listitem>
<listitem><para>The type of any free variable mentioned in any of
the <literal>case</literal> alternatives must be rigid.</para></listitem>
</itemizedlist>
A type is "rigid" if it is completely known to the compiler at its binding site. The easiest
way to ensure that a variable a rigid type is to give it a type signature.
For more precise details see <ulink url="http://research.microsoft.com/%7Esimonpj/papers/gadt">
Simple unification-based type inference for GADTs
</ulink>. The criteria implemented by GHC are given in the Appendix.
</para></listitem>
</itemizedlist>
</para>
</sect2>
</sect1>
<!-- ====================== End of Generalised algebraic data types ======================= -->
<sect1 id="deriving">
<title>Extensions to the "deriving" mechanism</title>
<sect2 id="deriving-inferred">
<title>Inferred context for deriving clauses</title>
<para>
The Haskell Report is vague about exactly when a <literal>deriving</literal> clause is
legal. For example:
<programlisting>
data T0 f a = MkT0 a deriving( Eq )
data T1 f a = MkT1 (f a) deriving( Eq )
data T2 f a = MkT2 (f (f a)) deriving( Eq )
</programlisting>
The natural generated <literal>Eq</literal> code would result in these instance declarations:
<programlisting>
instance Eq a => Eq (T0 f a) where ...
instance Eq (f a) => Eq (T1 f a) where ...
instance Eq (f (f a)) => Eq (T2 f a) where ...
</programlisting>
The first of these is obviously fine. The second is still fine, although less obviously.
The third is not Haskell 98, and risks losing termination of instances.
</para>
<para>
GHC takes a conservative position: it accepts the first two, but not the third. The rule is this:
each constraint in the inferred instance context must consist only of type variables,
with no repetitions.
</para>
<para>
This rule is applied regardless of flags. If you want a more exotic context, you can write
it yourself, using the <link linkend="stand-alone-deriving">standalone deriving mechanism</link>.
</para>
</sect2>
<sect2 id="stand-alone-deriving">
<title>Stand-alone deriving declarations</title>
<para>
GHC now allows stand-alone <literal>deriving</literal> declarations, enabled by <literal>-XStandaloneDeriving</literal>:
<programlisting>
data Foo a = Bar a | Baz String
deriving instance Eq a => Eq (Foo a)
</programlisting>
The syntax is identical to that of an ordinary instance declaration apart from (a) the keyword
<literal>deriving</literal>, and (b) the absence of the <literal>where</literal> part.
</para>
<para>
However, standalone deriving differs from a <literal>deriving</literal> clause in a number
of important ways:
<itemizedlist>
<listitem><para>The standalone deriving declaration does not need to be in the
same module as the data type declaration. (But be aware of the dangers of
orphan instances (<xref linkend="orphan-modules"/>).
</para></listitem>
<listitem><para>
You must supply an explicit context (in the example the context is <literal>(Eq a)</literal>),
exactly as you would in an ordinary instance declaration.
(In contrast, in a <literal>deriving</literal> clause
attached to a data type declaration, the context is inferred.)
</para></listitem>
<listitem><para>
Unlike a <literal>deriving</literal>
declaration attached to a <literal>data</literal> declaration, the instance can be more specific
than the data type (assuming you also use
<literal>-XFlexibleInstances</literal>, <xref linkend="instance-rules"/>). Consider
for example
<programlisting>
data Foo a = Bar a | Baz String
deriving instance Eq a => Eq (Foo [a])
deriving instance Eq a => Eq (Foo (Maybe a))
</programlisting>
This will generate a derived instance for <literal>(Foo [a])</literal> and <literal>(Foo (Maybe a))</literal>,
but other types such as <literal>(Foo (Int,Bool))</literal> will not be an instance of <literal>Eq</literal>.
</para></listitem>
<listitem><para>
Unlike a <literal>deriving</literal>
declaration attached to a <literal>data</literal> declaration,
GHC does not restrict the form of the data type. Instead, GHC simply generates the appropriate
boilerplate code for the specified class, and typechecks it. If there is a type error, it is
your problem. (GHC will show you the offending code if it has a type error.)
</para>
<para>
The merit of this is that you can derive instances for GADTs and other exotic
data types, providing only that the boilerplate code does indeed typecheck. For example:
<programlisting>
data T a where
T1 :: T Int
T2 :: T Bool
deriving instance Show (T a)
</programlisting>
In this example, you cannot say <literal>... deriving( Show )</literal> on the
data type declaration for <literal>T</literal>,
because <literal>T</literal> is a GADT, but you <emphasis>can</emphasis> generate
the instance declaration using stand-alone deriving.
</para>
<para>
The down-side is that,
if the boilerplate code fails to typecheck, you will get an error message about that
code, which you did not write. Whereas, with a <literal>deriving</literal> clause
the side-conditions are necessarily more conservative, but any error message
may be more comprehensible.
</para>
</listitem>
</itemizedlist></para>
<para>
In other ways, however, a standalone deriving obeys the same rules as ordinary deriving:
<itemizedlist>
<listitem><para>
A <literal>deriving instance</literal> declaration
must obey the same rules concerning form and termination as ordinary instance declarations,
controlled by the same flags; see <xref linkend="instance-decls"/>.
</para></listitem>
<listitem>
<para>The stand-alone syntax is generalised for newtypes in exactly the same
way that ordinary <literal>deriving</literal> clauses are generalised (<xref linkend="newtype-deriving"/>).
For example:
<programlisting>
newtype Foo a = MkFoo (State Int a)
deriving instance MonadState Int Foo
</programlisting>
GHC always treats the <emphasis>last</emphasis> parameter of the instance
(<literal>Foo</literal> in this example) as the type whose instance is being derived.
</para></listitem>
</itemizedlist></para>
</sect2>
<sect2 id="deriving-extra">
<title>Deriving instances of extra classes (<literal>Data</literal>, etc)</title>
<para>
Haskell 98 allows the programmer to add "<literal>deriving( Eq, Ord )</literal>" to a data type
declaration, to generate a standard instance declaration for classes specified in the <literal>deriving</literal> clause.
In Haskell 98, the only classes that may appear in the <literal>deriving</literal> clause are the standard
classes <literal>Eq</literal>, <literal>Ord</literal>,
<literal>Enum</literal>, <literal>Ix</literal>, <literal>Bounded</literal>, <literal>Read</literal>, and <literal>Show</literal>.
</para>
<para>
GHC extends this list with several more classes that may be automatically derived:
<itemizedlist>
<listitem><para> With <option>-XDeriveGeneric</option>, you can derive
instances of the classes <literal>Generic</literal> and
<literal>Generic1</literal>, defined in <literal>GHC.Generics</literal>.
You can use these to define generic functions,
as described in <xref linkend="generic-programming"/>.
</para></listitem>
<listitem><para> With <option>-XDeriveFunctor</option>, you can derive instances of
the class <literal>Functor</literal>,
defined in <literal>GHC.Base</literal>.
</para></listitem>
<listitem><para> With <option>-XDeriveDataTypeable</option>, you can derive instances of
the class <literal>Data</literal>,
defined in <literal>Data.Data</literal>. See <xref linkend="deriving-typeable"/> for
deriving <literal>Typeable</literal>.
</para></listitem>
<listitem><para> With <option>-XDeriveFoldable</option>, you can derive instances of
the class <literal>Foldable</literal>,
defined in <literal>Data.Foldable</literal>.
</para></listitem>
<listitem><para> With <option>-XDeriveTraversable</option>, you can derive instances of
the class <literal>Traversable</literal>,
defined in <literal>Data.Traversable</literal>. Since the <literal>Traversable</literal>
instance dictates the instances of <literal>Functor</literal> and
<literal>Foldable</literal>, you'll probably want to derive them too, so
<option>-XDeriveTraversable</option> implies
<option>-XDeriveFunctor</option> and <option>-XDeriveFoldable</option>.
</para></listitem>
</itemizedlist>
You can also use a standalone deriving declaration instead
(see <xref linkend="stand-alone-deriving"/>).
</para>
<para>
In each case the appropriate class must be in scope before it
can be mentioned in the <literal>deriving</literal> clause.
</para>
</sect2>
<sect2 id="deriving-typeable">
<title>Deriving <literal>Typeable</literal> instances</title>
<para>The class <literal>Typeable</literal> is very special:
<itemizedlist>
<listitem><para>
<literal>Typeable</literal> is kind-polymorphic (see
<xref linkend="kind-polymorphism"/>).
</para></listitem>
<listitem><para>
GHC has a custom solver for discharging constraints that involve
class <literal>Typeable</literal>, and handwritten instances are forbidden.
This ensures that the programmer cannot subvert the type system by
writing bogus instances.
</para></listitem>
<listitem><para>
Derived instances of <literal>Typeable</literal> are ignored,
and may be reported as an error in a later version of the compiler.
</para></listitem>
<listitem><para>
The rules for solving `Typeable` constraints are as follows:
<itemizedlist>
<listitem><para>A concrete type constructor applied to some types.
<programlisting>
instance (Typeable t1, .., Typeable t_n) =>
Typeable (T t1 .. t_n)
</programlisting>
This rule works for any concrete type constructor, including type
constructors with polymorphic kinds. The only restriction is that
if the type constructor has a polymorphic kind, then it has to be applied
to all of its kinds parameters, and these kinds need to be concrete
(i.e., they cannot mention kind variables).
</para></listitem>
<listitem><para>
<programlisting>A type variable applied to some types.
instance (Typeable f, Typeable t1, .., Typeable t_n) =>
Typeable (f t1 .. t_n)
</programlisting>
</para></listitem>
<listitem><para>
<programlisting>A concrete type literal.
instance Typeable 0 -- Type natural literals
instance Typeable "Hello" -- Type-level symbols
</programlisting>
</para></listitem>
</itemizedlist>
</para></listitem>
</itemizedlist>
</para>
</sect2>
<sect2 id="newtype-deriving">
<title>Generalised derived instances for newtypes</title>
<para>
When you define an abstract type using <literal>newtype</literal>, you may want
the new type to inherit some instances from its representation. In
Haskell 98, you can inherit instances of <literal>Eq</literal>, <literal>Ord</literal>,
<literal>Enum</literal> and <literal>Bounded</literal> by deriving them, but for any
other classes you have to write an explicit instance declaration. For
example, if you define
<programlisting>
newtype Dollars = Dollars Int
</programlisting>
and you want to use arithmetic on <literal>Dollars</literal>, you have to
explicitly define an instance of <literal>Num</literal>:
<programlisting>
instance Num Dollars where
Dollars a + Dollars b = Dollars (a+b)
...
</programlisting>
All the instance does is apply and remove the <literal>newtype</literal>
constructor. It is particularly galling that, since the constructor
doesn't appear at run-time, this instance declaration defines a
dictionary which is <emphasis>wholly equivalent</emphasis> to the <literal>Int</literal>
dictionary, only slower!
</para>
<sect3 id="generalized-newtype-deriving"> <title> Generalising the deriving clause </title>
<para>
GHC now permits such instances to be derived instead,
using the flag <option>-XGeneralizedNewtypeDeriving</option>,
so one can write
<programlisting>
newtype Dollars = Dollars Int deriving (Eq,Show,Num)
</programlisting>
and the implementation uses the <emphasis>same</emphasis> <literal>Num</literal> dictionary
for <literal>Dollars</literal> as for <literal>Int</literal>. Notionally, the compiler
derives an instance declaration of the form
<programlisting>
instance Num Int => Num Dollars
</programlisting>
which just adds or removes the <literal>newtype</literal> constructor according to the type.
</para>
<para>
We can also derive instances of constructor classes in a similar
way. For example, suppose we have implemented state and failure monad
transformers, such that
<programlisting>
instance Monad m => Monad (State s m)
instance Monad m => Monad (Failure m)
</programlisting>
In Haskell 98, we can define a parsing monad by
<programlisting>
type Parser tok m a = State [tok] (Failure m) a
</programlisting>
which is automatically a monad thanks to the instance declarations
above. With the extension, we can make the parser type abstract,
without needing to write an instance of class <literal>Monad</literal>, via
<programlisting>
newtype Parser tok m a = Parser (State [tok] (Failure m) a)
deriving Monad
</programlisting>
In this case the derived instance declaration is of the form
<programlisting>
instance Monad (State [tok] (Failure m)) => Monad (Parser tok m)
</programlisting>
Notice that, since <literal>Monad</literal> is a constructor class, the
instance is a <emphasis>partial application</emphasis> of the new type, not the
entire left hand side. We can imagine that the type declaration is
"eta-converted" to generate the context of the instance
declaration.
</para>
<para>
We can even derive instances of multi-parameter classes, provided the
newtype is the last class parameter. In this case, a ``partial
application'' of the class appears in the <literal>deriving</literal>
clause. For example, given the class
<programlisting>
class StateMonad s m | m -> s where ...
instance Monad m => StateMonad s (State s m) where ...
</programlisting>
then we can derive an instance of <literal>StateMonad</literal> for <literal>Parser</literal>s by
<programlisting>
newtype Parser tok m a = Parser (State [tok] (Failure m) a)
deriving (Monad, StateMonad [tok])
</programlisting>
The derived instance is obtained by completing the application of the
class to the new type:
<programlisting>
instance StateMonad [tok] (State [tok] (Failure m)) =>
StateMonad [tok] (Parser tok m)
</programlisting>
</para>
<para>
As a result of this extension, all derived instances in newtype
declarations are treated uniformly (and implemented just by reusing
the dictionary for the representation type), <emphasis>except</emphasis>
<literal>Show</literal> and <literal>Read</literal>, which really behave differently for
the newtype and its representation.
</para>
</sect3>
<sect3> <title> A more precise specification </title>
<para>
A derived instance is derived only for declarations of these forms (after expansion of any type synonyms)
<programlisting>
newtype T v1..vn = MkT (t vk+1..vn) deriving (C t1..tj)
newtype instance T s1..sk vk+1..vn = MkT (t vk+1..vn) deriving (C t1..tj)
</programlisting>
where
<itemizedlist>
<listitem><para>
<literal>v1..vn</literal> are type variables, and <literal>t</literal>,
<literal>s1..sk</literal>, <literal>t1..tj</literal> are types.
</para></listitem>
<listitem><para>
The <literal>(C t1..tj)</literal> is a partial applications of the class <literal>C</literal>,
where the arity of <literal>C</literal>
is exactly <literal>j+1</literal>. That is, <literal>C</literal> lacks exactly one type argument.
</para></listitem>
<listitem><para>
<literal>k</literal> is chosen so that <literal>C t1..tj (T v1...vk)</literal> is well-kinded.
(Or, in the case of a <literal>data instance</literal>, so that <literal>C t1..tj (T s1..sk)</literal> is
well kinded.)
</para></listitem>
<listitem><para>
The type <literal>t</literal> is an arbitrary type.
</para></listitem>
<listitem><para>
The type variables <literal>vk+1...vn</literal> do not occur in the types <literal>t</literal>,
<literal>s1..sk</literal>, or <literal>t1..tj</literal>.
</para></listitem>
<listitem><para>
<literal>C</literal> is not <literal>Read</literal>, <literal>Show</literal>,
<literal>Typeable</literal>, or <literal>Data</literal>. These classes
should not "look through" the type or its constructor. You can still
derive these classes for a newtype, but it happens in the usual way, not
via this new mechanism.
</para></listitem>
<listitem><para>
It is safe to coerce each of the methods of <literal>C</literal>. That is,
the missing last argument to <literal>C</literal> is not used
at a nominal role in any of the <literal>C</literal>'s methods.
(See <xref linkend="roles"/>.)</para></listitem>
</itemizedlist>
Then the derived instance is of form
declaration is:
<programlisting>
instance C t1..tj t => C t1..tj (T v1...vk)
</programlisting>
As an example which does <emphasis>not</emphasis> work, consider
<programlisting>
newtype NonMonad m s = NonMonad (State s m s) deriving Monad
</programlisting>
Here we cannot derive the instance
<programlisting>
instance Monad (State s m) => Monad (NonMonad m)
</programlisting>
because the type variable <literal>s</literal> occurs in <literal>State s m</literal>,
and so cannot be "eta-converted" away. It is a good thing that this
<literal>deriving</literal> clause is rejected, because <literal>NonMonad m</literal> is
not, in fact, a monad --- for the same reason. Try defining
<literal>>>=</literal> with the correct type: you won't be able to.
</para>
<para>
Notice also that the <emphasis>order</emphasis> of class parameters becomes
important, since we can only derive instances for the last one. If the
<literal>StateMonad</literal> class above were instead defined as
<programlisting>
class StateMonad m s | m -> s where ...
</programlisting>
then we would not have been able to derive an instance for the
<literal>Parser</literal> type above. We hypothesise that multi-parameter
classes usually have one "main" parameter for which deriving new
instances is most interesting.
</para>
<para>Lastly, all of this applies only for classes other than
<literal>Read</literal>, <literal>Show</literal>, <literal>Typeable</literal>,
and <literal>Data</literal>, for which the built-in derivation applies (section
4.3.3. of the Haskell Report).
(For the standard classes <literal>Eq</literal>, <literal>Ord</literal>,
<literal>Ix</literal>, and <literal>Bounded</literal> it is immaterial whether
the standard method is used or the one described here.)
</para>
</sect3>
</sect2>
<sect2 id="derive-any-class">
<title>Deriving any other class</title>
<para>
With <option>-XDeriveAnyClass</option> you can derive any other class. The
compiler will simply generate an empty instance. The instance context will be
generated according to the same rules used when deriving <literal>Eq</literal>.
This is mostly useful in classes whose <link linkend="minimal-pragma">minimal
set</link> is empty, and especially when writing
<link linkend="generic-programming">generic functions</link>.
In case you try to derive some class on a newtype, and
<option>-XGeneralizedNewtypeDeriving</option> is also on,
<option>-XDeriveAnyClass</option> takes precedence.
</para>
</sect2>
</sect1>
<!-- TYPE SYSTEM EXTENSIONS -->
<sect1 id="type-class-extensions">
<title>Class and instances declarations</title>
<sect2 id="multi-param-type-classes">
<title>Class declarations</title>
<para>
This section, and the next one, documents GHC's type-class extensions.
There's lots of background in the paper <ulink
url="http://research.microsoft.com/~simonpj/Papers/type-class-design-space/">Type
classes: exploring the design space</ulink> (Simon Peyton Jones, Mark
Jones, Erik Meijer).
</para>
<sect3>
<title>Multi-parameter type classes</title>
<para>
Multi-parameter type classes are permitted, with flag <option>-XMultiParamTypeClasses</option>.
For example:
<programlisting>
class Collection c a where
union :: c a -> c a -> c a
...etc.
</programlisting>
</para>
</sect3>
<sect3 id="superclass-rules">
<title>The superclasses of a class declaration</title>
<para>
In Haskell 98 the context of a class declaration (which introduces superclasses)
must be simple; that is, each predicate must consist of a class applied to
type variables. The flag <option>-XFlexibleContexts</option>
(<xref linkend="flexible-contexts"/>)
lifts this restriction,
so that the only restriction on the context in a class declaration is
that the class hierarchy must be acyclic. So these class declarations are OK:
<programlisting>
class Functor (m k) => FiniteMap m k where
...
class (Monad m, Monad (t m)) => Transform t m where
lift :: m a -> (t m) a
</programlisting>
</para>
<para>
As in Haskell 98, The class hierarchy must be acyclic. However, the definition
of "acyclic" involves only the superclass relationships. For example,
this is OK:
<programlisting>
class C a where {
op :: D b => a -> b -> b
}
class C a => D a where { ... }
</programlisting>
Here, <literal>C</literal> is a superclass of <literal>D</literal>, but it's OK for a
class operation <literal>op</literal> of <literal>C</literal> to mention <literal>D</literal>. (It
would not be OK for <literal>D</literal> to be a superclass of <literal>C</literal>.)
</para>
<para>
With the extension that adds a <link linkend="constraint-kind">kind of constraints</link>,
you can write more exotic superclass definitions. The superclass cycle check is even more
liberal in these case. For example, this is OK:
<programlisting>
class A cls c where
meth :: cls c => c -> c
class A B c => B c where
</programlisting>
A superclass context for a class <literal>C</literal> is allowed if, after expanding
type synonyms to their right-hand-sides, and uses of classes (other than <literal>C</literal>)
to their superclasses, <literal>C</literal> does not occur syntactically in the context.
</para>
</sect3>
<sect3 id="class-method-types">
<title>Class method types</title>
<para>
Haskell 98 prohibits class method types to mention constraints on the
class type variable, thus:
<programlisting>
class Seq s a where
fromList :: [a] -> s a
elem :: Eq a => a -> s a -> Bool
</programlisting>
The type of <literal>elem</literal> is illegal in Haskell 98, because it
contains the constraint <literal>Eq a</literal>, which constrains only the
class type variable (in this case <literal>a</literal>).
</para>
<para>
GHC lifts this restriction with language extension <option>-XConstrainedClassMethods</option>.
The restriction is a pretty stupid one in the first place,
so <option>-XConstrainedClassMethods</option> is implied by <option>-XMultiParamTypeClasses</option>.
</para>
</sect3>
<sect3 id="class-default-signatures">
<title>Default method signatures</title>
<para>
Haskell 98 allows you to define a default implementation when declaring a class:
<programlisting>
class Enum a where
enum :: [a]
enum = []
</programlisting>
The type of the <literal>enum</literal> method is <literal>[a]</literal>, and
this is also the type of the default method. You can lift this restriction
and give another type to the default method using the flag
<option>-XDefaultSignatures</option>. For instance, if you have written a
generic implementation of enumeration in a class <literal>GEnum</literal>
with method <literal>genum</literal> in terms of <literal>GHC.Generics</literal>,
you can specify a default method that uses that generic implementation:
<programlisting>
class Enum a where
enum :: [a]
default enum :: (Generic a, GEnum (Rep a)) => [a]
enum = map to genum
</programlisting>
We reuse the keyword <literal>default</literal> to signal that a signature
applies to the default method only; when defining instances of the
<literal>Enum</literal> class, the original type <literal>[a]</literal> of
<literal>enum</literal> still applies. When giving an empty instance, however,
the default implementation <literal>map to genum</literal> is filled-in,
and type-checked with the type
<literal>(Generic a, GEnum (Rep a)) => [a]</literal>.
</para>
<para>
We use default signatures to simplify generic programming in GHC
(<xref linkend="generic-programming"/>).
</para>
</sect3>
<sect3 id="nullary-type-classes">
<title>Nullary type classes</title>
Nullary (no parameter) type classes are enabled with
<option>-XMultiTypeClasses</option>; historically, they were enabled with the
(now deprecated) <option>-XNullaryTypeClasses</option>.
Since there are no available parameters, there can be at most one instance
of a nullary class. A nullary type class might be used to document some assumption
in a type signature (such as reliance on the Riemann hypothesis) or add some
globally configurable settings in a program. For example,
<programlisting>
class RiemannHypothesis where
assumeRH :: a -> a
-- Deterministic version of the Miller test
-- correctness depends on the generalised Riemann hypothesis
isPrime :: RiemannHypothesis => Integer -> Bool
isPrime n = assumeRH (...)
</programlisting>
The type signature of <literal>isPrime</literal> informs users that its correctness
depends on an unproven conjecture. If the function is used, the user has
to acknowledge the dependence with:
<programlisting>
instance RiemannHypothesis where
assumeRH = id
</programlisting>
</sect3>
</sect2>
<sect2 id="functional-dependencies">
<title>Functional dependencies
</title>
<para> Functional dependencies are implemented as described by Mark Jones
in “<ulink url="http://citeseer.ist.psu.edu/jones00type.html">Type Classes with Functional Dependencies</ulink>”, Mark P. Jones,
In Proceedings of the 9th European Symposium on Programming,
ESOP 2000, Berlin, Germany, March 2000, Springer-Verlag LNCS 1782,
.
</para>
<para>
Functional dependencies are introduced by a vertical bar in the syntax of a
class declaration; e.g.
<programlisting>
class (Monad m) => MonadState s m | m -> s where ...
class Foo a b c | a b -> c where ...
</programlisting>
There should be more documentation, but there isn't (yet). Yell if you need it.
</para>
<sect3><title>Rules for functional dependencies </title>
<para>
In a class declaration, all of the class type variables must be reachable (in the sense
mentioned in <xref linkend="flexible-contexts"/>)
from the free variables of each method type.
For example:
<programlisting>
class Coll s a where
empty :: s
insert :: s -> a -> s
</programlisting>
is not OK, because the type of <literal>empty</literal> doesn't mention
<literal>a</literal>. Functional dependencies can make the type variable
reachable:
<programlisting>
class Coll s a | s -> a where
empty :: s
insert :: s -> a -> s
</programlisting>
Alternatively <literal>Coll</literal> might be rewritten
<programlisting>
class Coll s a where
empty :: s a
insert :: s a -> a -> s a
</programlisting>
which makes the connection between the type of a collection of
<literal>a</literal>'s (namely <literal>(s a)</literal>) and the element type <literal>a</literal>.
Occasionally this really doesn't work, in which case you can split the
class like this:
<programlisting>
class CollE s where
empty :: s
class CollE s => Coll s a where
insert :: s -> a -> s
</programlisting>
</para>
</sect3>
<sect3>
<title>Background on functional dependencies</title>
<para>The following description of the motivation and use of functional dependencies is taken
from the Hugs user manual, reproduced here (with minor changes) by kind
permission of Mark Jones.
</para>
<para>
Consider the following class, intended as part of a
library for collection types:
<programlisting>
class Collects e ce where
empty :: ce
insert :: e -> ce -> ce
member :: e -> ce -> Bool
</programlisting>
The type variable e used here represents the element type, while ce is the type
of the container itself. Within this framework, we might want to define
instances of this class for lists or characteristic functions (both of which
can be used to represent collections of any equality type), bit sets (which can
be used to represent collections of characters), or hash tables (which can be
used to represent any collection whose elements have a hash function). Omitting
standard implementation details, this would lead to the following declarations:
<programlisting>
instance Eq e => Collects e [e] where ...
instance Eq e => Collects e (e -> Bool) where ...
instance Collects Char BitSet where ...
instance (Hashable e, Collects a ce)
=> Collects e (Array Int ce) where ...
</programlisting>
All this looks quite promising; we have a class and a range of interesting
implementations. Unfortunately, there are some serious problems with the class
declaration. First, the empty function has an ambiguous type:
<programlisting>
empty :: Collects e ce => ce
</programlisting>
By "ambiguous" we mean that there is a type variable e that appears on the left
of the <literal>=></literal> symbol, but not on the right. The problem with
this is that, according to the theoretical foundations of Haskell overloading,
we cannot guarantee a well-defined semantics for any term with an ambiguous
type.
</para>
<para>
We can sidestep this specific problem by removing the empty member from the
class declaration. However, although the remaining members, insert and member,
do not have ambiguous types, we still run into problems when we try to use
them. For example, consider the following two functions:
<programlisting>
f x y = insert x . insert y
g = f True 'a'
</programlisting>
for which GHC infers the following types:
<programlisting>
f :: (Collects a c, Collects b c) => a -> b -> c -> c
g :: (Collects Bool c, Collects Char c) => c -> c
</programlisting>
Notice that the type for f allows the two parameters x and y to be assigned
different types, even though it attempts to insert each of the two values, one
after the other, into the same collection. If we're trying to model collections
that contain only one type of value, then this is clearly an inaccurate
type. Worse still, the definition for g is accepted, without causing a type
error. As a result, the error in this code will not be flagged at the point
where it appears. Instead, it will show up only when we try to use g, which
might even be in a different module.
</para>
<sect4><title>An attempt to use constructor classes</title>
<para>
Faced with the problems described above, some Haskell programmers might be
tempted to use something like the following version of the class declaration:
<programlisting>
class Collects e c where
empty :: c e
insert :: e -> c e -> c e
member :: e -> c e -> Bool
</programlisting>
The key difference here is that we abstract over the type constructor c that is
used to form the collection type c e, and not over that collection type itself,
represented by ce in the original class declaration. This avoids the immediate
problems that we mentioned above: empty has type <literal>Collects e c => c
e</literal>, which is not ambiguous.
</para>
<para>
The function f from the previous section has a more accurate type:
<programlisting>
f :: (Collects e c) => e -> e -> c e -> c e
</programlisting>
The function g from the previous section is now rejected with a type error as
we would hope because the type of f does not allow the two arguments to have
different types.
This, then, is an example of a multiple parameter class that does actually work
quite well in practice, without ambiguity problems.
There is, however, a catch. This version of the Collects class is nowhere near
as general as the original class seemed to be: only one of the four instances
for <literal>Collects</literal>
given above can be used with this version of Collects because only one of
them---the instance for lists---has a collection type that can be written in
the form c e, for some type constructor c, and element type e.
</para>
</sect4>
<sect4><title>Adding functional dependencies</title>
<para>
To get a more useful version of the Collects class, Hugs provides a mechanism
that allows programmers to specify dependencies between the parameters of a
multiple parameter class (For readers with an interest in theoretical
foundations and previous work: The use of dependency information can be seen
both as a generalisation of the proposal for `parametric type classes' that was
put forward by Chen, Hudak, and Odersky, or as a special case of Mark Jones's
later framework for "improvement" of qualified types. The
underlying ideas are also discussed in a more theoretical and abstract setting
in a manuscript [implparam], where they are identified as one point in a
general design space for systems of implicit parameterisation.).
To start with an abstract example, consider a declaration such as:
<programlisting>
class C a b where ...
</programlisting>
which tells us simply that C can be thought of as a binary relation on types
(or type constructors, depending on the kinds of a and b). Extra clauses can be
included in the definition of classes to add information about dependencies
between parameters, as in the following examples:
<programlisting>
class D a b | a -> b where ...
class E a b | a -> b, b -> a where ...
</programlisting>
The notation <literal>a -> b</literal> used here between the | and where
symbols --- not to be
confused with a function type --- indicates that the a parameter uniquely
determines the b parameter, and might be read as "a determines b." Thus D is
not just a relation, but actually a (partial) function. Similarly, from the two
dependencies that are included in the definition of E, we can see that E
represents a (partial) one-one mapping between types.
</para>
<para>
More generally, dependencies take the form <literal>x1 ... xn -> y1 ... ym</literal>,
where x1, ..., xn, and y1, ..., yn are type variables with n>0 and
m>=0, meaning that the y parameters are uniquely determined by the x
parameters. Spaces can be used as separators if more than one variable appears
on any single side of a dependency, as in <literal>t -> a b</literal>. Note that a class may be
annotated with multiple dependencies using commas as separators, as in the
definition of E above. Some dependencies that we can write in this notation are
redundant, and will be rejected because they don't serve any useful
purpose, and may instead indicate an error in the program. Examples of
dependencies like this include <literal>a -> a </literal>,
<literal>a -> a a </literal>,
<literal>a -> </literal>, etc. There can also be
some redundancy if multiple dependencies are given, as in
<literal>a->b</literal>,
<literal>b->c </literal>, <literal>a->c </literal>, and
in which some subset implies the remaining dependencies. Examples like this are
not treated as errors. Note that dependencies appear only in class
declarations, and not in any other part of the language. In particular, the
syntax for instance declarations, class constraints, and types is completely
unchanged.
</para>
<para>
By including dependencies in a class declaration, we provide a mechanism for
the programmer to specify each multiple parameter class more precisely. The
compiler, on the other hand, is responsible for ensuring that the set of
instances that are in scope at any given point in the program is consistent
with any declared dependencies. For example, the following pair of instance
declarations cannot appear together in the same scope because they violate the
dependency for D, even though either one on its own would be acceptable:
<programlisting>
instance D Bool Int where ...
instance D Bool Char where ...
</programlisting>
Note also that the following declaration is not allowed, even by itself:
<programlisting>
instance D [a] b where ...
</programlisting>
The problem here is that this instance would allow one particular choice of [a]
to be associated with more than one choice for b, which contradicts the
dependency specified in the definition of D. More generally, this means that,
in any instance of the form:
<programlisting>
instance D t s where ...
</programlisting>
for some particular types t and s, the only variables that can appear in s are
the ones that appear in t, and hence, if the type t is known, then s will be
uniquely determined.
</para>
<para>
The benefit of including dependency information is that it allows us to define
more general multiple parameter classes, without ambiguity problems, and with
the benefit of more accurate types. To illustrate this, we return to the
collection class example, and annotate the original definition of <literal>Collects</literal>
with a simple dependency:
<programlisting>
class Collects e ce | ce -> e where
empty :: ce
insert :: e -> ce -> ce
member :: e -> ce -> Bool
</programlisting>
The dependency <literal>ce -> e</literal> here specifies that the type e of elements is uniquely
determined by the type of the collection ce. Note that both parameters of
Collects are of kind *; there are no constructor classes here. Note too that
all of the instances of Collects that we gave earlier can be used
together with this new definition.
</para>
<para>
What about the ambiguity problems that we encountered with the original
definition? The empty function still has type Collects e ce => ce, but it is no
longer necessary to regard that as an ambiguous type: Although the variable e
does not appear on the right of the => symbol, the dependency for class
Collects tells us that it is uniquely determined by ce, which does appear on
the right of the => symbol. Hence the context in which empty is used can still
give enough information to determine types for both ce and e, without
ambiguity. More generally, we need only regard a type as ambiguous if it
contains a variable on the left of the => that is not uniquely determined
(either directly or indirectly) by the variables on the right.
</para>
<para>
Dependencies also help to produce more accurate types for user defined
functions, and hence to provide earlier detection of errors, and less cluttered
types for programmers to work with. Recall the previous definition for a
function f:
<programlisting>
f x y = insert x y = insert x . insert y
</programlisting>
for which we originally obtained a type:
<programlisting>
f :: (Collects a c, Collects b c) => a -> b -> c -> c
</programlisting>
Given the dependency information that we have for Collects, however, we can
deduce that a and b must be equal because they both appear as the second
parameter in a Collects constraint with the same first parameter c. Hence we
can infer a shorter and more accurate type for f:
<programlisting>
f :: (Collects a c) => a -> a -> c -> c
</programlisting>
In a similar way, the earlier definition of g will now be flagged as a type error.
</para>
<para>
Although we have given only a few examples here, it should be clear that the
addition of dependency information can help to make multiple parameter classes
more useful in practice, avoiding ambiguity problems, and allowing more general
sets of instance declarations.
</para>
</sect4>
</sect3>
</sect2>
<sect2 id="instance-decls">
<title>Instance declarations</title>
<para>An instance declaration has the form
<screen>
instance ( <replaceable>assertion</replaceable><subscript>1</subscript>, ..., <replaceable>assertion</replaceable><subscript>n</subscript>) => <replaceable>class</replaceable> <replaceable>type</replaceable><subscript>1</subscript> ... <replaceable>type</replaceable><subscript>m</subscript> where ...
</screen>
The part before the "<literal>=></literal>" is the
<emphasis>context</emphasis>, while the part after the
"<literal>=></literal>" is the <emphasis>head</emphasis> of the instance declaration.
</para>
<sect3 id="instance-resolution">
<title>Instance resolution</title>
<para>
When GHC tries to resolve, say, the constraint <literal>C Int Bool</literal>,
it tries to match every instance declaration against the
constraint,
by instantiating the head of the instance declaration. Consider
these declarations:
<programlisting>
instance context1 => C Int a where ... -- (A)
instance context2 => C a Bool where ... -- (B)
</programlisting>
GHC's default behaviour is that <emphasis>exactly one instance must match the
constraint it is trying to resolve</emphasis>.
For example, the constraint <literal>C Int Bool</literal> matches instances (A) and (B),
and hence would be rejected; while <literal>C Int Char</literal> matches only (A)
and hence (A) is chosen.</para>
<para>
Notice that
<itemizedlist>
<listitem><para>
When matching, GHC takes
no account of the context of the instance declaration
(<literal>context1</literal> etc).
</para></listitem>
<listitem><para>
It is fine for there to be a <emphasis>potential</emphasis> of overlap (by
including both declarations (A) and (B), say); an error is only reported if a
particular constraint matches more than one.
</para></listitem>
</itemizedlist>
See also <xref linkend="instance-overlap"/> for flags that loosen the
instance resolution rules.
</para>
</sect3>
<sect3 id="flexible-instance-head">
<title>Relaxed rules for the instance head</title>
<para>
In Haskell 98 the head of an instance declaration
must be of the form <literal>C (T a1 ... an)</literal>, where
<literal>C</literal> is the class, <literal>T</literal> is a data type constructor,
and the <literal>a1 ... an</literal> are distinct type variables.
In the case of multi-parameter type classes, this rule applies to each parameter of
the instance head. (Arguably it should be OK if just one has this form and the others
are type variables, but that's the rules at the moment.)</para>
<para>GHC relaxes this rule in two ways.
<itemizedlist>
<listitem><para>
With the <option>-XTypeSynonymInstances</option> flag, instance heads may use type
synonyms. As always, using a type synonym is just shorthand for
writing the RHS of the type synonym definition. For example:
<programlisting>
type Point a = (a,a)
instance C (Point a) where ...
</programlisting>
is legal. The instance declaration is equivalent to
<programlisting>
instance C (a,a) where ...
</programlisting>
As always, type synonyms
must be fully applied. You cannot, for example, write:
<programlisting>
instance Monad Point where ...
</programlisting>
</para></listitem>
<listitem>
<para>
The <option>-XFlexibleInstances</option> flag allows the head of the instance
declaration to mention arbitrary nested types.
For example, this becomes a legal instance declaration
<programlisting>
instance C (Maybe Int) where ...
</programlisting>
See also the <link linkend="instance-overlap">rules on overlap</link>.
</para>
<para>
The <option>-XFlexibleInstances</option> flag implies <option>-XTypeSynonymInstances</option>.
</para></listitem>
</itemizedlist>
</para>
<para>
However, the instance declaration must still conform to the rules for instance
termination: see <xref linkend="instance-termination"/>.
</para>
</sect3>
<sect3 id="instance-rules">
<title>Relaxed rules for instance contexts</title>
<para>In Haskell 98, the class constraints in the context of the instance declaration
must be of the form <literal>C a</literal> where <literal>a</literal>
is a type variable that occurs in the head.
</para>
<para>
The <option>-XFlexibleContexts</option> flag relaxes this rule, as well
as relaxing the corresponding rule for type signatures (see <xref linkend="flexible-contexts"/>).
Specifically, <option>-XFlexibleContexts</option>, allows (well-kinded) class constraints
of form <literal>(C t1 ... tn)</literal> in the context of an instance declaration.
</para>
<para>
Notice that the flag does not affect equality constraints in an instance context;
they are permitted by <option>-XTypeFamilies</option> or <option>-XGADTs</option>.
</para>
<para>
However, the instance declaration must still conform to the rules for instance
termination: see <xref linkend="instance-termination"/>.
</para>
</sect3>
<sect3 id="instance-termination">
<title>Instance termination rules</title>
<para>
Regardless of <option>-XFlexibleInstances</option> and <option>-XFlexibleContexts</option>,
instance declarations must conform to some rules that ensure that instance resolution
will terminate. The restrictions can be lifted with <option>-XUndecidableInstances</option>
(see <xref linkend="undecidable-instances"/>).
</para>
<para>
The rules are these:
<orderedlist>
<listitem><para>
The Paterson Conditions: for each class constraint <literal>(C t1 ... tn)</literal> in the context
<orderedlist>
<listitem><para>No type variable has more occurrences in the constraint than in the head</para></listitem>
<listitem><para>The constraint has fewer constructors and variables (taken together
and counting repetitions) than the head</para></listitem>
</orderedlist>
</para></listitem>
<listitem><para>The Coverage Condition. For each functional dependency,
<replaceable>tvs</replaceable><subscript>left</subscript> <literal>-></literal>
<replaceable>tvs</replaceable><subscript>right</subscript>, of the class,
every type variable in
S(<replaceable>tvs</replaceable><subscript>right</subscript>) must appear in
S(<replaceable>tvs</replaceable><subscript>left</subscript>), where S is the
substitution mapping each type variable in the class declaration to the
corresponding type in the instance head.
</para></listitem>
</orderedlist>
These restrictions ensure that instance resolution terminates: each reduction
step makes the problem smaller by at least one
constructor.
You can find lots of background material about the reason for these
restrictions in the paper <ulink
url="http://research.microsoft.com/%7Esimonpj/papers/fd%2Dchr/">
Understanding functional dependencies via Constraint Handling Rules</ulink>.
</para>
<para>
For example, these are OK:
<programlisting>
instance C Int [a] -- Multiple parameters
instance Eq (S [a]) -- Structured type in head
-- Repeated type variable in head
instance C4 a a => C4 [a] [a]
instance Stateful (ST s) (MutVar s)
-- Head can consist of type variables only
instance C a
instance (Eq a, Show b) => C2 a b
-- Non-type variables in context
instance Show (s a) => Show (Sized s a)
instance C2 Int a => C3 Bool [a]
instance C2 Int a => C3 [a] b
</programlisting>
But these are not:
<programlisting>
-- Context assertion no smaller than head
instance C a => C a where ...
-- (C b b) has more occurrences of b than the head
instance C b b => Foo [b] where ...
</programlisting>
</para>
<para>
The same restrictions apply to instances generated by
<literal>deriving</literal> clauses. Thus the following is accepted:
<programlisting>
data MinHeap h a = H a (h a)
deriving (Show)
</programlisting>
because the derived instance
<programlisting>
instance (Show a, Show (h a)) => Show (MinHeap h a)
</programlisting>
conforms to the above rules.
</para>
<para>
A useful idiom permitted by the above rules is as follows.
If one allows overlapping instance declarations then it's quite
convenient to have a "default instance" declaration that applies if
something more specific does not:
<programlisting>
instance C a where
op = ... -- Default
</programlisting>
</para>
</sect3>
<sect3 id="undecidable-instances">
<title>Undecidable instances</title>
<para>
Sometimes even the termination rules of <xref linkend="instance-termination"/> are too onerous.
So GHC allows you to experiment with more liberal rules: if you use
the experimental flag <option>-XUndecidableInstances</option>
<indexterm><primary>-XUndecidableInstances</primary></indexterm>,
both the Paterson Conditions and the Coverage Condition
(described in <xref linkend="instance-termination"/>) are lifted.
Termination is still ensured by having a
fixed-depth recursion stack. If you exceed the stack depth you get a
sort of backtrace, and the opportunity to increase the stack depth
with <option>-freduction-depth=</option><emphasis>N</emphasis>.
However, if you should exceed the default reduction depth limit,
it is probably best just to disable depth checking, with
<option>-freduction-depth=0</option>. The exact depth your program
requires depends on minutiae of your code, and it may change between
minor GHC releases. The safest bet for released code -- if you're sure
that it should compile in finite time -- is just to disable the check.
</para>
<para>
For example, sometimes you might want to use the following to get the
effect of a "class synonym":
<programlisting>
class (C1 a, C2 a, C3 a) => C a where { }
instance (C1 a, C2 a, C3 a) => C a where { }
</programlisting>
This allows you to write shorter signatures:
<programlisting>
f :: C a => ...
</programlisting>
instead of
<programlisting>
f :: (C1 a, C2 a, C3 a) => ...
</programlisting>
The restrictions on functional dependencies (<xref
linkend="functional-dependencies"/>) are particularly troublesome.
It is tempting to introduce type variables in the context that do not appear in
the head, something that is excluded by the normal rules. For example:
<programlisting>
class HasConverter a b | a -> b where
convert :: a -> b
data Foo a = MkFoo a
instance (HasConverter a b,Show b) => Show (Foo a) where
show (MkFoo value) = show (convert value)
</programlisting>
This is dangerous territory, however. Here, for example, is a program that would make the
typechecker loop:
<programlisting>
class D a
class F a b | a->b
instance F [a] [[a]]
instance (D c, F a c) => D [a] -- 'c' is not mentioned in the head
</programlisting>
Similarly, it can be tempting to lift the coverage condition:
<programlisting>
class Mul a b c | a b -> c where
(.*.) :: a -> b -> c
instance Mul Int Int Int where (.*.) = (*)
instance Mul Int Float Float where x .*. y = fromIntegral x * y
instance Mul a b c => Mul a [b] [c] where x .*. v = map (x.*.) v
</programlisting>
The third instance declaration does not obey the coverage condition;
and indeed the (somewhat strange) definition:
<programlisting>
f = \ b x y -> if b then x .*. [y] else y
</programlisting>
makes instance inference go into a loop, because it requires the constraint
<literal>(Mul a [b] b)</literal>.
</para>
<para>
The <option>-XUndecidableInstances</option> flag is also used to lift some of the
restrictions imposed on type family instances. See <xref linkend="type-family-decidability"/>.
</para>
</sect3>
<sect3 id="instance-overlap">
<title>Overlapping instances</title>
<para>
In general, as discussed in <xref linkend="instance-resolution"/>,
<emphasis>GHC requires that it be unambiguous which instance
declaration
should be used to resolve a type-class constraint</emphasis>.
GHC also provides a way to to loosen
the instance resolution, by
allowing more than one instance to match, <emphasis>provided there is a most
specific one</emphasis>. Moreover, it can be loosened further, by allowing more than one instance to match
irrespective of whether there is a most specific one.
This section gives the details.
</para>
<para>
To control the choice of instance, it is possible to specify the overlap behavior for individual
instances with a pragma, written immediately after the
<literal>instance</literal> keyword. The pragma may be one of:
<literal>{-# OVERLAPPING #-}</literal>,
<literal>{-# OVERLAPPABLE #-}</literal>,
<literal>{-# OVERLAPS #-}</literal>,
or <literal>{-# INCOHERENT #-}</literal>.
</para>
<para>
The matching behaviour is also influenced by two module-level language extension flags: <option>-XOverlappingInstances</option>
<indexterm><primary>-XOverlappingInstances
</primary></indexterm>
and <option>-XIncoherentInstances</option>
<indexterm><primary>-XIncoherentInstances
</primary></indexterm>. These flags are now deprecated (since GHC 7.10) in favour of
the fine-grained per-instance pragmas.
</para>
<para>
A more precise specification is as follows.
The willingness to be overlapped or incoherent is a property of
the <emphasis>instance declaration</emphasis> itself, controlled as follows:
<itemizedlist>
<listitem><para>An instance is <emphasis>incoherent</emphasis> if: it has an <literal>INCOHERENT</literal> pragma; or if the instance has no pragma and it appears in a module compiled with <literal>-XIncoherentInstances</literal>.
</para></listitem>
<listitem><para>An instance is <emphasis>overlappable</emphasis> if: it has an <literal>OVERLAPPABLE</literal> or <literal>OVERLAPS</literal> pragma; or if the instance has no pragma and it appears in a module compiled with <literal>-XOverlappingInstances</literal>; or if the instance is incoherent.
</para></listitem>
<listitem><para>An instance is <emphasis>overlapping</emphasis> if: it has an <literal>OVERLAPPING</literal> or <literal>OVERLAPS</literal> pragma; or if the instance has no pragma and it appears in a module compiled with <literal>-XOverlappingInstances</literal>; or if the instance is incoherent.
</para></listitem>
</itemizedlist>
</para>
<para>
Now suppose that, in some client module, we are searching for an instance of the
<emphasis>target constraint</emphasis> <literal>(C ty1 .. tyn)</literal>.
The search works like this.
<itemizedlist>
<listitem><para>
Find all instances I that <emphasis>match</emphasis> the target constraint;
that is, the target constraint is a substitution instance of I. These
instance declarations are the <emphasis>candidates</emphasis>.
</para></listitem>
<listitem><para>
Eliminate any candidate IX for which both of the following hold:
<itemizedlist>
<listitem><para>There is another candidate IY that is strictly more specific;
that is, IY is a substitution instance of IX but not vice versa.
</para></listitem>
<listitem><para>
Either IX is <emphasis>overlappable</emphasis>, or IY is
<emphasis>overlapping</emphasis>. (This "either/or" design, rather than a "both/and" design,
allow a client to deliberately override an instance from a library, without requiring a change to the library.)
</para></listitem>
</itemizedlist>
</para>
</listitem>
<listitem><para>
If exactly one non-incoherent candidate remains, select it. If all
remaining candidates are incoherent, select an arbitrary
one. Otherwise the search fails (i.e. when more than one surviving candidate is not incoherent).
</para></listitem>
<listitem><para>
If the selected candidate (from the previous step) is incoherent, the search succeeds, returning that candidate.
</para></listitem>
<listitem><para>
If not, find all instances that <emphasis>unify</emphasis> with the target
constraint, but do not <emphasis>match</emphasis> it.
Such non-candidate instances might match when the target constraint is further
instantiated. If all of them are incoherent, the search succeeds, returning the selected candidate;
if not, the search fails.
</para></listitem>
</itemizedlist>
Notice that these rules are not influenced by flag settings in the client module, where
the instances are <emphasis>used</emphasis>.
These rules make it possible for a library author to design a library that relies on
overlapping instances without the client having to know.
</para>
<para>
Errors are reported <emphasis>lazily</emphasis> (when attempting to solve a constraint), rather than <emphasis>eagerly</emphasis>
(when the instances themselves are defined). Consider, for example
<programlisting>
instance C Int b where ..
instance C a Bool where ..
</programlisting>
These potentially overlap, but GHC will not complain about the instance declarations
themselves, regardless of flag settings. If we later try to solve the constraint
<literal>(C Int Char)</literal> then only the first instance matches, and all is well.
Similarly with <literal>(C Bool Bool)</literal>. But if we try to solve <literal>(C Int Bool)</literal>,
both instances match and an error is reported.
</para>
<para>
As a more substantial example of the rules in action, consider
<programlisting>
instance {-# OVERLAPPABLE #-} context1 => C Int b where ... -- (A)
instance {-# OVERLAPPABLE #-} context2 => C a Bool where ... -- (B)
instance {-# OVERLAPPABLE #-} context3 => C a [b] where ... -- (C)
instance {-# OVERLAPPING #-} context4 => C Int [Int] where ... -- (D)
</programlisting>
Now suppose that the type inference
engine needs to solve the constraint
<literal>C Int [Int]</literal>. This constraint matches instances (A), (C) and (D), but the last
is more specific, and hence is chosen.
</para>
<para>If (D) did not exist then (A) and (C) would still be matched, but neither is
most specific. In that case, the program would be rejected, unless
<option>-XIncoherentInstances</option> is enabled, in which case it would be accepted and (A) or
(C) would be chosen arbitrarily.
</para>
<para>
An instance declaration is <emphasis>more specific</emphasis> than another iff
the head of former is a substitution instance of the latter. For example
(D) is "more specific" than (C) because you can get from (C) to (D) by
substituting <literal>a:=Int</literal>.
</para>
<para>
GHC is conservative about committing to an overlapping instance. For example:
<programlisting>
f :: [b] -> [b]
f x = ...
</programlisting>
Suppose that from the RHS of <literal>f</literal> we get the constraint
<literal>C b [b]</literal>. But
GHC does not commit to instance (C), because in a particular
call of <literal>f</literal>, <literal>b</literal> might be instantiate
to <literal>Int</literal>, in which case instance (D) would be more specific still.
So GHC rejects the program.</para>
<para>
If, however, you add the flag <option>-XIncoherentInstances</option> when
compiling the module that contains (D), GHC will instead pick (C), without
complaining about the problem of subsequent instantiations.
</para>
<para>
Notice that we gave a type signature to <literal>f</literal>, so GHC had to
<emphasis>check</emphasis> that <literal>f</literal> has the specified type.
Suppose instead we do not give a type signature, asking GHC to <emphasis>infer</emphasis>
it instead. In this case, GHC will refrain from
simplifying the constraint <literal>C Int [b]</literal> (for the same reason
as before) but, rather than rejecting the program, it will infer the type
<programlisting>
f :: C b [b] => [b] -> [b]
</programlisting>
That postpones the question of which instance to pick to the
call site for <literal>f</literal>
by which time more is known about the type <literal>b</literal>.
You can write this type signature yourself if you use the
<link linkend="flexible-contexts"><option>-XFlexibleContexts</option></link>
flag.
</para>
<para>
Exactly the same situation can arise in instance declarations themselves. Suppose we have
<programlisting>
class Foo a where
f :: a -> a
instance Foo [b] where
f x = ...
</programlisting>
and, as before, the constraint <literal>C Int [b]</literal> arises from <literal>f</literal>'s
right hand side. GHC will reject the instance, complaining as before that it does not know how to resolve
the constraint <literal>C Int [b]</literal>, because it matches more than one instance
declaration. The solution is to postpone the choice by adding the constraint to the context
of the instance declaration, thus:
<programlisting>
instance C Int [b] => Foo [b] where
f x = ...
</programlisting>
(You need <link linkend="instance-rules"><option>-XFlexibleInstances</option></link> to do this.)
</para>
<para>
Warning: overlapping instances must be used with care. They
can give rise to incoherence (i.e. different instance choices are made
in different parts of the program) even without <option>-XIncoherentInstances</option>. Consider:
<programlisting>
{-# LANGUAGE OverlappingInstances #-}
module Help where
class MyShow a where
myshow :: a -> String
instance MyShow a => MyShow [a] where
myshow xs = concatMap myshow xs
showHelp :: MyShow a => [a] -> String
showHelp xs = myshow xs
{-# LANGUAGE FlexibleInstances, OverlappingInstances #-}
module Main where
import Help
data T = MkT
instance MyShow T where
myshow x = "Used generic instance"
instance MyShow [T] where
myshow xs = "Used more specific instance"
main = do { print (myshow [MkT]); print (showHelp [MkT]) }
</programlisting>
In function <literal>showHelp</literal> GHC sees no overlapping
instances, and so uses the <literal>MyShow [a]</literal> instance
without complaint. In the call to <literal>myshow</literal> in <literal>main</literal>,
GHC resolves the <literal>MyShow [T]</literal> constraint using the overlapping
instance declaration in module <literal>Main</literal>. As a result,
the program prints
<programlisting>
"Used more specific instance"
"Used generic instance"
</programlisting>
(An alternative possible behaviour, not currently implemented,
would be to reject module <literal>Help</literal>
on the grounds that a later instance declaration might overlap the local one.)
</para>
</sect3>
<sect3 id="instance-sigs">
<title>Instance signatures: type signatures in instance declarations</title>
<para>In Haskell, you can't write a type signature in an instance declaration, but it
is sometimes convenient to do so, and the language extension <option>-XInstanceSigs</option>
allows you to do so. For example:
<programlisting>
data T a = MkT a a
instance Eq a => Eq (T a) where
(==) :: T a -> T a -> Bool -- The signature
(==) (MkT x1 x2) (MkTy y1 y2) = x1==y1 && x2==y2
</programlisting>
</para>
Some details
<itemizedlist>
<listitem><para>
The type signature in the instance declaration must be more polymorphic than (or the same as)
the one in the class declaration, instantiated with the instance type.
For example, this is fine:
<programlisting>
instance Eq a => Eq (T a) where
(==) :: forall b. b -> b -> Bool
(==) x y = True
</programlisting>
Here the signature in the instance declaration is more polymorphic than that
required by the instantiated class method.
</para>
</listitem>
<listitem><para>
The code for the method in the instance declaration is typechecked against the type signature
supplied in the instance declaration, as you would expect. So if the instance signature
is more polymorphic than required, the code must be too.
</para></listitem>
<listitem><para>
One stylistic reason for wanting to write a type signature is simple documentation. Another
is that you may want to bring scoped type variables into scope. For example:
<programlisting>
class C a where
foo :: b -> a -> (a, [b])
instance C a => C (T a) where
foo :: forall b. b -> T a -> (T a, [b])
foo x (T y) = (T y, xs)
where
xs :: [b]
xs = [x,x,x]
</programlisting>
Provided that you also specify <option>-XScopedTypeVariables</option>
(<xref linkend="scoped-type-variables"/>),
the <literal>forall b</literal> scopes over the definition of <literal>foo</literal>,
and in particular over the type signature for <literal>xs</literal>.
</para></listitem>
</itemizedlist>
</sect3>
</sect2>
<sect2 id="overloaded-strings">
<title>Overloaded string literals
</title>
<para>
GHC supports <emphasis>overloaded string literals</emphasis>. Normally a
string literal has type <literal>String</literal>, but with overloaded string
literals enabled (with <literal>-XOverloadedStrings</literal>)
a string literal has type <literal>(IsString a) => a</literal>.
</para>
<para>
This means that the usual string syntax can be used, e.g.,
for <literal>ByteString</literal>, <literal>Text</literal>,
and other variations of string like types. String literals behave very much
like integer literals, i.e., they can be used in both expressions and patterns.
If used in a pattern the literal with be replaced by an equality test, in the same
way as an integer literal is.
</para>
<para>
The class <literal>IsString</literal> is defined as:
<programlisting>
class IsString a where
fromString :: String -> a
</programlisting>
The only predefined instance is the obvious one to make strings work as usual:
<programlisting>
instance IsString [Char] where
fromString cs = cs
</programlisting>
The class <literal>IsString</literal> is not in scope by default. If you want to mention
it explicitly (for example, to give an instance declaration for it), you can import it
from module <literal>GHC.Exts</literal>.
</para>
<para>
Haskell's defaulting mechanism (<ulink url="http://www.haskell.org/onlinereport/decls.html#sect4.3.4">Haskell Report, Section 4.3.4</ulink>)
is extended to cover string literals, when <option>-XOverloadedStrings</option> is specified.
Specifically:
<itemizedlist>
<listitem><para>
Each type in a <literal>default</literal> declaration must be an
instance of <literal>Num</literal> <emphasis>or</emphasis> of <literal>IsString</literal>.
</para></listitem>
<listitem><para>
If no <literal>default</literal> declaration is given, then it is just as if the module
contained the declaration <literal>default( Integer, Double, String)</literal>.
</para></listitem>
<listitem><para>
The standard defaulting rule
is extended thus: defaulting applies when all the unresolved constraints involve standard classes
<emphasis>or</emphasis> <literal>IsString</literal>; and at least one is a numeric class
<emphasis>or</emphasis> <literal>IsString</literal>.
</para></listitem>
</itemizedlist>
So, for example, the expression <literal>length "foo"</literal> will give rise
to an ambiguous use of <literal>IsString a0</literal> which, because of the above
rules, will default to <literal>String</literal>.
</para>
<para>
A small example:
<programlisting>
module Main where
import GHC.Exts( IsString(..) )
newtype MyString = MyString String deriving (Eq, Show)
instance IsString MyString where
fromString = MyString
greet :: MyString -> MyString
greet "hello" = "world"
greet other = other
main = do
print $ greet "hello"
print $ greet "fool"
</programlisting>
</para>
<para>
Note that deriving <literal>Eq</literal> is necessary for the pattern matching
to work since it gets translated into an equality comparison.
</para>
</sect2>
<sect2 id="overloaded-lists">
<title>Overloaded lists</title>
<para> GHC supports <emphasis>overloading of the list notation</emphasis>.
Let us recap the notation for
constructing lists. In Haskell, the list notation can be be used in the
following seven ways:
<programlisting>
[] -- Empty list
[x] -- x : []
[x,y,z] -- x : y : z : []
[x .. ] -- enumFrom x
[x,y ..] -- enumFromThen x y
[x .. y] -- enumFromTo x y
[x,y .. z] -- enumFromThenTo x y z
</programlisting>
When the <option>OverloadedLists</option> extension is turned on, the
aforementioned seven notations are desugared as follows: </para>
<programlisting>
[] -- fromListN 0 []
[x] -- fromListN 1 (x : [])
[x,y,z] -- fromListN 3 (x : y : z : [])
[x .. ] -- fromList (enumFrom x)
[x,y ..] -- fromList (enumFromThen x y)
[x .. y] -- fromList (enumFromTo x y)
[x,y .. z] -- fromList (enumFromThenTo x y z)
</programlisting>
<para> This extension allows programmers to use the list notation for
construction of structures like: <literal>Set</literal>,
<literal>Map</literal>, <literal>IntMap</literal>, <literal>Vector</literal>,
<literal>Text</literal> and <literal>Array</literal>. The following code
listing gives a few examples:</para>
<programlisting>
['0' .. '9'] :: Set Char
[1 .. 10] :: Vector Int
[("default",0), (k1,v1)] :: Map String Int
['a' .. 'z'] :: Text
</programlisting>
<para>
List patterns are also overloaded. When the <option>OverloadedLists</option>
extension is turned on, these definitions are desugared as follows
<programlisting>
f [] = ... -- f (toList -> []) = ...
g [x,y,z] = ... -- g (toList -> [x,y,z]) = ...
</programlisting>
(Here we are using view-pattern syntax for the translation, see <xref linkend="view-patterns"/>.)
</para>
<sect3>
<title>The <literal>IsList</literal> class</title>
<para>In the above desugarings, the functions <literal>toList</literal>,
<literal>fromList</literal> and <literal>fromListN</literal> are all
methods of
the <literal>IsList</literal> class, which is itself exported from
the <literal>GHC.Exts</literal> module.
The type class is defined as follows:</para>
<programlisting>
class IsList l where
type Item l
fromList :: [Item l] -> l
toList :: l -> [Item l]
fromListN :: Int -> [Item l] -> l
fromListN _ = fromList
</programlisting>
<para>The <literal>IsList</literal> class and its methods are intended to be
used in conjunction with the <option>OverloadedLists</option> extension.
<itemizedlist>
<listitem> <para> The type function
<literal>Item</literal> returns the type of items of the
structure <literal>l</literal>.
</para></listitem>
<listitem><para>
The function <literal>fromList</literal>
constructs the structure <literal>l</literal> from the given list of
<literal>Item l</literal>.
</para></listitem>
<listitem><para>
The function <literal>fromListN</literal> takes the
input list's length as a hint. Its behaviour should be equivalent to
<literal>fromList</literal>. The hint can be used for more efficient
construction of the structure <literal>l</literal> compared to
<literal>fromList</literal>. If the given hint is not equal to the input
list's length the behaviour of <literal>fromListN</literal> is not
specified.
</para></listitem>
<listitem><para>
The function <literal>toList</literal> should be
the inverse of <literal>fromList</literal>.
</para></listitem>
</itemizedlist>
</para>
<para>It is perfectly fine to declare new instances
of <literal>IsList</literal>, so that list notation becomes
useful for completely new data types.
Here are several example instances:
<programlisting>
instance IsList [a] where
type Item [a] = a
fromList = id
toList = id
instance (Ord a) => IsList (Set a) where
type Item (Set a) = a
fromList = Set.fromList
toList = Set.toList
instance (Ord k) => IsList (Map k v) where
type Item (Map k v) = (k,v)
fromList = Map.fromList
toList = Map.toList
instance IsList (IntMap v) where
type Item (IntMap v) = (Int,v)
fromList = IntMap.fromList
toList = IntMap.toList
instance IsList Text where
type Item Text = Char
fromList = Text.pack
toList = Text.unpack
instance IsList (Vector a) where
type Item (Vector a) = a
fromList = Vector.fromList
fromListN = Vector.fromListN
toList = Vector.toList
</programlisting>
</para>
</sect3>
<sect3>
<title>Rebindable syntax</title>
<para> When desugaring list notation with <option>-XOverloadedLists</option>
GHC uses the <literal>fromList</literal> (etc) methods from module <literal>GHC.Exts</literal>.
You do not need to import <literal>GHC.Exts</literal> for this to happen.
</para>
<para> However if you use <option>-XRebindableSyntax</option>, then
GHC instead uses whatever is in
scope with the names of <literal>toList</literal>, <literal>fromList</literal> and
<literal>fromListN</literal>. That is, these functions are rebindable;
c.f. <xref linkend="rebindable-syntax"/>. </para>
</sect3>
<sect3>
<title>Defaulting</title>
<para>Currently, the <literal>IsList</literal> class is not accompanied with
defaulting rules. Although feasible, not much thought has gone into how to
specify the meaning of the default declarations like:</para>
<programlisting>
default ([a])
</programlisting>
</sect3>
<sect3>
<title>Speculation about the future</title>
<para>The current implementation of the <option>OverloadedLists</option>
extension can be improved by handling the lists that are only populated with
literals in a special way. More specifically, the compiler could allocate such
lists statically using a compact representation and allow
<literal>IsList</literal> instances to take advantage of the compact
representation. Equipped with this capability the
<option>OverloadedLists</option> extension will be in a good position to
subsume the <option>OverloadedStrings</option> extension (currently, as a
special case, string literals benefit from statically allocated compact
representation).</para>
</sect3>
</sect2>
</sect1>
<sect1 id="type-families">
<title>Type families</title>
<para>
<firstterm>Indexed type families</firstterm> form an extension to
facilitate type-level
programming. Type families are a generalisation of <firstterm>associated
data types</firstterm>
(“<ulink url="http://www.cse.unsw.edu.au/~chak/papers/CKPM05.html">Associated
Types with Class</ulink>”, M. Chakravarty, G. Keller, S. Peyton Jones,
and S. Marlow. In Proceedings of “The 32nd Annual ACM SIGPLAN-SIGACT
Symposium on Principles of Programming Languages (POPL'05)”, pages
1-13, ACM Press, 2005) and <firstterm>associated type synonyms</firstterm>
(“<ulink url="http://www.cse.unsw.edu.au/~chak/papers/CKP05.html">Type
Associated Type Synonyms</ulink>”. M. Chakravarty, G. Keller, and
S. Peyton Jones.
In Proceedings of “The Tenth ACM SIGPLAN International Conference on
Functional Programming”, ACM Press, pages 241-253, 2005). Type families
themselves are described in the paper “<ulink
url="http://www.cse.unsw.edu.au/~chak/papers/SPCS08.html">Type
Checking with Open Type Functions</ulink>”, T. Schrijvers,
S. Peyton-Jones,
M. Chakravarty, and M. Sulzmann, in Proceedings of “ICFP 2008: The
13th ACM SIGPLAN International Conference on Functional
Programming”, ACM Press, pages 51-62, 2008. Type families
essentially provide type-indexed data types and named functions on types,
which are useful for generic programming and highly parameterised library
interfaces as well as interfaces with enhanced static information, much like
dependent types. They might also be regarded as an alternative to functional
dependencies, but provide a more functional style of type-level programming
than the relational style of functional dependencies.
</para>
<para>
Indexed type families, or type families for short, are type constructors that
represent sets of types. Set members are denoted by supplying the type family
constructor with type parameters, which are called <firstterm>type
indices</firstterm>. The
difference between vanilla parametrised type constructors and family
constructors is much like between parametrically polymorphic functions and
(ad-hoc polymorphic) methods of type classes. Parametric polymorphic functions
behave the same at all type instances, whereas class methods can change their
behaviour in dependence on the class type parameters. Similarly, vanilla type
constructors imply the same data representation for all type instances, but
family constructors can have varying representation types for varying type
indices.
</para>
<para>
Indexed type families come in three flavours: <firstterm>data
families</firstterm>, <firstterm>open type synonym families</firstterm>, and
<firstterm>closed type synonym families</firstterm>. They are the indexed
family variants of algebraic data types and type synonyms, respectively. The
instances of data families can be data types and newtypes.
</para>
<para>
Type families are enabled by the flag <option>-XTypeFamilies</option>.
Additional information on the use of type families in GHC is available on
<ulink url="http://www.haskell.org/haskellwiki/GHC/Indexed_types">the
Haskell wiki page on type families</ulink>.
</para>
<sect2 id="data-families">
<title>Data families</title>
<para>
Data families appear in two flavours: (1) they can be defined on the
toplevel
or (2) they can appear inside type classes (in which case they are known as
associated types). The former is the more general variant, as it lacks the
requirement for the type-indexes to coincide with the class
parameters. However, the latter can lead to more clearly structured code and
compiler warnings if some type instances were - possibly accidentally -
omitted. In the following, we always discuss the general toplevel form first
and then cover the additional constraints placed on associated types.
</para>
<sect3 id="data-family-declarations">
<title>Data family declarations</title>
<para>
Indexed data families are introduced by a signature, such as
<programlisting>
data family GMap k :: * -> *
</programlisting>
The special <literal>family</literal> distinguishes family from standard
data declarations. The result kind annotation is optional and, as
usual, defaults to <literal>*</literal> if omitted. An example is
<programlisting>
data family Array e
</programlisting>
Named arguments can also be given explicit kind signatures if needed.
Just as with
[http://www.haskell.org/ghc/docs/latest/html/users_guide/gadt.html GADT
declarations] named arguments are entirely optional, so that we can
declare <literal>Array</literal> alternatively with
<programlisting>
data family Array :: * -> *
</programlisting>
</para>
</sect3>
<sect3 id="data-instance-declarations">
<title>Data instance declarations</title>
<para>
Instance declarations of data and newtype families are very similar to
standard data and newtype declarations. The only two differences are
that the keyword <literal>data</literal> or <literal>newtype</literal>
is followed by <literal>instance</literal> and that some or all of the
type arguments can be non-variable types, but may not contain forall
types or type synonym families. However, data families are generally
allowed in type parameters, and type synonyms are allowed as long as
they are fully applied and expand to a type that is itself admissible -
exactly as this is required for occurrences of type synonyms in class
instance parameters. For example, the <literal>Either</literal>
instance for <literal>GMap</literal> is
<programlisting>
data instance GMap (Either a b) v = GMapEither (GMap a v) (GMap b v)
</programlisting>
In this example, the declaration has only one variant. In general, it
can be any number.
</para>
<para>
Data and newtype instance declarations are only permitted when an
appropriate family declaration is in scope - just as a class instance declaration
requires the class declaration to be visible. Moreover, each instance
declaration has to conform to the kind determined by its family
declaration. This implies that the number of parameters of an instance
declaration matches the arity determined by the kind of the family.
</para>
<para>
A data family instance declaration can use the full expressiveness of
ordinary <literal>data</literal> or <literal>newtype</literal> declarations:
<itemizedlist>
<listitem><para> Although, a data family is <emphasis>introduced</emphasis> with
the keyword "<literal>data</literal>", a data family <emphasis>instance</emphasis> can
use either <literal>data</literal> or <literal>newtype</literal>. For example:
<programlisting>
data family T a
data instance T Int = T1 Int | T2 Bool
newtype instance T Char = TC Bool
</programlisting>
</para></listitem>
<listitem><para> A <literal>data instance</literal> can use GADT syntax for the data constructors,
and indeed can define a GADT. For example:
<programlisting>
data family G a b
data instance G [a] b where
G1 :: c -> G [Int] b
G2 :: G [a] Bool
</programlisting>
</para></listitem>
<listitem><para> You can use a <literal>deriving</literal> clause on a
<literal>data instance</literal> or <literal>newtype instance</literal>
declaration.
</para></listitem>
</itemizedlist>
</para>
<para>
Even if data families are defined as toplevel declarations, functions
that perform different computations for different family instances may still
need to be defined as methods of type classes. In particular, the
following is not possible:
<programlisting>
data family T a
data instance T Int = A
data instance T Char = B
foo :: T a -> Int
foo A = 1 -- WRONG: These two equations together...
foo B = 2 -- ...will produce a type error.
</programlisting>
Instead, you would have to write <literal>foo</literal> as a class operation, thus:
<programlisting>
class Foo a where
foo :: T a -> Int
instance Foo Int where
foo A = 1
instance Foo Char where
foo B = 2
</programlisting>
(Given the functionality provided by GADTs (Generalised Algebraic Data
Types), it might seem as if a definition, such as the above, should be
feasible. However, type families are - in contrast to GADTs - are
<emphasis>open;</emphasis> i.e., new instances can always be added,
possibly in other
modules. Supporting pattern matching across different data instances
would require a form of extensible case construct.)
</para>
</sect3>
<sect3 id="data-family-overlap">
<title>Overlap of data instances</title>
<para>
The instance declarations of a data family used in a single program
may not overlap at all, independent of whether they are associated or
not. In contrast to type class instances, this is not only a matter
of consistency, but one of type safety.
</para>
</sect3>
</sect2>
<sect2 id="synonym-families">
<title>Synonym families</title>
<para>
Type families appear in three flavours: (1) they can be defined as open
families on the toplevel, (2) they can be defined as closed families on
the toplevel, or (3) they can appear inside type classes (in which case
they are known as associated type synonyms). Toplevel families are more
general, as they lack the requirement for the type-indexes to coincide
with the class parameters. However, associated type synonyms can lead to
more clearly structured code and compiler warnings if some type instances
were - possibly accidentally - omitted. In the following, we always
discuss the general toplevel forms first and then cover the additional
constraints placed on associated types. Note that closed associated type
synonyms do not exist.
</para>
<sect3 id="type-family-declarations">
<title>Type family declarations</title>
<para>
Open indexed type families are introduced by a signature, such as
<programlisting>
type family Elem c :: *
</programlisting>
The special <literal>family</literal> distinguishes family from standard
type declarations. The result kind annotation is optional and, as
usual, defaults to <literal>*</literal> if omitted. An example is
<programlisting>
type family Elem c
</programlisting>
Parameters can also be given explicit kind signatures if needed. We
call the number of parameters in a type family declaration, the family's
arity, and all applications of a type family must be fully saturated
w.r.t. to that arity. This requirement is unlike ordinary type synonyms
and it implies that the kind of a type family is not sufficient to
determine a family's arity, and hence in general, also insufficient to
determine whether a type family application is well formed. As an
example, consider the following declaration:
<programlisting>
type family F a b :: * -> * -- F's arity is 2,
-- although its overall kind is * -> * -> * -> *
</programlisting>
Given this declaration the following are examples of well-formed and
malformed types:
<programlisting>
F Char [Int] -- OK! Kind: * -> *
F Char [Int] Bool -- OK! Kind: *
F IO Bool -- WRONG: kind mismatch in the first argument
F Bool -- WRONG: unsaturated application
</programlisting>
</para>
</sect3>
<sect3 id="type-instance-declarations">
<title>Type instance declarations</title>
<para>
Instance declarations of type families are very similar to
standard type synonym declarations. The only two differences are that
the keyword <literal>type</literal> is followed by
<literal>instance</literal> and that some or all of the type arguments
can be non-variable types, but may not contain forall types or type
synonym families. However, data families are generally allowed, and type
synonyms are allowed as long as they are fully applied and expand to a
type that is admissible - these are the exact same requirements as for
data instances. For example, the <literal>[e]</literal> instance for
<literal>Elem</literal> is
<programlisting>
type instance Elem [e] = e
</programlisting>
</para>
<para>
Type family instance declarations are only legitimate when an
appropriate family declaration is in scope - just like class instances
require the class declaration to be visible. Moreover, each instance
declaration has to conform to the kind determined by its family
declaration, and the number of type parameters in an instance
declaration must match the number of type parameters in the family
declaration. Finally, the right-hand side of a type instance must be a
monotype (i.e., it may not include foralls) and after the expansion of
all saturated vanilla type synonyms, no synonyms, except family synonyms
may remain.
</para>
</sect3>
<sect3 id="closed-type-families">
<title>Closed type families</title>
<para>
A type family can also be declared with a <literal>where</literal> clause,
defining the full set of equations for that family. For example:
<programlisting>
type family F a where
F Int = Double
F Bool = Char
F a = String
</programlisting>
A closed type family's equations are tried in order, from top to bottom,
when simplifying a type family application. In this example, we declare
an instance for <literal>F</literal> such that <literal>F Int</literal>
simplifies to <literal>Double</literal>, <literal>F Bool</literal>
simplifies to <literal>Char</literal>, and for any other type
<literal>a</literal> that is known not to be <literal>Int</literal> or
<literal>Bool</literal>, <literal>F a</literal> simplifies to
<literal>String</literal>. Note that GHC must be sure that
<literal>a</literal> cannot unify with <literal>Int</literal> or
<literal>Bool</literal> in that last case; if a programmer specifies
just <literal>F a</literal> in their code, GHC will not be able to
simplify the type. After all, <literal>a</literal> might later be
instantiated with <literal>Int</literal>.
</para>
<para>
A closed type family's equations have the same restrictions as the
equations for open type family instances.
</para>
<para>
A closed type family may be declared with no equations. Such
closed type families are opaque type-level definitions that will
never reduce, are not necessarily injective (unlike empty data
types), and cannot be given any instances. This is different
from omitting the equations of a closed type family in a
<filename>hs-boot</filename> file, which uses the syntax
<literal>where ..</literal>, as in that case there may or may
not be equations given in the <filename>hs</filename> file.
</para>
</sect3>
<sect3 id="type-family-examples">
<title>Type family examples</title>
<para>
Here are some examples of admissible and illegal type
instances:
<programlisting>
type family F a :: *
type instance F [Int] = Int -- OK!
type instance F String = Char -- OK!
type instance F (F a) = a -- WRONG: type parameter mentions a type family
type instance F (forall a. (a, b)) = b -- WRONG: a forall type appears in a type parameter
type instance F Float = forall a.a -- WRONG: right-hand side may not be a forall type
type family H a where -- OK!
H Int = Int
H Bool = Bool
H a = String
type instance H Char = Char -- WRONG: cannot have instances of closed family
type family K a where -- OK!
type family G a b :: * -> *
type instance G Int = (,) -- WRONG: must be two type parameters
type instance G Int Char Float = Double -- WRONG: must be two type parameters
</programlisting>
</para>
</sect3>
<sect3 id="type-family-overlap">
<title>Compatibility and apartness of type family equations</title>
<para>
There must be some restrictions on the equations of type families, lest
we define an ambiguous rewrite system. So, equations of open type families
are restricted to be <firstterm>compatible</firstterm>. Two type patterns
are compatible if
<orderedlist>
<listitem><para>all corresponding types in the patterns are <firstterm>apart</firstterm>, or</para></listitem>
<listitem><para>the two patterns unify producing a substitution, and the right-hand sides are equal under that substitution.</para></listitem>
</orderedlist>
Two types are considered <firstterm>apart</firstterm> if, for all possible
substitutions, the types cannot reduce to a common reduct.
</para>
<para>
The first clause of "compatible" is the more straightforward one. It says
that the patterns of two distinct type family instances cannot overlap.
For example, the following is disallowed:
<programlisting>
type instance F Int = Bool
type instance F Int = Char
</programlisting>
The second clause is a little more interesting. It says that two
overlapping type family instances are allowed if the right-hand
sides coincide in the region of overlap. Some examples help here:
<programlisting>
type instance F (a, Int) = [a]
type instance F (Int, b) = [b] -- overlap permitted
type instance G (a, Int) = [a]
type instance G (Char, a) = [a] -- ILLEGAL overlap, as [Char] /= [Int]
</programlisting>
Note that this compatibility condition is independent of whether the type family
is associated or not, and it is not only a matter of consistency, but
one of type safety. </para>
<para>
The definition for "compatible" uses a notion of "apart", whose definition
in turn relies on type family reduction. This condition of "apartness", as
stated, is impossible to check, so we use this conservative approximation:
two types are considered to be apart when the two types cannot be unified,
even by a potentially infinite unifier. Allowing the unifier to be infinite
disallows the following pair of instances:
<programlisting>
type instance H x x = Int
type instance H [x] x = Bool
</programlisting>
The type patterns in this pair equal if <literal>x</literal> is replaced
by an infinite nesting of lists. Rejecting instances such as these is
necessary for type soundness.
</para>
<para>
Compatibility also affects closed type families. When simplifying an
application of a closed type family, GHC will select an equation only
when it is sure that no incompatible previous equation will ever apply.
Here are some examples:
<programlisting>
type family F a where
F Int = Bool
F a = Char
type family G a where
G Int = Int
G a = a
</programlisting>
In the definition for <literal>F</literal>, the two equations are
incompatible -- their patterns are not apart, and yet their
right-hand sides do not coincide. Thus, before GHC selects the
second equation, it must be sure that the first can never apply. So,
the type <literal>F a</literal> does not simplify; only a type such
as <literal>F Double</literal> will simplify to
<literal>Char</literal>. In <literal>G</literal>, on the other hand,
the two equations are compatible. Thus, GHC can ignore the first
equation when looking at the second. So, <literal>G a</literal> will
simplify to <literal>a</literal>.</para>
<para> However see <xref linkend="ghci-decls"/> for the overlap rules in GHCi.</para>
</sect3>
<sect3 id="type-family-decidability">
<title>Decidability of type synonym instances</title>
<para>
In order to guarantee that type inference in the presence of type
families decidable, we need to place a number of additional
restrictions on the formation of type instance declarations (c.f.,
Definition 5 (Relaxed Conditions) of “<ulink
url="http://www.cse.unsw.edu.au/~chak/papers/SPCS08.html">Type
Checking with Open Type Functions</ulink>”). Instance
declarations have the general form
<programlisting>
type instance F t1 .. tn = t
</programlisting>
where we require that for every type family application <literal>(G s1
.. sm)</literal> in <literal>t</literal>,
<orderedlist>
<listitem>
<para><literal>s1 .. sm</literal> do not contain any type family
constructors,</para>
</listitem>
<listitem>
<para>the total number of symbols (data type constructors and type
variables) in <literal>s1 .. sm</literal> is strictly smaller than
in <literal>t1 .. tn</literal>, and</para>
</listitem>
<listitem>
<para>for every type
variable <literal>a</literal>, <literal>a</literal> occurs
in <literal>s1 .. sm</literal> at most as often as in <literal>t1
.. tn</literal>.</para>
</listitem>
</orderedlist>
These restrictions are easily verified and ensure termination of type
inference. However, they are not sufficient to guarantee completeness
of type inference in the presence of, so called, ''loopy equalities'',
such as <literal>a ~ [F a]</literal>, where a recursive occurrence of
a type variable is underneath a family application and data
constructor application - see the above mentioned paper for details.
</para>
<para>
If the option <option>-XUndecidableInstances</option> is passed to the
compiler, the above restrictions are not enforced and it is on the
programmer to ensure termination of the normalisation of type families
during type inference.
</para>
</sect3>
</sect2>
<sect2 id="assoc-decl">
<title>Associated data and type families</title>
<para>
A data or type synonym family can be declared as part of a type class, thus:
<programlisting>
class GMapKey k where
data GMap k :: * -> *
...
class Collects ce where
type Elem ce :: *
...
</programlisting>
When doing so, we (optionally) may drop the "<literal>family</literal>" keyword.
</para>
<para>
The type parameters must all be type variables, of course,
and some (but not necessarily all) of then can be the class
parameters. Each class parameter may
only be used at most once per associated type, but some may be omitted
and they may be in an order other than in the class head. Hence, the
following contrived example is admissible:
<programlisting>
class C a b c where
type T c a x :: *
</programlisting>
Here <literal>c</literal> and <literal>a</literal> are class parameters,
but the type is also indexed on a third parameter <literal>x</literal>.
</para>
<sect3 id="assoc-data-inst">
<title>Associated instances</title>
<para>
When an associated data or type synonym family instance is declared within a type
class instance, we (optionally) may drop the <literal>instance</literal> keyword in the
family instance:
<programlisting>
instance (GMapKey a, GMapKey b) => GMapKey (Either a b) where
data GMap (Either a b) v = GMapEither (GMap a v) (GMap b v)
...
instance Eq (Elem [e]) => Collects [e] where
type Elem [e] = e
...
</programlisting>
Note the following points:
<itemizedlist>
<listitem><para>
The type indexes corresponding to class parameters must have precisely the same shape
the type given in the instance head. To have the same "shape" means that
the two types are identical modulo renaming of type variables. For example:
<programlisting>
instance Eq (Elem [e]) => Collects [e] where
-- Choose one of the following alternatives:
type Elem [e] = e -- OK
type Elem [x] = x -- OK
type Elem x = x -- BAD; shape of 'x' is different to '[e]'
type Elem [Maybe x] = x -- BAD: shape of '[Maybe x]' is different to '[e]'
</programlisting>
</para></listitem>
<listitem><para>
An instances for an associated family can only appear as part of
an instance declarations of the class in which the family was declared,
just as with the equations of the methods of a class.
</para></listitem>
<listitem><para>
The instance for an associated type can be omitted in class instances. In that case,
unless there is a default instance (see <xref linkend="assoc-decl-defs"/>),
the corresponding instance type is not inhabited;
i.e., only diverging expressions, such
as <literal>undefined</literal>, can assume the type.
</para></listitem>
<listitem><para>
Although it is unusual, there (currently) can be <emphasis>multiple</emphasis>
instances for an associated family in a single instance declaration.
For example, this is legitimate:
<programlisting>
instance GMapKey Flob where
data GMap Flob [v] = G1 v
data GMap Flob Int = G2 Int
...
</programlisting>
Here we give two data instance declarations, one in which the last
parameter is <literal>[v]</literal>, and one for which it is <literal>Int</literal>.
Since you cannot give any <emphasis>subsequent</emphasis> instances for
<literal>(GMap Flob ...)</literal>, this facility is most useful when
the free indexed parameter is of a kind with a finite number of alternatives
(unlike <literal>*</literal>). WARNING: this facility may be withdrawn in the future.
</para></listitem>
</itemizedlist>
</para>
</sect3>
<sect3 id="assoc-decl-defs">
<title>Associated type synonym defaults</title>
<para>
It is possible for the class defining the associated type to specify a
default for associated type instances. So for example, this is OK:
<programlisting>
class IsBoolMap v where
type Key v
type instance Key v = Int
lookupKey :: Key v -> v -> Maybe Bool
instance IsBoolMap [(Int, Bool)] where
lookupKey = lookup
</programlisting>
In an <literal>instance</literal> declaration for the class, if no explicit
<literal>type instance</literal> declaration is given for the associated type, the default declaration
is used instead, just as with default class methods.
</para>
<para>
Note the following points:
<itemizedlist>
<listitem><para>
The <literal>instance</literal> keyword is optional.
</para></listitem>
<listitem><para>
There can be at most one default declaration for an associated type synonym.
</para></listitem>
<listitem><para>
A default declaration is not permitted for an associated
<emphasis>data</emphasis> type.
</para></listitem>
<listitem><para>
The default declaration must mention only type <emphasis>variables</emphasis> on the left hand side,
and the right hand side must mention only type variables bound on the left hand side.
However, unlike the associated type family declaration itself,
the type variables of the default instance are independent of those of the parent class.
</para></listitem>
</itemizedlist>
Here are some examples:
<programlisting>
class C a where
type F1 a :: *
type instance F1 a = [a] -- OK
type instance F1 a = a->a -- BAD; only one default instance is allowed
type F2 b a -- OK; note the family has more type
-- variables than the class
type instance F2 c d = c->d -- OK; you don't have to use 'a' in the type instance
type F3 a
type F3 [b] = b -- BAD; only type variables allowed on the LHS
type F4 a
type F4 b = a -- BAD; 'a' is not in scope in the RHS
</programlisting>
</para>
</sect3>
<sect3 id="scoping-class-params">
<title>Scoping of class parameters</title>
<para>
The visibility of class
parameters in the right-hand side of associated family instances
depends <emphasis>solely</emphasis> on the parameters of the
family. As an example, consider the simple class declaration
<programlisting>
class C a b where
data T a
</programlisting>
Only one of the two class parameters is a parameter to the data
family. Hence, the following instance declaration is invalid:
<programlisting>
instance C [c] d where
data T [c] = MkT (c, d) -- WRONG!! 'd' is not in scope
</programlisting>
Here, the right-hand side of the data instance mentions the type
variable <literal>d</literal> that does not occur in its left-hand
side. We cannot admit such data instances as they would compromise
type safety.
</para>
</sect3>
<sect3><title>Instance contexts and associated type and data instances</title>
<para>Associated type and data instance declarations do not inherit any
context specified on the enclosing instance. For type instance declarations,
it is unclear what the context would mean. For data instance declarations,
it is unlikely a user would want the context repeated for every data constructor.
The only place where the context might likely be useful is in a
<literal>deriving</literal> clause of an associated data instance. However,
even here, the role of the outer instance context is murky. So, for
clarity, we just stick to the rule above: the enclosing instance context
is ignored. If you need to use
a non-trivial context on a derived instance,
use a <link linkend="stand-alone-deriving">standalone
deriving</link> clause (at the top level).
</para>
</sect3>
</sect2>
<sect2 id="data-family-import-export">
<title>Import and export</title>
<para>
The rules for export lists
(Haskell Report
<ulink url="http://www.haskell.org/onlinereport/modules.html#sect5.2">Section 5.2</ulink>)
needs adjustment for type families:
<itemizedlist>
<listitem><para>
The form <literal>T(..)</literal>, where <literal>T</literal>
is a data family, names the family <literal>T</literal> and all the in-scope
constructors (whether in scope qualified or unqualified) that are data
instances of <literal>T</literal>.
</para></listitem>
<listitem><para>
The form <literal>T(.., ci, .., fj, ..)</literal>, where <literal>T</literal> is
a data family, names <literal>T</literal> and the specified constructors <literal>ci</literal>
and fields <literal>fj</literal> as usual. The constructors and field names must
belong to some data instance of <literal>T</literal>, but are not required to belong
to the <emphasis>same</emphasis> instance.
</para></listitem>
<listitem><para>
The form <literal>C(..)</literal>, where <literal>C</literal>
is a class, names the class <literal>C</literal> and all its methods
<emphasis>and associated types</emphasis>.
</para></listitem>
<listitem><para>
The form <literal>C(.., mi, .., type Tj, ..)</literal>, where <literal>C</literal> is a class,
names the class <literal>C</literal>, and the specified methods <literal>mi</literal>
and associated types <literal>Tj</literal>. The types need a keyword "<literal>type</literal>"
to distinguish them from data constructors.
</para></listitem>
</itemizedlist>
</para>
<sect3 id="data-family-impexp-examples">
<title>Examples</title>
<para>
Recall our running <literal>GMapKey</literal> class example:
<programlisting>
class GMapKey k where
data GMap k :: * -> *
insert :: GMap k v -> k -> v -> GMap k v
lookup :: GMap k v -> k -> Maybe v
empty :: GMap k v
instance (GMapKey a, GMapKey b) => GMapKey (Either a b) where
data GMap (Either a b) v = GMapEither (GMap a v) (GMap b v)
...method declarations...
</programlisting>
Here are some export lists and their meaning:
<itemizedlist>
<listitem>
<para><literal>module GMap( GMapKey )</literal>: Exports
just the class name.</para>
</listitem>
<listitem>
<para><literal>module GMap( GMapKey(..) )</literal>:
Exports the class, the associated type <literal>GMap</literal>
and the member
functions <literal>empty</literal>, <literal>lookup</literal>,
and <literal>insert</literal>. The data constructors of <literal>GMap</literal>
(in this case <literal>GMapEither</literal>) are not exported.</para>
</listitem>
<listitem>
<para><literal>module GMap( GMapKey( type GMap, empty, lookup, insert ) )</literal>:
Same as the previous item. Note the "<literal>type</literal>" keyword.</para>
</listitem>
<listitem>
<para><literal>module GMap( GMapKey(..), GMap(..) )</literal>:
Same as previous item, but also exports all the data
constructors for <literal>GMap</literal>, namely <literal>GMapEither</literal>.
</para>
</listitem>
<listitem>
<para><literal>module GMap ( GMapKey( empty, lookup, insert), GMap(..) )</literal>:
Same as previous item.</para>
</listitem>
<listitem>
<para><literal>module GMap ( GMapKey, empty, lookup, insert, GMap(..) )</literal>:
Same as previous item.</para>
</listitem>
</itemizedlist>
</para>
<para>
Two things to watch out for:
<itemizedlist>
<listitem><para>
You cannot write <literal>GMapKey(type GMap(..))</literal> — i.e.,
sub-component specifications cannot be nested. To
specify <literal>GMap</literal>'s data constructors, you have to list
it separately.
</para></listitem>
<listitem><para>
Consider this example:
<programlisting>
module X where
data family D
module Y where
import X
data instance D Int = D1 | D2
</programlisting>
Module Y exports all the entities defined in Y, namely the data constructors <literal>D1</literal>
and <literal>D2</literal>, <emphasis>but not the data family <literal>D</literal></emphasis>.
That (annoyingly) means that you cannot selectively import Y selectively,
thus "<literal>import Y( D(D1,D2) )</literal>", because Y does not export <literal>D</literal>.
Instead you should list the exports explicitly, thus:
<programlisting>
module Y( D(..) ) where ...
or module Y( module Y, D ) where ...
</programlisting>
</para></listitem>
</itemizedlist>
</para>
</sect3>
<sect3 id="data-family-impexp-instances">
<title>Instances</title>
<para>
Family instances are implicitly exported, just like class instances.
However, this applies only to the heads of instances, not to the data
constructors an instance defines.
</para>
</sect3>
</sect2>
<sect2 id="ty-fams-in-instances">
<title>Type families and instance declarations</title>
<para>Type families require us to extend the rules for
the form of instance heads, which are given
in <xref linkend="flexible-instance-head"/>.
Specifically:
<itemizedlist>
<listitem><para>Data type families may appear in an instance head</para></listitem>
<listitem><para>Type synonym families may not appear (at all) in an instance head</para></listitem>
</itemizedlist>
The reason for the latter restriction is that there is no way to check for instance
matching. Consider
<programlisting>
type family F a
type instance F Bool = Int
class C a
instance C Int
instance C (F a)
</programlisting>
Now a constraint <literal>(C (F Bool))</literal> would match both instances.
The situation is especially bad because the type instance for <literal>F Bool</literal>
might be in another module, or even in a module that is not yet written.
</para>
<para>
However, type class instances of instances of data families can be defined
much like any other data type. For example, we can say
<programlisting>
data instance T Int = T1 Int | T2 Bool
instance Eq (T Int) where
(T1 i) == (T1 j) = i==j
(T2 i) == (T2 j) = i==j
_ == _ = False
</programlisting>
Note that class instances are always for
particular <emphasis>instances</emphasis> of a data family and never
for an entire family as a whole. This is for essentially the same
reasons that we cannot define a toplevel function that performs
pattern matching on the data constructors
of <emphasis>different</emphasis> instances of a single type family.
It would require a form of extensible case construct.
</para>
<para>
Data instance declarations can also
have <literal>deriving</literal> clauses. For example, we can write
<programlisting>
data GMap () v = GMapUnit (Maybe v)
deriving Show
</programlisting>
which implicitly defines an instance of the form
<programlisting>
instance Show v => Show (GMap () v) where ...
</programlisting>
</para>
</sect2>
</sect1>
<sect1 id="kind-polymorphism">
<title>Kind polymorphism</title>
<para>
This section describes <emphasis>kind polymorphism</emphasis>, and extension
enabled by <option>-XPolyKinds</option>.
It is described in more detail in the paper
<ulink url="http://dreixel.net/research/pdf/ghp.pdf">Giving Haskell a
Promotion</ulink>, which appeared at TLDI 2012.
</para>
<sect2> <title>Overview of kind polymorphism</title>
<para>
Currently there is a lot of code duplication in the way Typeable is implemented
(<xref linkend="deriving-typeable"/>):
<programlisting>
class Typeable (t :: *) where
typeOf :: t -> TypeRep
class Typeable1 (t :: * -> *) where
typeOf1 :: t a -> TypeRep
class Typeable2 (t :: * -> * -> *) where
typeOf2 :: t a b -> TypeRep
</programlisting>
</para>
<para>
Kind polymorphism (with <option>-XPolyKinds</option>)
allows us to merge all these classes into one:
<programlisting>
data Proxy t = Proxy
class Typeable t where
typeOf :: Proxy t -> TypeRep
instance Typeable Int where typeOf _ = TypeRep
instance Typeable [] where typeOf _ = TypeRep
</programlisting>
Note that the datatype <literal>Proxy</literal> has kind
<literal>forall k. k -> *</literal> (inferred by GHC), and the new
<literal>Typeable</literal> class has kind
<literal>forall k. k -> Constraint</literal>.
</para>
<para>
Note the following specific points:
<itemizedlist>
<listitem><para>
Generally speaking, with <option>-XPolyKinds</option>, GHC will infer a polymorphic
kind for un-decorated declarations, whenever possible. For example, in GHCi
<programlisting>
ghci> :set -XPolyKinds
ghci> data T m a = MkT (m a)
ghci> :k T
T :: (k -> *) -> k -> *
</programlisting>
</para></listitem>
<listitem><para>
GHC does not usually print explicit <literal>forall</literal>s, including kind <literal>forall</literal>s.
You can make GHC show them explicitly with <option>-fprint-explicit-foralls</option>
(see <xref linkend="options-help"/>):
<programlisting>
ghci> :set -XPolyKinds
ghci> :set -fprint-explicit-foralls
ghci> data T m a = MkT (m a)
ghci> :k T
T :: forall (k :: BOX). (k -> *) -> k -> *
</programlisting>
Here the kind variable <literal>k</literal> itself has a
kind annotation "<literal>BOX</literal>". This is just GHC's way of
saying "<literal>k</literal> is a kind variable".
</para></listitem>
<listitem><para>
Just as in the world of terms, you can restrict polymorphism using a
kind signature (sometimes called a kind annotation)
<programlisting>
data T m (a :: *) = MkT (m a)
-- GHC now infers kind T :: (* -> *) -> * -> *
</programlisting>
NB: <option>-XPolyKinds</option> implies <option>-XKindSignatures</option> (see <xref linkend="kinding"/>).
</para></listitem>
<listitem><para>
The source language does not support an explicit <literal>forall</literal> for kind variables. Instead, when binding a type variable,
you can simply mention a kind
variable in a kind annotation for that type-variable binding, thus:
<programlisting>
data T (m :: k -> *) a = MkT (m a)
-- GHC now infers kind T :: forall k. (k -> *) -> k -> *
</programlisting>
</para></listitem>
<listitem><para>
The (implicit) kind "forall" is placed
just outside the outermost type-variable binding whose kind annotation mentions
the kind variable. For example
<programlisting>
f1 :: (forall a m. m a -> Int) -> Int
-- f1 :: forall (k::BOX).
-- (forall (a::k) (m::k->*). m a -> Int)
-- -> Int
f2 :: (forall (a::k) m. m a -> Int) -> Int
-- f2 :: (forall (k::BOX) (a::k) (m::k->*). m a -> Int)
-- -> Int
</programlisting>
Here in <literal>f1</literal> there is no kind annotation mentioning the polymorphic
kind variable, so <literal>k</literal> is generalised at the top
level of the signature for <literal>f1</literal>.
But in the case of of <literal>f2</literal> we give a kind annotation in the <literal>forall (a:k)</literal>
binding, and GHC therefore puts the kind <literal>forall</literal> right there too.
This design decision makes default case (<literal>f1</literal>)
as polymorphic as possible; remember that a <emphasis>more</emphasis> polymorphic argument type (as in <literal>f2</literal>
makes the overall function <emphasis>less</emphasis> polymorphic, because there are fewer acceptable arguments.
</para></listitem>
</itemizedlist>
</para>
<para>
(Note: These rules are a bit indirect and clumsy. Perhaps GHC should allow explicit kind quantification.
But the implicit quantification (e.g. in the declaration for data type T above) is certainly
very convenient, and it is not clear what the syntax for explicit quantification should be.)
</para>
</sect2>
<sect2> <title>Principles of kind inference</title>
<para>
Generally speaking, when <option>-XPolyKinds</option> is on, GHC tries to infer the most
general kind for a declaration. For example:
<programlisting>
data T f a = MkT (f a) -- GHC infers:
-- T :: forall k. (k->*) -> k -> *
</programlisting>
In this case the definition has a right-hand side to inform kind inference.
But that is not always the case. Consider
<programlisting>
type family F a
</programlisting>
Type family declarations have no right-hand side, but GHC must still infer a kind
for <literal>F</literal>. Since there are no constraints, it could infer
<literal>F :: forall k1 k2. k1 -> k2</literal>, but that seems <emphasis>too</emphasis>
polymorphic. So GHC defaults those entirely-unconstrained kind variables to <literal>*</literal> and
we get <literal>F :: * -> *</literal>. You can still declare <literal>F</literal> to be
kind-polymorphic using kind signatures:
<programlisting>
type family F1 a -- F1 :: * -> *
type family F2 (a :: k) -- F2 :: forall k. k -> *
type family F3 a :: k -- F3 :: forall k. * -> k
type family F4 (a :: k1) :: k -- F4 :: forall k1 k2. k1 -> k2
</programlisting>
</para>
<para>
The general principle is this:
<itemizedlist>
<listitem><para>
<emphasis>When there is a right-hand side, GHC
infers the most polymorphic kind consistent with the right-hand side.</emphasis>
Examples: ordinary data type and GADT declarations, class declarations.
In the case of a class declaration the role of "right hand side" is played
by the class method signatures.
</para></listitem>
<listitem><para>
<emphasis>When there is no right hand side, GHC defaults argument and result kinds to <literal>*</literal>,
except when directed otherwise by a kind signature</emphasis>.
Examples: data and type family declarations.
</para></listitem>
</itemizedlist>
This rule has occasionally-surprising consequences
(see <ulink url="https://ghc.haskell.org/trac/ghc/ticket/10132">Trac 10132</ulink>).
<programlisting>
class C a where -- Class declarations are generalised
-- so C :: forall k. k -> Constraint
data D1 a -- No right hand side for these two family
type F1 a -- declarations, but the class forces (a :: k)
-- so D1, F1 :: forall k. k -> *
data D2 a -- No right-hand side so D2 :: * -> *
type F2 a -- No right-hand side so F2 :: * -> *
</programlisting>
The kind-polymorphism from the class declaration makes <literal>D1</literal>
kind-polymorphic, but not so <literal>D2</literal>; and similarly <literal>F1</literal>, <literal>F1</literal>.
</para>
</sect2>
<sect2 id="complete-kind-signatures"> <title>Polymorphic kind recursion and complete kind signatures</title>
<para>
Just as in type inference, kind inference for recursive types can only use <emphasis>monomorphic</emphasis> recursion.
Consider this (contrived) example:
<programlisting>
data T m a = MkT (m a) (T Maybe (m a))
-- GHC infers kind T :: (* -> *) -> * -> *
</programlisting>
The recursive use of <literal>T</literal> forced the second argument to have kind <literal>*</literal>.
However, just as in type inference, you can achieve polymorphic recursion by giving a
<emphasis>complete kind signature</emphasis> for <literal>T</literal>. A complete
kind signature is present when all argument kinds and the result kind are known, without
any need for inference. For example:
<programlisting>
data T (m :: k -> *) :: k -> * where
MkT :: m a -> T Maybe (m a) -> T m a
</programlisting>
The complete user-supplied kind signature specifies the polymorphic kind for <literal>T</literal>,
and this signature is used for all the calls to <literal>T</literal> including the recursive ones.
In particular, the recursive use of <literal>T</literal> is at kind <literal>*</literal>.
</para>
<para>
What exactly is considered to be a "complete user-supplied kind signature" for a type constructor?
These are the forms:
<itemizedlist>
<listitem><para>For a datatype, every type variable must be annotated with a kind. In a
GADT-style declaration, there may also be a kind signature (with a top-level
<literal>::</literal> in the header), but the presence or absence of this annotation
does not affect whether or not the declaration has a complete signature.
<programlisting>
data T1 :: (k -> *) -> k -> * where ... -- Yes T1 :: forall k. (k->*) -> k -> *
data T2 (a :: k -> *) :: k -> * where ... -- Yes T2 :: forall k. (k->*) -> k -> *
data T3 (a :: k -> *) (b :: k) :: * where ... -- Yes T3 :: forall k. (k->*) -> k -> *
data T4 (a :: k -> *) (b :: k) where ... -- Yes T4 :: forall k. (k->*) -> k -> *
data T5 a (b :: k) :: * where ... -- NO kind is inferred
data T6 a b where ... -- NO kind is inferred
</programlisting></para>
</listitem>
<listitem><para>
For a class, every type variable must be annotated with a kind.
</para></listitem>
<listitem><para>
For a type synonym, every type variable and the result type must all be annotated
with kinds.
<programlisting>
type S1 (a :: k) = (a :: k) -- Yes S1 :: forall k. k -> k
type S2 (a :: k) = a -- No kind is inferred
type S3 (a :: k) = Proxy a -- No kind is inferred
</programlisting>
Note that in <literal>S2</literal> and <literal>S3</literal>, the kind of the
right-hand side is rather apparent, but it is still not considered to have a complete
signature -- no inference can be done before detecting the signature.</para></listitem>
<listitem><para>
An open type or data family declaration <emphasis>always</emphasis> has a
complete user-specified kind signature; un-annotated type variables default to
kind <literal>*</literal>.
<programlisting>
data family D1 a -- D1 :: * -> *
data family D2 (a :: k) -- D2 :: forall k. k -> *
data family D3 (a :: k) :: * -- D3 :: forall k. k -> *
type family S1 a :: k -> * -- S1 :: forall k. * -> k -> *
class C a where -- C :: k -> Constraint
type AT a b -- AT :: k -> * -> *
</programlisting>
In the last example, the variable <literal>a</literal> has an implicit kind
variable annotation from the class declaration. It keeps its polymorphic kind
in the associated type declaration. The variable <literal>b</literal>, however,
gets defaulted to <literal>*</literal>.
</para></listitem>
<listitem><para>
A closed type family has a complete signature when all of its type variables
are annotated and a return kind (with a top-level <literal>::</literal>) is supplied.
</para></listitem>
</itemizedlist>
</para>
</sect2>
<sect2><title>Kind inference in closed type families</title>
<para>Although all open type families are considered to have a complete
user-specified kind signature, we can relax this condition for closed type
families, where we have equations on which to perform kind inference. GHC will
infer kinds for the arguments and result types of a closed type family.</para>
<para>GHC supports <emphasis>kind-indexed</emphasis> type families, where the
family matches both on the kind and type. GHC will <emphasis>not</emphasis> infer
this behaviour without a complete user-supplied kind signature, as doing so would
sometimes infer non-principal types.</para>
<para>For example:
<programlisting>
type family F1 a where
F1 True = False
F1 False = True
F1 x = x
-- F1 fails to compile: kind-indexing is not inferred
type family F2 (a :: k) where
F2 True = False
F2 False = True
F2 x = x
-- F2 fails to compile: no complete signature
type family F3 (a :: k) :: k where
F3 True = False
F3 False = True
F3 x = x
-- OK
</programlisting></para>
</sect2>
<sect2><title>Kind inference in class instance declarations</title>
<para>Consider the following example of a poly-kinded class and an instance for it:</para>
<programlisting>
class C a where
type F a
instance C b where
type F b = b -> b
</programlisting>
<para>In the class declaration, nothing constrains the kind of the type
<literal>a</literal>, so it becomes a poly-kinded type variable <literal>(a :: k)</literal>.
Yet, in the instance declaration, the right-hand side of the associated type instance
<literal>b -> b</literal> says that <literal>b</literal> must be of kind <literal>*</literal>. GHC could theoretically propagate this information back into the instance head, and
make that instance declaration apply only to type of kind <literal>*</literal>, as opposed
to types of any kind. However, GHC does <emphasis>not</emphasis> do this.</para>
<para>In short: GHC does <emphasis>not</emphasis> propagate kind information from
the members of a class instance declaration into the instance declaration head.</para>
<para>This lack of kind inference is simply an engineering problem within GHC, but
getting it to work would make a substantial change to the inference infrastructure,
and it's not clear the payoff is worth it. If you want to restrict <literal>b</literal>'s
kind in the instance above, just use a kind signature in the instance head.</para>
</sect2>
</sect1>
<sect1 id="promotion">
<title>Datatype promotion</title>
<para>
This section describes <emphasis>data type promotion</emphasis>, an extension
to the kind system that complements kind polymorphism. It is enabled by <option>-XDataKinds</option>,
and described in more detail in the paper
<ulink url="http://dreixel.net/research/pdf/ghp.pdf">Giving Haskell a
Promotion</ulink>, which appeared at TLDI 2012.
</para>
<sect2> <title>Motivation</title>
<para>
Standard Haskell has a rich type language. Types classify terms and serve to
avoid many common programming mistakes. The kind language, however, is
relatively simple, distinguishing only lifted types (kind <literal>*</literal>),
type constructors (e.g. kind <literal>* -> * -> *</literal>), and unlifted
types (<xref linkend="glasgow-unboxed"/>). In particular when using advanced
type system features, such as type families (<xref linkend="type-families"/>)
or GADTs (<xref linkend="gadt"/>), this simple kind system is insufficient,
and fails to prevent simple errors. Consider the example of type-level natural
numbers, and length-indexed vectors:
<programlisting>
data Ze
data Su n
data Vec :: * -> * -> * where
Nil :: Vec a Ze
Cons :: a -> Vec a n -> Vec a (Su n)
</programlisting>
The kind of <literal>Vec</literal> is <literal>* -> * -> *</literal>. This means
that eg. <literal>Vec Int Char</literal> is a well-kinded type, even though this
is not what we intend when defining length-indexed vectors.
</para>
<para>
With <option>-XDataKinds</option>, the example above can then be
rewritten to:
<programlisting>
data Nat = Ze | Su Nat
data Vec :: * -> Nat -> * where
Nil :: Vec a Ze
Cons :: a -> Vec a n -> Vec a (Su n)
</programlisting>
With the improved kind of <literal>Vec</literal>, things like
<literal>Vec Int Char</literal> are now ill-kinded, and GHC will report an
error.
</para>
</sect2>
<sect2><title>Overview</title>
<para>
With <option>-XDataKinds</option>, GHC automatically promotes every suitable
datatype to be a kind, and its (value) constructors to be type constructors.
The following types
<programlisting>
data Nat = Ze | Su Nat
data List a = Nil | Cons a (List a)
data Pair a b = Pair a b
data Sum a b = L a | R b
</programlisting>
give rise to the following kinds and type constructors:
<programlisting>
Nat :: BOX
Ze :: Nat
Su :: Nat -> Nat
List k :: BOX
Nil :: List k
Cons :: k -> List k -> List k
Pair k1 k2 :: BOX
Pair :: k1 -> k2 -> Pair k1 k2
Sum k1 k2 :: BOX
L :: k1 -> Sum k1 k2
R :: k2 -> Sum k1 k2
</programlisting>
where <literal>BOX</literal> is the (unique) sort that classifies kinds.
Note that <literal>List</literal>, for instance, does not get sort
<literal>BOX -> BOX</literal>, because we do not further classify kinds; all
kinds have sort <literal>BOX</literal>.
</para>
<para>
The following restrictions apply to promotion:
<itemizedlist>
<listitem><para>We promote <literal>data</literal> types and <literal>newtypes</literal>,
but not type synonyms, or type/data families (<xref linkend="type-families"/>).
</para></listitem>
<listitem><para>We only promote types whose kinds are of the form
<literal>* -> ... -> * -> *</literal>. In particular, we do not promote
higher-kinded datatypes such as <literal>data Fix f = In (f (Fix f))</literal>,
or datatypes whose kinds involve promoted types such as
<literal>Vec :: * -> Nat -> *</literal>.</para></listitem>
<listitem><para>We do not promote data constructors that are kind
polymorphic, involve constraints, mention type or data families, or involve types that
are not promotable.
</para></listitem>
</itemizedlist>
</para>
</sect2>
<sect2 id="promotion-syntax">
<title>Distinguishing between types and constructors</title>
<para>
Since constructors and types share the same namespace, with promotion you can
get ambiguous type names:
<programlisting>
data P -- 1
data Prom = P -- 2
type T = P -- 1 or promoted 2?
</programlisting>
In these cases, if you want to refer to the promoted constructor, you should
prefix its name with a quote:
<programlisting>
type T1 = P -- 1
type T2 = 'P -- promoted 2
</programlisting>
Note that promoted datatypes give rise to named kinds. Since these can never be
ambiguous, we do not allow quotes in kind names.
</para>
<para>Just as in the case of Template Haskell (<xref linkend="th-syntax"/>), there is
no way to quote a data constructor or type constructor whose second character
is a single quote.</para>
</sect2>
<sect2 id="promoted-lists-and-tuples">
<title>Promoted list and tuple types</title>
<para>
With <option>-XDataKinds</option>, Haskell's list and tuple types are natively promoted to kinds, and enjoy the
same convenient syntax at the type level, albeit prefixed with a quote:
<programlisting>
data HList :: [*] -> * where
HNil :: HList '[]
HCons :: a -> HList t -> HList (a ': t)
data Tuple :: (*,*) -> * where
Tuple :: a -> b -> Tuple '(a,b)
foo0 :: HList '[]
foo0 = HNil
foo1 :: HList '[Int]
foo1 = HCons (3::Int) HNil
foo2 :: HList [Int, Bool]
foo2 = ...
</programlisting>
(Note: the declaration for <literal>HCons</literal> also requires <option>-XTypeOperators</option>
because of infix type operator <literal>(:')</literal>.)
For type-level lists of <emphasis>two or more elements</emphasis>,
such as the signature of <literal>foo2</literal> above, the quote may be omitted because the meaning is
unambiguous. But for lists of one or zero elements (as in <literal>foo0</literal>
and <literal>foo1</literal>), the quote is required, because the types <literal>[]</literal>
and <literal>[Int]</literal> have existing meanings in Haskell.
</para>
</sect2>
<sect2 id="promotion-existentials">
<title>Promoting existential data constructors</title>
<para>
Note that we do promote existential data constructors that are otherwise suitable.
For example, consider the following:
<programlisting>
data Ex :: * where
MkEx :: forall a. a -> Ex
</programlisting>
Both the type <literal>Ex</literal> and the data constructor <literal>MkEx</literal>
get promoted, with the polymorphic kind <literal>'MkEx :: forall k. k -> Ex</literal>.
Somewhat surprisingly, you can write a type family to extract the member
of a type-level existential:
<programlisting>
type family UnEx (ex :: Ex) :: k
type instance UnEx (MkEx x) = x
</programlisting>
At first blush, <literal>UnEx</literal> seems poorly-kinded. The return kind
<literal>k</literal> is not mentioned in the arguments, and thus it would seem
that an instance would have to return a member of <literal>k</literal>
<emphasis>for any</emphasis> <literal>k</literal>. However, this is not the
case. The type family <literal>UnEx</literal> is a kind-indexed type family.
The return kind <literal>k</literal> is an implicit parameter to <literal>UnEx</literal>.
The elaborated definitions are as follows:
<programlisting>
type family UnEx (k :: BOX) (ex :: Ex) :: k
type instance UnEx k (MkEx k x) = x
</programlisting>
Thus, the instance triggers only when the implicit parameter to <literal>UnEx</literal>
matches the implicit parameter to <literal>MkEx</literal>. Because <literal>k</literal>
is actually a parameter to <literal>UnEx</literal>, the kind is not escaping the
existential, and the above code is valid.
</para>
<para>
See also <ulink url="http://ghc.haskell.org/trac/ghc/ticket/7347">Trac #7347</ulink>.
</para>
</sect2>
<sect2>
<title>Promoting type operators</title>
<para>
Type operators are <emphasis>not</emphasis> promoted to the kind level. Why not? Because
<literal>*</literal> is a kind, parsed the way identifiers are. Thus, if a programmer
tried to write <literal>Either * Bool</literal>, would it be <literal>Either</literal>
applied to <literal>*</literal> and <literal>Bool</literal>? Or would it be
<literal>*</literal> applied to <literal>Either</literal> and <literal>Bool</literal>.
To avoid this quagmire, we simply forbid promoting type operators to the kind level.
</para>
</sect2>
</sect1>
<sect1 id="type-level-literals">
<title>Type-Level Literals</title>
<para>
GHC supports numeric and string literals at the type level, giving convenient
access to a large number of predefined type-level constants.
Numeric literals are of kind <literal>Nat</literal>, while string literals
are of kind <literal>Symbol</literal>.
This feature is enabled by the <literal>XDataKinds</literal>
language extension.
</para>
<para>
The kinds of the literals and all other low-level operations for this feature
are defined in module <literal>GHC.TypeLits</literal>. Note that the module
defines some type-level operators that clash with their value-level
counterparts (e.g. <literal>(+)</literal>). Import and export declarations
referring to these operators require an explicit namespace
annotation (see <xref linkend="explicit-namespaces"/>).
</para>
<para>
Here is an example of using type-level numeric literals to provide a safe
interface to a low-level function:
<programlisting>
import GHC.TypeLits
import Data.Word
import Foreign
newtype ArrPtr (n :: Nat) a = ArrPtr (Ptr a)
clearPage :: ArrPtr 4096 Word8 -> IO ()
clearPage (ArrPtr p) = ...
</programlisting>
</para>
<para>
Here is an example of using type-level string literals to simulate
simple record operations:
<programlisting>
data Label (l :: Symbol) = Get
class Has a l b | a l -> b where
from :: a -> Label l -> b
data Point = Point Int Int deriving Show
instance Has Point "x" Int where from (Point x _) _ = x
instance Has Point "y" Int where from (Point _ y) _ = y
example = from (Point 1 2) (Get :: Label "x")
</programlisting>
</para>
<sect2 id="typelit-runtime">
<title>Runtime Values for Type-Level Literals</title>
<para>
Sometimes it is useful to access the value-level literal associated with
a type-level literal. This is done with the functions
<literal>natVal</literal> and <literal>symbolVal</literal>. For example:
<programlisting>
GHC.TypeLits> natVal (Proxy :: Proxy 2)
2
</programlisting>
These functions are overloaded because they need to return a different
result, depending on the type at which they are instantiated.
<programlisting>
natVal :: KnownNat n => proxy n -> Integer
-- instance KnownNat 0
-- instance KnownNat 1
-- instance KnownNat 2
-- ...
</programlisting>
GHC discharges the constraint as soon as it knows what concrete
type-level literal is being used in the program. Note that this works
only for <emphasis>literals</emphasis> and not arbitrary type expressions.
For example, a constraint of the form <literal>KnownNat (a + b)</literal>
will <emphasis>not</emphasis> be simplified to
<literal>(KnownNat a, KnownNat b)</literal>; instead, GHC will keep the
constraint as is, until it can simplify <literal>a + b</literal> to
a constant value.
</para>
</sect2>
<para>
It is also possible to convert a run-time integer or string value to
the corresponding type-level literal. Of course, the resulting type
literal will be unknown at compile-time, so it is hidden in an existential
type. The conversion may be performed using <literal>someNatVal</literal>
for integers and <literal>someSymbolVal</literal> for strings:
<programlisting>
someNatVal :: Integer -> Maybe SomeNat
SomeNat :: KnownNat n => Proxy n -> SomeNat
</programlisting>
The operations on strings are similar.
</para>
<sect2 id="typelit-tyfuns">
<title>Computing With Type-Level Naturals</title>
<para>
GHC 7.8 can evaluate arithmetic expressions involving type-level natural
numbers. Such expressions may be constructed using the type-families
<literal>(+), (*), (^)</literal> for addition, multiplication,
and exponentiation. Numbers may be compared using <literal>(<=?)</literal>,
which returns a promoted boolean value, or <literal>(<=)</literal>, which
compares numbers as a constraint. For example:
<programlisting>
GHC.TypeLits> natVal (Proxy :: Proxy (2 + 3))
5
</programlisting>
</para>
<para>
At present, GHC is quite limited in its reasoning about arithmetic:
it will only evaluate the arithmetic type functions and compare the results---
in the same way that it does for any other type function. In particular,
it does not know more general facts about arithmetic, such as the commutativity
and associativity of <literal>(+)</literal>, for example.
</para>
<para>
However, it is possible to perform a bit of "backwards" evaluation.
For example, here is how we could get GHC to compute arbitrary logarithms
at the type level:
<programlisting>
lg :: Proxy base -> Proxy (base ^ pow) -> Proxy pow
lg _ _ = Proxy
GHC.TypeLits> natVal (lg (Proxy :: Proxy 2) (Proxy :: Proxy 8))
3
</programlisting>
</para>
</sect2>
</sect1>
<sect1 id="equality-constraints">
<title>Equality constraints</title>
<para>
A type context can include equality constraints of the form <literal>t1 ~
t2</literal>, which denote that the types <literal>t1</literal>
and <literal>t2</literal> need to be the same. In the presence of type
families, whether two types are equal cannot generally be decided
locally. Hence, the contexts of function signatures may include
equality constraints, as in the following example:
<programlisting>
sumCollects :: (Collects c1, Collects c2, Elem c1 ~ Elem c2) => c1 -> c2 -> c2
</programlisting>
where we require that the element type of <literal>c1</literal>
and <literal>c2</literal> are the same. In general, the
types <literal>t1</literal> and <literal>t2</literal> of an equality
constraint may be arbitrary monotypes; i.e., they may not contain any
quantifiers, independent of whether higher-rank types are otherwise
enabled.
</para>
<para>
Equality constraints can also appear in class and instance contexts.
The former enable a simple translation of programs using functional
dependencies into programs using family synonyms instead. The general
idea is to rewrite a class declaration of the form
<programlisting>
class C a b | a -> b
</programlisting>
to
<programlisting>
class (F a ~ b) => C a b where
type F a
</programlisting>
That is, we represent every functional dependency (FD) <literal>a1 .. an
-> b</literal> by an FD type family <literal>F a1 .. an</literal> and a
superclass context equality <literal>F a1 .. an ~ b</literal>,
essentially giving a name to the functional dependency. In class
instances, we define the type instances of FD families in accordance
with the class head. Method signatures are not affected by that
process.
</para>
<sect2 id="coercible">
<title>The <literal>Coercible</literal> constraint</title>
<para>
The constraint <literal>Coercible t1 t2</literal> is similar to <literal>t1 ~
t2</literal>, but denotes representational equality between
<literal>t1</literal> and <literal>t2</literal> in the sense of Roles
(<xref linkend="roles"/>). It is exported by
<ulink url="&libraryBaseLocation;/Data-Coerce.html"><literal>Data.Coerce</literal></ulink>,
which also contains the documentation. More details and discussion can be found in
the paper
<ulink href="http://www.cis.upenn.edu/~eir/papers/2014/coercible/coercible.pdf">Safe Coercions"</ulink>.
</para>
</sect2>
</sect1>
<sect1 id="constraint-kind">
<title>The <literal>Constraint</literal> kind</title>
<para>
Normally, <emphasis>constraints</emphasis> (which appear in types to the left of the
<literal>=></literal> arrow) have a very restricted syntax. They can only be:
<itemizedlist>
<listitem>
<para>Class constraints, e.g. <literal>Show a</literal></para>
</listitem>
<listitem>
<para><link linkend="implicit-parameters">Implicit parameter</link> constraints,
e.g. <literal>?x::Int</literal> (with the <option>-XImplicitParams</option> flag)</para>
</listitem>
<listitem>
<para><link linkend="equality-constraints">Equality constraints</link>,
e.g. <literal>a ~ Int</literal> (with the <option>-XTypeFamilies</option> or
<option>-XGADTs</option> flag)</para>
</listitem>
</itemizedlist>
</para>
<para>
With the <option>-XConstraintKinds</option> flag, GHC becomes more liberal in
what it accepts as constraints in your program. To be precise, with this flag any
<emphasis>type</emphasis> of the new kind <literal>Constraint</literal> can be used as a constraint.
The following things have kind <literal>Constraint</literal>:
<itemizedlist>
<listitem>
Anything which is already valid as a constraint without the flag: saturated applications to type classes,
implicit parameter and equality constraints.
</listitem>
<listitem>
Tuples, all of whose component types have kind <literal>Constraint</literal>. So for example the
type <literal>(Show a, Ord a)</literal> is of kind <literal>Constraint</literal>.
</listitem>
<listitem>
Anything whose form is not yet known, but the user has declared to have kind <literal>Constraint</literal>
(for which they need to import it from <literal>GHC.Exts</literal>). So for example
<literal>type Foo (f :: * -> Constraint) = forall b. f b => b -> b</literal> is allowed, as well as
examples involving type families:
<programlisting>
type family Typ a b :: Constraint
type instance Typ Int b = Show b
type instance Typ Bool b = Num b
func :: Typ a b => a -> b -> b
func = ...
</programlisting>
</listitem>
</itemizedlist>
</para>
<para>
Note that because constraints are just handled as types of a particular kind, this extension allows type
constraint synonyms:
</para>
<programlisting>
type Stringy a = (Read a, Show a)
foo :: Stringy a => a -> (String, String -> a)
foo x = (show x, read)
</programlisting>
<para>
Presently, only standard constraints, tuples and type synonyms for those two sorts of constraint are
permitted in instance contexts and superclasses (without extra flags). The reason is that permitting more general
constraints can cause type checking to loop, as it would with these two programs:
</para>
<programlisting>
type family Clsish u a
type instance Clsish () a = Cls a
class Clsish () a => Cls a where
</programlisting>
<programlisting>
class OkCls a where
type family OkClsish u a
type instance OkClsish () a = OkCls a
instance OkClsish () a => OkCls a where
</programlisting>
<para>
You may write programs that use exotic sorts of constraints in instance contexts and superclasses, but
to do so you must use <option>-XUndecidableInstances</option> to signal that you don't mind if the type checker
fails to terminate.
</para>
</sect1>
<sect1 id="other-type-extensions">
<title>Other type system extensions</title>
<sect2 id="explicit-foralls"><title>Explicit universal quantification (forall)</title>
<para>
Haskell type signatures are implicitly quantified. When the language option <option>-XExplicitForAll</option>
is used, the keyword <literal>forall</literal>
allows us to say exactly what this means. For example:
</para>
<para>
<programlisting>
g :: b -> b
</programlisting>
means this:
<programlisting>
g :: forall b. (b -> b)
</programlisting>
The two are treated identically.
</para>
<para>
Of course <literal>forall</literal> becomes a keyword; you can't use <literal>forall</literal> as
a type variable any more!
</para>
</sect2>
<sect2 id="flexible-contexts"><title>The context of a type signature</title>
<para>
The <option>-XFlexibleContexts</option> flag lifts the Haskell 98 restriction
that the type-class constraints in a type signature must have the
form <emphasis>(class type-variable)</emphasis> or
<emphasis>(class (type-variable type1 type2 ... typen))</emphasis>.
With <option>-XFlexibleContexts</option>
these type signatures are perfectly OK
<programlisting>
g :: Eq [a] => ...
g :: Ord (T a ()) => ...
</programlisting>
The flag <option>-XFlexibleContexts</option> also lifts the corresponding
restriction on class declarations (<xref linkend="superclass-rules"/>) and instance declarations
(<xref linkend="instance-rules"/>).
</para>
</sect2>
<sect2 id="ambiguity"><title>Ambiguous types and the ambiguity check</title>
<para>
Each user-written type signature is subjected to an
<emphasis>ambiguity check</emphasis>.
The ambiguity check rejects functions that can never be called; for example:
<programlisting>
f :: C a => Int
</programlisting>
The idea is there can be no legal calls to <literal>f</literal> because every call will
give rise to an ambiguous constraint.
Indeed, the <emphasis>only</emphasis> purpose of the
ambiguity check is to report functions that cannot possibly be called.
We could soundly omit the
ambiguity check on type signatures entirely, at the expense of
delaying ambiguity errors to call sites. Indeed, the language extension
<option>-XAllowAmbiguousTypes</option> switches off the ambiguity check.
</para>
<para>
Ambiguity can be subtle. Consider this example which uses functional dependencies:
<programlisting>
class D a b | a -> b where ..
h :: D Int b => Int
</programlisting>
The <literal>Int</literal> may well fix <literal>b</literal> at the call site, so that signature should
not be rejected. Moreover, the dependencies might be hidden. Consider
<programlisting>
class X a b where ...
class D a b | a -> b where ...
instance D a b => X [a] b where...
h :: X a b => a -> a
</programlisting>
Here <literal>h</literal>'s type looks ambiguous in <literal>b</literal>, but here's a legal call:
<programlisting>
...(h [True])...
</programlisting>
That gives rise to a <literal>(X [Bool] beta)</literal> constraint, and using the
instance means we need <literal>(D Bool beta)</literal> and that
fixes <literal>beta</literal> via <literal>D</literal>'s
fundep!
</para>
<para>
Behind all these special cases there is a simple guiding principle.
Consider
<programlisting>
f :: <replaceable>type</replaceable>
f = ...blah...
g :: <replaceable>type</replaceable>
g = f
</programlisting>
You would think that the definition of <literal>g</literal> would surely typecheck!
After all <literal>f</literal> has exactly the same type, and <literal>g=f</literal>.
But in fact <literal>f</literal>'s type
is instantiated and the instantiated constraints are solved against
the constraints bound by <literal>g</literal>'s signature. So, in the case an ambiguous type, solving will fail.
For example, consider the earlier definition <literal>f :: C a => Int</literal>:
<programlisting>
f :: C a => Int
f = ...blah...
g :: C a => Int
g = f
</programlisting>
In <literal>g</literal>'s definition,
we'll instantiate to <literal>(C alpha)</literal> and try to
deduce <literal>(C alpha)</literal> from <literal>(C a)</literal>,
and fail.
</para>
<para>
So in fact we use this as our <emphasis>definition</emphasis> of ambiguity: a type
<literal><replaceable>ty</replaceable></literal> is
ambiguous if and only if <literal>((undefined :: <replaceable>ty</replaceable>)
:: <replaceable>ty</replaceable>)</literal> would fail to typecheck. We use a
very similar test for <emphasis>inferred</emphasis> types, to ensure that they too are
unambiguous.
</para>
<para><emphasis>Switching off the ambiguity check.</emphasis>
Even if a function is has an ambiguous type according the "guiding principle",
it is possible that the function is callable. For example:
<programlisting>
class D a b where ...
instance D Bool b where ...
strange :: D a b => a -> a
strange = ...blah...
foo = strange True
</programlisting>
Here <literal>strange</literal>'s type is ambiguous, but the call in <literal>foo</literal>
is OK because it gives rise to a constraint <literal>(D Bool beta)</literal>, which is
soluble by the <literal>(D Bool b)</literal> instance. So the language extension
<option>-XAllowAmbiguousTypes</option> allows you to switch off the ambiguity check.
But even with ambiguity checking switched off, GHC will complain about a function
that can <emphasis>never</emphasis> be called, such as this one:
<programlisting>
f :: (Int ~ Bool) => a -> a
</programlisting>
</para>
<para>
<emphasis>A historical note.</emphasis>
GHC used to impose some more restrictive and less principled conditions
on type signatures. For type type
<literal>forall tv1..tvn (c1, ...,cn) => type</literal>
GHC used to require (a) that each universally quantified type variable
<literal>tvi</literal> must be "reachable" from <literal>type</literal>,
and (b) that every constraint <literal>ci</literal> mentions at least one of the
universally quantified type variables <literal>tvi</literal>.
These ad-hoc restrictions are completely subsumed by the new ambiguity check.
<emphasis>End of historical note.</emphasis>
</para>
</sect2>
<sect2 id="implicit-parameters">
<title>Implicit parameters</title>
<para> Implicit parameters are implemented as described in
"Implicit parameters: dynamic scoping with static types",
J Lewis, MB Shields, E Meijer, J Launchbury,
27th ACM Symposium on Principles of Programming Languages (POPL'00),
Boston, Jan 2000.
(Most of the following, still rather incomplete, documentation is
due to Jeff Lewis.)</para>
<para>Implicit parameter support is enabled with the option
<option>-XImplicitParams</option>.</para>
<para>
A variable is called <emphasis>dynamically bound</emphasis> when it is bound by the calling
context of a function and <emphasis>statically bound</emphasis> when bound by the callee's
context. In Haskell, all variables are statically bound. Dynamic
binding of variables is a notion that goes back to Lisp, but was later
discarded in more modern incarnations, such as Scheme. Dynamic binding
can be very confusing in an untyped language, and unfortunately, typed
languages, in particular Hindley-Milner typed languages like Haskell,
only support static scoping of variables.
</para>
<para>
However, by a simple extension to the type class system of Haskell, we
can support dynamic binding. Basically, we express the use of a
dynamically bound variable as a constraint on the type. These
constraints lead to types of the form <literal>(?x::t') => t</literal>, which says "this
function uses a dynamically-bound variable <literal>?x</literal>
of type <literal>t'</literal>". For
example, the following expresses the type of a sort function,
implicitly parameterised by a comparison function named <literal>cmp</literal>.
<programlisting>
sort :: (?cmp :: a -> a -> Bool) => [a] -> [a]
</programlisting>
The dynamic binding constraints are just a new form of predicate in the type class system.
</para>
<para>
An implicit parameter occurs in an expression using the special form <literal>?x</literal>,
where <literal>x</literal> is
any valid identifier (e.g. <literal>ord ?x</literal> is a valid expression).
Use of this construct also introduces a new
dynamic-binding constraint in the type of the expression.
For example, the following definition
shows how we can define an implicitly parameterised sort function in
terms of an explicitly parameterised <literal>sortBy</literal> function:
<programlisting>
sortBy :: (a -> a -> Bool) -> [a] -> [a]
sort :: (?cmp :: a -> a -> Bool) => [a] -> [a]
sort = sortBy ?cmp
</programlisting>
</para>
<sect3>
<title>Implicit-parameter type constraints</title>
<para>
Dynamic binding constraints behave just like other type class
constraints in that they are automatically propagated. Thus, when a
function is used, its implicit parameters are inherited by the
function that called it. For example, our <literal>sort</literal> function might be used
to pick out the least value in a list:
<programlisting>
least :: (?cmp :: a -> a -> Bool) => [a] -> a
least xs = head (sort xs)
</programlisting>
Without lifting a finger, the <literal>?cmp</literal> parameter is
propagated to become a parameter of <literal>least</literal> as well. With explicit
parameters, the default is that parameters must always be explicit
propagated. With implicit parameters, the default is to always
propagate them.
</para>
<para>
An implicit-parameter type constraint differs from other type class constraints in the
following way: All uses of a particular implicit parameter must have
the same type. This means that the type of <literal>(?x, ?x)</literal>
is <literal>(?x::a) => (a,a)</literal>, and not
<literal>(?x::a, ?x::b) => (a, b)</literal>, as would be the case for type
class constraints.
</para>
<para> You can't have an implicit parameter in the context of a class or instance
declaration. For example, both these declarations are illegal:
<programlisting>
class (?x::Int) => C a where ...
instance (?x::a) => Foo [a] where ...
</programlisting>
Reason: exactly which implicit parameter you pick up depends on exactly where
you invoke a function. But the ``invocation'' of instance declarations is done
behind the scenes by the compiler, so it's hard to figure out exactly where it is done.
Easiest thing is to outlaw the offending types.</para>
<para>
Implicit-parameter constraints do not cause ambiguity. For example, consider:
<programlisting>
f :: (?x :: [a]) => Int -> Int
f n = n + length ?x
g :: (Read a, Show a) => String -> String
g s = show (read s)
</programlisting>
Here, <literal>g</literal> has an ambiguous type, and is rejected, but <literal>f</literal>
is fine. The binding for <literal>?x</literal> at <literal>f</literal>'s call site is
quite unambiguous, and fixes the type <literal>a</literal>.
</para>
</sect3>
<sect3>
<title>Implicit-parameter bindings</title>
<para>
An implicit parameter is <emphasis>bound</emphasis> using the standard
<literal>let</literal> or <literal>where</literal> binding forms.
For example, we define the <literal>min</literal> function by binding
<literal>cmp</literal>.
<programlisting>
min :: [a] -> a
min = let ?cmp = (<=) in least
</programlisting>
</para>
<para>
A group of implicit-parameter bindings may occur anywhere a normal group of Haskell
bindings can occur, except at top level. That is, they can occur in a <literal>let</literal>
(including in a list comprehension, or do-notation, or pattern guards),
or a <literal>where</literal> clause.
Note the following points:
<itemizedlist>
<listitem><para>
An implicit-parameter binding group must be a
collection of simple bindings to implicit-style variables (no
function-style bindings, and no type signatures); these bindings are
neither polymorphic or recursive.
</para></listitem>
<listitem><para>
You may not mix implicit-parameter bindings with ordinary bindings in a
single <literal>let</literal>
expression; use two nested <literal>let</literal>s instead.
(In the case of <literal>where</literal> you are stuck, since you can't nest <literal>where</literal> clauses.)
</para></listitem>
<listitem><para>
You may put multiple implicit-parameter bindings in a
single binding group; but they are <emphasis>not</emphasis> treated
as a mutually recursive group (as ordinary <literal>let</literal> bindings are).
Instead they are treated as a non-recursive group, simultaneously binding all the implicit
parameter. The bindings are not nested, and may be re-ordered without changing
the meaning of the program.
For example, consider:
<programlisting>
f t = let { ?x = t; ?y = ?x+(1::Int) } in ?x + ?y
</programlisting>
The use of <literal>?x</literal> in the binding for <literal>?y</literal> does not "see"
the binding for <literal>?x</literal>, so the type of <literal>f</literal> is
<programlisting>
f :: (?x::Int) => Int -> Int
</programlisting>
</para></listitem>
</itemizedlist>
</para>
</sect3>
<sect3><title>Implicit parameters and polymorphic recursion</title>
<para>
Consider these two definitions:
<programlisting>
len1 :: [a] -> Int
len1 xs = let ?acc = 0 in len_acc1 xs
len_acc1 [] = ?acc
len_acc1 (x:xs) = let ?acc = ?acc + (1::Int) in len_acc1 xs
------------
len2 :: [a] -> Int
len2 xs = let ?acc = 0 in len_acc2 xs
len_acc2 :: (?acc :: Int) => [a] -> Int
len_acc2 [] = ?acc
len_acc2 (x:xs) = let ?acc = ?acc + (1::Int) in len_acc2 xs
</programlisting>
The only difference between the two groups is that in the second group
<literal>len_acc</literal> is given a type signature.
In the former case, <literal>len_acc1</literal> is monomorphic in its own
right-hand side, so the implicit parameter <literal>?acc</literal> is not
passed to the recursive call. In the latter case, because <literal>len_acc2</literal>
has a type signature, the recursive call is made to the
<emphasis>polymorphic</emphasis> version, which takes <literal>?acc</literal>
as an implicit parameter. So we get the following results in GHCi:
<programlisting>
Prog> len1 "hello"
0
Prog> len2 "hello"
5
</programlisting>
Adding a type signature dramatically changes the result! This is a rather
counter-intuitive phenomenon, worth watching out for.
</para>
</sect3>
<sect3><title>Implicit parameters and monomorphism</title>
<para>GHC applies the dreaded Monomorphism Restriction (section 4.5.5 of the
Haskell Report) to implicit parameters. For example, consider:
<programlisting>
f :: Int -> Int
f v = let ?x = 0 in
let y = ?x + v in
let ?x = 5 in
y
</programlisting>
Since the binding for <literal>y</literal> falls under the Monomorphism
Restriction it is not generalised, so the type of <literal>y</literal> is
simply <literal>Int</literal>, not <literal>(?x::Int) => Int</literal>.
Hence, <literal>(f 9)</literal> returns result <literal>9</literal>.
If you add a type signature for <literal>y</literal>, then <literal>y</literal>
will get type <literal>(?x::Int) => Int</literal>, so the occurrence of
<literal>y</literal> in the body of the <literal>let</literal> will see the
inner binding of <literal>?x</literal>, so <literal>(f 9)</literal> will return
<literal>14</literal>.
</para>
</sect3>
<sect3><title>Special implicit parameters</title>
<para>
GHC treats implicit parameters of type <literal>GHC.Stack.CallStack</literal>
specially, by resolving them to the current location in the program. Consider:
<programlisting>
f :: String
f = show (?loc :: CallStack)
</programlisting>
GHC will automatically resolve <literal>?loc</literal> to its source
location. If another implicit parameter with type <literal>CallStack</literal> is
in scope, GHC will append the two locations, creating an explicit call-stack. For example:
<programlisting>
f :: (?stk :: CallStack) => String
f = show (?stk :: CallStack)
</programlisting>
will produce the location of <literal>?stk</literal>, followed by
<literal>f</literal>'s call-site. Note that the name of the implicit parameter does not
matter (we used <literal>?loc</literal> above), GHC will solve any implicit parameter
with the right type. The name does, however, matter when pushing new locations onto
existing stacks. Consider:
<programlisting>
f :: (?stk :: CallStack) => String
f = show (?loc :: CallStack)
</programlisting>
When we call <literal>f</literal>, the stack will include the use of <literal>?loc</literal>,
but not the call to <literal>f</literal>; in this case the names must match.
</para>
<para>
<literal>CallStack</literal> is kept abstract, but
GHC provides a function
<programlisting>
getCallStack :: CallStack -> [(String, SrcLoc)]
</programlisting>
to access the individual call-sites in the stack. The <literal>String</literal>
is the name of the function that was called, and the <literal>SrcLoc</literal>
provides the package, module, and file name, as well as the line and column
numbers. The stack will never be empty, as the first call-site
will be the location at which the implicit parameter was used. GHC will also
never infer <literal>?loc :: CallStack</literal> as a type constraint, which
means that functions must explicitly ask to be told about their call-sites.
</para>
<para>
A potential "gotcha" when using implicit <literal>CallStack</literal>s is that
the <literal>:type</literal> command in GHCi will not report the
<literal>?loc :: CallStack</literal> constraint, as the typechecker will
immediately solve it. Use <literal>:info</literal> instead to print the
unsolved type.
</para>
</sect3>
</sect2>
<sect2 id="kinding">
<title>Explicitly-kinded quantification</title>
<para>
Haskell infers the kind of each type variable. Sometimes it is nice to be able
to give the kind explicitly as (machine-checked) documentation,
just as it is nice to give a type signature for a function. On some occasions,
it is essential to do so. For example, in his paper "Restricted Data Types in Haskell" (Haskell Workshop 1999)
John Hughes had to define the data type:
<screen>
data Set cxt a = Set [a]
| Unused (cxt a -> ())
</screen>
The only use for the <literal>Unused</literal> constructor was to force the correct
kind for the type variable <literal>cxt</literal>.
</para>
<para>
GHC now instead allows you to specify the kind of a type variable directly, wherever
a type variable is explicitly bound, with the flag <option>-XKindSignatures</option>.
</para>
<para>
This flag enables kind signatures in the following places:
<itemizedlist>
<listitem><para><literal>data</literal> declarations:
<screen>
data Set (cxt :: * -> *) a = Set [a]
</screen></para></listitem>
<listitem><para><literal>type</literal> declarations:
<screen>
type T (f :: * -> *) = f Int
</screen></para></listitem>
<listitem><para><literal>class</literal> declarations:
<screen>
class (Eq a) => C (f :: * -> *) a where ...
</screen></para></listitem>
<listitem><para><literal>forall</literal>'s in type signatures:
<screen>
f :: forall (cxt :: * -> *). Set cxt Int
</screen></para></listitem>
</itemizedlist>
</para>
<para>
The parentheses are required. Some of the spaces are required too, to
separate the lexemes. If you write <literal>(f::*->*)</literal> you
will get a parse error, because "<literal>::*->*</literal>" is a
single lexeme in Haskell.
</para>
<para>
As part of the same extension, you can put kind annotations in types
as well. Thus:
<screen>
f :: (Int :: *) -> Int
g :: forall a. a -> (a :: *)
</screen>
The syntax is
<screen>
atype ::= '(' ctype '::' kind ')
</screen>
The parentheses are required.
</para>
</sect2>
<sect2 id="universal-quantification">
<title>Arbitrary-rank polymorphism
</title>
<para>
GHC's type system supports <emphasis>arbitrary-rank</emphasis>
explicit universal quantification in
types.
For example, all the following types are legal:
<programlisting>
f1 :: forall a b. a -> b -> a
g1 :: forall a b. (Ord a, Eq b) => a -> b -> a
f2 :: (forall a. a->a) -> Int -> Int
g2 :: (forall a. Eq a => [a] -> a -> Bool) -> Int -> Int
f3 :: ((forall a. a->a) -> Int) -> Bool -> Bool
f4 :: Int -> (forall a. a -> a)
</programlisting>
Here, <literal>f1</literal> and <literal>g1</literal> are rank-1 types, and
can be written in standard Haskell (e.g. <literal>f1 :: a->b->a</literal>).
The <literal>forall</literal> makes explicit the universal quantification that
is implicitly added by Haskell.
</para>
<para>
The functions <literal>f2</literal> and <literal>g2</literal> have rank-2 types;
the <literal>forall</literal> is on the left of a function arrow. As <literal>g2</literal>
shows, the polymorphic type on the left of the function arrow can be overloaded.
</para>
<para>
The function <literal>f3</literal> has a rank-3 type;
it has rank-2 types on the left of a function arrow.
</para>
<para>
The language option <option>-XRankNTypes</option> (which implies <option>-XExplicitForAll</option>, <xref linkend="explicit-foralls"/>)
enables higher-rank types.
That is, you can nest <literal>forall</literal>s
arbitrarily deep in function arrows.
For example, a forall-type (also called a "type scheme"),
including a type-class context, is legal:
<itemizedlist>
<listitem> <para> On the left or right (see <literal>f4</literal>, for example)
of a function arrow </para> </listitem>
<listitem> <para> As the argument of a constructor, or type of a field, in a data type declaration. For
example, any of the <literal>f1,f2,f3,g1,g2</literal> above would be valid
field type signatures.</para> </listitem>
<listitem> <para> As the type of an implicit parameter </para> </listitem>
<listitem> <para> In a pattern type signature (see <xref linkend="scoped-type-variables"/>) </para> </listitem>
</itemizedlist>
The <option>-XRankNTypes</option> option is also required for any
type with a <literal>forall</literal> or
context to the right of an arrow (e.g. <literal>f :: Int -> forall a. a->a</literal>, or
<literal>g :: Int -> Ord a => a -> a</literal>). Such types are technically rank 1, but
are clearly not Haskell-98, and an extra flag did not seem worth the bother.
</para>
<para>
In particular, in <literal>data</literal> and
<literal>newtype</literal> declarations the constructor arguments may
be polymorphic types of any rank; see examples in <xref linkend="univ"/>.
Note that the declared types are
nevertheless always monomorphic. This is important because by default
GHC will not instantiate type variables to a polymorphic type
(<xref linkend="impredicative-polymorphism"/>).
</para>
<para>
The obsolete language options <option>-XPolymorphicComponents</option>
and <option>-XRank2Types</option> are synonyms for
<option>-XRankNTypes</option>. They used to specify finer
distinctions that GHC no longer makes. (They should really elicit a
deprecation warning, but they don't, purely to avoid the need to
library authors to change their old flags specifications.)
</para>
<sect3 id="univ">
<title>Examples
</title>
<para>
These are examples of <literal>data</literal> and <literal>newtype</literal>
declarations whose data constructors have polymorphic argument types:
<programlisting>
data T a = T1 (forall b. b -> b -> b) a
data MonadT m = MkMonad { return :: forall a. a -> m a,
bind :: forall a b. m a -> (a -> m b) -> m b
}
newtype Swizzle = MkSwizzle (forall a. Ord a => [a] -> [a])
</programlisting>
</para>
<para>
The constructors have rank-2 types:
</para>
<para>
<programlisting>
T1 :: forall a. (forall b. b -> b -> b) -> a -> T a
MkMonad :: forall m. (forall a. a -> m a)
-> (forall a b. m a -> (a -> m b) -> m b)
-> MonadT m
MkSwizzle :: (forall a. Ord a => [a] -> [a]) -> Swizzle
</programlisting>
</para>
<para>
In earlier versions of GHC, it was possible to omit the <literal>forall</literal>
in the type of the constructor if there was an explicit context. For example:
<programlisting>
newtype Swizzle' = MkSwizzle' (Ord a => [a] -> [a])
</programlisting>
As of GHC 7.10, this is deprecated. The <literal>-fwarn-context-quantification</literal>
flag detects this situation and issues a warning. In GHC 7.12, declarations
such as <literal>MkSwizzle'</literal> will cause an out-of-scope error.
</para>
<para>
As for type signatures, implicit quantification happens for non-overloaded
types too. So if you write this:
<programlisting>
f :: (a -> a) -> a
</programlisting>
it's just as if you had written this:
<programlisting>
f :: forall a. (a -> a) -> a
</programlisting>
That is, since the type variable <literal>a</literal> isn't in scope, it's
implicitly universally quantified.
</para>
<para>
You construct values of types <literal>T1, MonadT, Swizzle</literal> by applying
the constructor to suitable values, just as usual. For example,
</para>
<para>
<programlisting>
a1 :: T Int
a1 = T1 (\xy->x) 3
a2, a3 :: Swizzle
a2 = MkSwizzle sort
a3 = MkSwizzle reverse
a4 :: MonadT Maybe
a4 = let r x = Just x
b m k = case m of
Just y -> k y
Nothing -> Nothing
in
MkMonad r b
mkTs :: (forall b. b -> b -> b) -> a -> [T a]
mkTs f x y = [T1 f x, T1 f y]
</programlisting>
</para>
<para>
The type of the argument can, as usual, be more general than the type
required, as <literal>(MkSwizzle reverse)</literal> shows. (<function>reverse</function>
does not need the <literal>Ord</literal> constraint.)
</para>
<para>
When you use pattern matching, the bound variables may now have
polymorphic types. For example:
</para>
<para>
<programlisting>
f :: T a -> a -> (a, Char)
f (T1 w k) x = (w k x, w 'c' 'd')
g :: (Ord a, Ord b) => Swizzle -> [a] -> (a -> b) -> [b]
g (MkSwizzle s) xs f = s (map f (s xs))
h :: MonadT m -> [m a] -> m [a]
h m [] = return m []
h m (x:xs) = bind m x $ \y ->
bind m (h m xs) $ \ys ->
return m (y:ys)
</programlisting>
</para>
<para>
In the function <function>h</function> we use the record selectors <literal>return</literal>
and <literal>bind</literal> to extract the polymorphic bind and return functions
from the <literal>MonadT</literal> data structure, rather than using pattern
matching.
</para>
</sect3>
<sect3>
<title>Type inference</title>
<para>
In general, type inference for arbitrary-rank types is undecidable.
GHC uses an algorithm proposed by Odersky and Laufer ("Putting type annotations to work", POPL'96)
to get a decidable algorithm by requiring some help from the programmer.
We do not yet have a formal specification of "some help" but the rule is this:
</para>
<para>
<emphasis>For a lambda-bound or case-bound variable, x, either the programmer
provides an explicit polymorphic type for x, or GHC's type inference will assume
that x's type has no foralls in it</emphasis>.
</para>
<para>
What does it mean to "provide" an explicit type for x? You can do that by
giving a type signature for x directly, using a pattern type signature
(<xref linkend="scoped-type-variables"/>), thus:
<programlisting>
\ f :: (forall a. a->a) -> (f True, f 'c')
</programlisting>
Alternatively, you can give a type signature to the enclosing
context, which GHC can "push down" to find the type for the variable:
<programlisting>
(\ f -> (f True, f 'c')) :: (forall a. a->a) -> (Bool,Char)
</programlisting>
Here the type signature on the expression can be pushed inwards
to give a type signature for f. Similarly, and more commonly,
one can give a type signature for the function itself:
<programlisting>
h :: (forall a. a->a) -> (Bool,Char)
h f = (f True, f 'c')
</programlisting>
You don't need to give a type signature if the lambda bound variable
is a constructor argument. Here is an example we saw earlier:
<programlisting>
f :: T a -> a -> (a, Char)
f (T1 w k) x = (w k x, w 'c' 'd')
</programlisting>
Here we do not need to give a type signature to <literal>w</literal>, because
it is an argument of constructor <literal>T1</literal> and that tells GHC all
it needs to know.
</para>
</sect3>
<sect3 id="implicit-quant">
<title>Implicit quantification</title>
<para>
GHC performs implicit quantification as follows. <emphasis>At the top level (only) of
user-written types, if and only if there is no explicit <literal>forall</literal>,
GHC finds all the type variables mentioned in the type that are not already
in scope, and universally quantifies them.</emphasis> For example, the following pairs are
equivalent:
<programlisting>
f :: a -> a
f :: forall a. a -> a
g (x::a) = let
h :: a -> b -> b
h x y = y
in ...
g (x::a) = let
h :: forall b. a -> b -> b
h x y = y
in ...
</programlisting>
</para>
<para>
Notice that GHC does <emphasis>not</emphasis> find the innermost possible quantification
point. For example:
<programlisting>
f :: (a -> a) -> Int
-- MEANS
f :: forall a. (a -> a) -> Int
-- NOT
f :: (forall a. a -> a) -> Int
g :: (Ord a => a -> a) -> Int
-- MEANS the illegal type
g :: forall a. (Ord a => a -> a) -> Int
-- NOT
g :: (forall a. Ord a => a -> a) -> Int
</programlisting>
The latter produces an illegal type, which you might think is silly,
but at least the rule is simple. If you want the latter type, you
can write your for-alls explicitly. Indeed, doing so is strongly advised
for rank-2 types.
</para>
</sect3>
</sect2>
<sect2 id="impredicative-polymorphism">
<title>Impredicative polymorphism
</title>
<para>In general, GHC will only instantiate a polymorphic function at
a monomorphic type (one with no foralls). For example,
<programlisting>
runST :: (forall s. ST s a) -> a
id :: forall b. b -> b
foo = id runST -- Rejected
</programlisting>
The definition of <literal>foo</literal> is rejected because one would have to instantiate
<literal>id</literal>'s type with <literal>b := (forall s. ST s a) -> a</literal>, and
that is not allowed.
Instanting polymorpic type variables with polymorphic types is called <emphasis>impredicative polymorphism</emphasis>.
</para>
<para>GHC has extremely flaky support for <emphasis>impredicative polymorphism</emphasis>,
enabled with <option>-XImpredicativeTypes</option>.
If it worked, this would mean
that you <emphasis>could</emphasis> call a polymorphic function at a polymorphic type, and
parameterise data structures over polymorphic types. For example:
<programlisting>
f :: Maybe (forall a. [a] -> [a]) -> Maybe ([Int], [Char])
f (Just g) = Just (g [3], g "hello")
f Nothing = Nothing
</programlisting>
Notice here that the <literal>Maybe</literal> type is parameterised by the
<emphasis>polymorphic</emphasis> type <literal>(forall a. [a] -> [a])</literal>.
However <emphasis>the extension should be considered highly experimental, and certainly un-supported</emphasis>.
You are welcome to try it, but please don't rely on it working consistently, or
working the same in subsequent releases. See
<ulink url="https://ghc.haskell.org/trac/ghc/wiki/ImpredicativePolymorphism">this wiki page</ulink>
for more details.
</para>
<para>If you want impredicative polymorphism, the main workaround is to use a newtype wrapper.
The <literal>id runST</literal> example can be written using theis workaround like this:
<programlisting>
runST :: (forall s. ST s a) -> a
id :: forall b. b -> b
nwetype Wrap a = Wrap { unWrap :: (forall s. ST s a) -> a }
foo :: (forall s. ST s a) -> a
foo = unWrap (id (Wrap runST))
-- Here id is called at monomorphic type (Wrap a)
</programlisting>
</para>
</sect2>
<sect2 id="scoped-type-variables">
<title>Lexically scoped type variables
</title>
<para>
GHC supports <emphasis>lexically scoped type variables</emphasis>, without
which some type signatures are simply impossible to write. For example:
<programlisting>
f :: forall a. [a] -> [a]
f xs = ys ++ ys
where
ys :: [a]
ys = reverse xs
</programlisting>
The type signature for <literal>f</literal> brings the type variable <literal>a</literal> into scope,
because of the explicit <literal>forall</literal> (<xref linkend="decl-type-sigs"/>).
The type variables bound by a <literal>forall</literal> scope over
the entire definition of the accompanying value declaration.
In this example, the type variable <literal>a</literal> scopes over the whole
definition of <literal>f</literal>, including over
the type signature for <varname>ys</varname>.
In Haskell 98 it is not possible to declare
a type for <varname>ys</varname>; a major benefit of scoped type variables is that
it becomes possible to do so.
</para>
<para>Lexically-scoped type variables are enabled by
<option>-XScopedTypeVariables</option>. This flag implies <option>-XRelaxedPolyRec</option>.
</para>
<sect3>
<title>Overview</title>
<para>The design follows the following principles
<itemizedlist>
<listitem><para>A scoped type variable stands for a type <emphasis>variable</emphasis>, and not for
a <emphasis>type</emphasis>. (This is a change from GHC's earlier
design.)</para></listitem>
<listitem><para>Furthermore, distinct lexical type variables stand for distinct
type variables. This means that every programmer-written type signature
(including one that contains free scoped type variables) denotes a
<emphasis>rigid</emphasis> type; that is, the type is fully known to the type
checker, and no inference is involved.</para></listitem>
<listitem><para>Lexical type variables may be alpha-renamed freely, without
changing the program.</para></listitem>
</itemizedlist>
</para>
<para>
A <emphasis>lexically scoped type variable</emphasis> can be bound by:
<itemizedlist>
<listitem><para>A declaration type signature (<xref linkend="decl-type-sigs"/>)</para></listitem>
<listitem><para>An expression type signature (<xref linkend="exp-type-sigs"/>)</para></listitem>
<listitem><para>A pattern type signature (<xref linkend="pattern-type-sigs"/>)</para></listitem>
<listitem><para>Class and instance declarations (<xref linkend="cls-inst-scoped-tyvars"/>)</para></listitem>
</itemizedlist>
</para>
<para>
In Haskell, a programmer-written type signature is implicitly quantified over
its free type variables (<ulink
url="http://www.haskell.org/onlinereport/decls.html#sect4.1.2">Section
4.1.2</ulink>
of the Haskell Report).
Lexically scoped type variables affect this implicit quantification rules
as follows: any type variable that is in scope is <emphasis>not</emphasis> universally
quantified. For example, if type variable <literal>a</literal> is in scope,
then
<programlisting>
(e :: a -> a) means (e :: a -> a)
(e :: b -> b) means (e :: forall b. b->b)
(e :: a -> b) means (e :: forall b. a->b)
</programlisting>
</para>
</sect3>
<sect3 id="decl-type-sigs">
<title>Declaration type signatures</title>
<para>A declaration type signature that has <emphasis>explicit</emphasis>
quantification (using <literal>forall</literal>) brings into scope the
explicitly-quantified
type variables, in the definition of the named function. For example:
<programlisting>
f :: forall a. [a] -> [a]
f (x:xs) = xs ++ [ x :: a ]
</programlisting>
The "<literal>forall a</literal>" brings "<literal>a</literal>" into scope in
the definition of "<literal>f</literal>".
</para>
<para>This only happens if:
<itemizedlist>
<listitem><para> The quantification in <literal>f</literal>'s type
signature is explicit. For example:
<programlisting>
g :: [a] -> [a]
g (x:xs) = xs ++ [ x :: a ]
</programlisting>
This program will be rejected, because "<literal>a</literal>" does not scope
over the definition of "<literal>g</literal>", so "<literal>x::a</literal>"
means "<literal>x::forall a. a</literal>" by Haskell's usual implicit
quantification rules.
</para></listitem>
<listitem><para> The signature gives a type for a function binding or a bare variable binding,
not a pattern binding.
For example:
<programlisting>
f1 :: forall a. [a] -> [a]
f1 (x:xs) = xs ++ [ x :: a ] -- OK
f2 :: forall a. [a] -> [a]
f2 = \(x:xs) -> xs ++ [ x :: a ] -- OK
f3 :: forall a. [a] -> [a]
Just f3 = Just (\(x:xs) -> xs ++ [ x :: a ]) -- Not OK!
</programlisting>
The binding for <literal>f3</literal> is a pattern binding, and so its type signature
does not bring <literal>a</literal> into scope. However <literal>f1</literal> is a
function binding, and <literal>f2</literal> binds a bare variable; in both cases
the type signature brings <literal>a</literal> into scope.
</para></listitem>
</itemizedlist>
</para>
</sect3>
<sect3 id="exp-type-sigs">
<title>Expression type signatures</title>
<para>An expression type signature that has <emphasis>explicit</emphasis>
quantification (using <literal>forall</literal>) brings into scope the
explicitly-quantified
type variables, in the annotated expression. For example:
<programlisting>
f = runST ( (op >>= \(x :: STRef s Int) -> g x) :: forall s. ST s Bool )
</programlisting>
Here, the type signature <literal>forall s. ST s Bool</literal> brings the
type variable <literal>s</literal> into scope, in the annotated expression
<literal>(op >>= \(x :: STRef s Int) -> g x)</literal>.
</para>
</sect3>
<sect3 id="pattern-type-sigs">
<title>Pattern type signatures</title>
<para>
A type signature may occur in any pattern; this is a <emphasis>pattern type
signature</emphasis>.
For example:
<programlisting>
-- f and g assume that 'a' is already in scope
f = \(x::Int, y::a) -> x
g (x::a) = x
h ((x,y) :: (Int,Bool)) = (y,x)
</programlisting>
In the case where all the type variables in the pattern type signature are
already in scope (i.e. bound by the enclosing context), matters are simple: the
signature simply constrains the type of the pattern in the obvious way.
</para>
<para>
Unlike expression and declaration type signatures, pattern type signatures are not implicitly generalised.
The pattern in a <emphasis>pattern binding</emphasis> may only mention type variables
that are already in scope. For example:
<programlisting>
f :: forall a. [a] -> (Int, [a])
f xs = (n, zs)
where
(ys::[a], n) = (reverse xs, length xs) -- OK
zs::[a] = xs ++ ys -- OK
Just (v::b) = ... -- Not OK; b is not in scope
</programlisting>
Here, the pattern signatures for <literal>ys</literal> and <literal>zs</literal>
are fine, but the one for <literal>v</literal> is not because <literal>b</literal> is
not in scope.
</para>
<para>
However, in all patterns <emphasis>other</emphasis> than pattern bindings, a pattern
type signature may mention a type variable that is not in scope; in this case,
<emphasis>the signature brings that type variable into scope</emphasis>.
This is particularly important for existential data constructors. For example:
<programlisting>
data T = forall a. MkT [a]
k :: T -> T
k (MkT [t::a]) = MkT t3
where
t3::[a] = [t,t,t]
</programlisting>
Here, the pattern type signature <literal>(t::a)</literal> mentions a lexical type
variable that is not already in scope. Indeed, it <emphasis>cannot</emphasis> already be in scope,
because it is bound by the pattern match. GHC's rule is that in this situation
(and only then), a pattern type signature can mention a type variable that is
not already in scope; the effect is to bring it into scope, standing for the
existentially-bound type variable.
</para>
<para>
When a pattern type signature binds a type variable in this way, GHC insists that the
type variable is bound to a <emphasis>rigid</emphasis>, or fully-known, type variable.
This means that any user-written type signature always stands for a completely known type.
</para>
<para>
If all this seems a little odd, we think so too. But we must have
<emphasis>some</emphasis> way to bring such type variables into scope, else we
could not name existentially-bound type variables in subsequent type signatures.
</para>
<para>
This is (now) the <emphasis>only</emphasis> situation in which a pattern type
signature is allowed to mention a lexical variable that is not already in
scope.
For example, both <literal>f</literal> and <literal>g</literal> would be
illegal if <literal>a</literal> was not already in scope.
</para>
</sect3>
<!-- ==================== Commented out part about result type signatures
<sect3 id="result-type-sigs">
<title>Result type signatures</title>
<para>
The result type of a function, lambda, or case expression alternative can be given a signature, thus:
<programlisting>
{- f assumes that 'a' is already in scope -}
f x y :: [a] = [x,y,x]
g = \ x :: [Int] -> [3,4]
h :: forall a. [a] -> a
h xs = case xs of
(y:ys) :: a -> y
</programlisting>
The final <literal>:: [a]</literal> after the patterns of <literal>f</literal> gives the type of
the result of the function. Similarly, the body of the lambda in the RHS of
<literal>g</literal> is <literal>[Int]</literal>, and the RHS of the case
alternative in <literal>h</literal> is <literal>a</literal>.
</para>
<para> A result type signature never brings new type variables into scope.</para>
<para>
There are a couple of syntactic wrinkles. First, notice that all three
examples would parse quite differently with parentheses:
<programlisting>
{- f assumes that 'a' is already in scope -}
f x (y :: [a]) = [x,y,x]
g = \ (x :: [Int]) -> [3,4]
h :: forall a. [a] -> a
h xs = case xs of
((y:ys) :: a) -> y
</programlisting>
Now the signature is on the <emphasis>pattern</emphasis>; and
<literal>h</literal> would certainly be ill-typed (since the pattern
<literal>(y:ys)</literal> cannot have the type <literal>a</literal>.
Second, to avoid ambiguity, the type after the “<literal>::</literal>” in a result
pattern signature on a lambda or <literal>case</literal> must be atomic (i.e. a single
token or a parenthesised type of some sort). To see why,
consider how one would parse this:
<programlisting>
\ x :: a -> b -> x
</programlisting>
</para>
</sect3>
-->
<sect3 id="cls-inst-scoped-tyvars">
<title>Class and instance declarations</title>
<para>
The type variables in the head of a <literal>class</literal> or <literal>instance</literal> declaration
scope over the methods defined in the <literal>where</literal> part. For example:
<programlisting>
class C a where
op :: [a] -> a
op xs = let ys::[a]
ys = reverse xs
in
head ys
</programlisting>
</para>
</sect3>
</sect2>
<sect2>
<title>Bindings and generalisation</title>
<sect3 id="monomorphism">
<title>Switching off the dreaded Monomorphism Restriction</title>
<indexterm><primary><option>-XNoMonomorphismRestriction</option></primary></indexterm>
<para>Haskell's monomorphism restriction (see
<ulink url="http://www.haskell.org/onlinereport/decls.html#sect4.5.5">Section
4.5.5</ulink>
of the Haskell Report)
can be completely switched off by
<option>-XNoMonomorphismRestriction</option>. Since GHC 7.8.1, the monomorphism
restriction is switched off by default in GHCi's interactive options (see <xref linkend="ghci-interactive-options"/>).
</para>
</sect3>
<sect3 id="typing-binds">
<title>Generalised typing of mutually recursive bindings</title>
<para>
The Haskell Report specifies that a group of bindings (at top level, or in a
<literal>let</literal> or <literal>where</literal>) should be sorted into
strongly-connected components, and then type-checked in dependency order
(<ulink url="http://www.haskell.org/onlinereport/decls.html#sect4.5.1">Haskell
Report, Section 4.5.1</ulink>).
As each group is type-checked, any binders of the group that
have
an explicit type signature are put in the type environment with the specified
polymorphic type,
and all others are monomorphic until the group is generalised
(<ulink url="http://www.haskell.org/onlinereport/decls.html#sect4.5.2">Haskell Report, Section 4.5.2</ulink>).
</para>
<para>Following a suggestion of Mark Jones, in his paper
<ulink url="http://citeseer.ist.psu.edu/424440.html">Typing Haskell in
Haskell</ulink>,
GHC implements a more general scheme. If <option>-XRelaxedPolyRec</option> is
specified:
<emphasis>the dependency analysis ignores references to variables that have an explicit
type signature</emphasis>.
As a result of this refined dependency analysis, the dependency groups are smaller, and more bindings will
typecheck. For example, consider:
<programlisting>
f :: Eq a => a -> Bool
f x = (x == x) || g True || g "Yes"
g y = (y <= y) || f True
</programlisting>
This is rejected by Haskell 98, but under Jones's scheme the definition for
<literal>g</literal> is typechecked first, separately from that for
<literal>f</literal>,
because the reference to <literal>f</literal> in <literal>g</literal>'s right
hand side is ignored by the dependency analysis. Then <literal>g</literal>'s
type is generalised, to get
<programlisting>
g :: Ord a => a -> Bool
</programlisting>
Now, the definition for <literal>f</literal> is typechecked, with this type for
<literal>g</literal> in the type environment.
</para>
<para>
The same refined dependency analysis also allows the type signatures of
mutually-recursive functions to have different contexts, something that is illegal in
Haskell 98 (Section 4.5.2, last sentence). With
<option>-XRelaxedPolyRec</option>
GHC only insists that the type signatures of a <emphasis>refined</emphasis> group have identical
type signatures; in practice this means that only variables bound by the same
pattern binding must have the same context. For example, this is fine:
<programlisting>
f :: Eq a => a -> Bool
f x = (x == x) || g True
g :: Ord a => a -> Bool
g y = (y <= y) || f True
</programlisting>
</para>
</sect3>
<sect3 id="mono-local-binds">
<title>Let-generalisation</title>
<para>
An ML-style language usually generalises the type of any let-bound or where-bound variable,
so that it is as polymorphic as possible.
With the flag <option>-XMonoLocalBinds</option> GHC implements a slightly more conservative policy,
using the following rules:
<itemizedlist>
<listitem><para>
A variable is <emphasis>closed</emphasis> if and only if
<itemizedlist>
<listitem><para> the variable is let-bound</para></listitem>
<listitem><para> one of the following holds:
<itemizedlist>
<listitem><para>the variable has an explicit type signature that has no free type variables, or</para></listitem>
<listitem><para>its binding group is fully generalised (see next bullet) </para></listitem>
</itemizedlist>
</para></listitem>
</itemizedlist>
</para></listitem>
<listitem><para>
A binding group is <emphasis>fully generalised</emphasis> if and only if
<itemizedlist>
<listitem><para>each of its free variables is either imported or closed, and</para></listitem>
<listitem><para>the binding is not affected by the monomorphism restriction
(<ulink url="http://www.haskell.org/onlinereport/decls.html#sect4.5.5">Haskell Report, Section 4.5.5</ulink>)</para></listitem>
</itemizedlist>
</para></listitem>
</itemizedlist>
For example, consider
<programlisting>
f x = x + 1
g x = let h y = f y * 2
k z = z+x
in h x + k x
</programlisting>
Here <literal>f</literal> is generalised because it has no free variables; and its binding group
is unaffected by the monomorphism restriction; and hence <literal>f</literal> is closed.
The same reasoning applies to <literal>g</literal>, except that it has one closed free variable, namely <literal>f</literal>.
Similarly <literal>h</literal> is closed, <emphasis>even though it is not bound at top level</emphasis>,
because its only free variable <literal>f</literal> is closed.
But <literal>k</literal> is not closed, because it mentions <literal>x</literal> which is not closed (because it is not let-bound).
</para>
<para>
Notice that a top-level binding that is affected by the monomorphism restriction is not closed, and hence may
in turn prevent generalisation of bindings that mention it.
</para>
<para>
The rationale for this more conservative strategy is given in
<ulink url="http://research.microsoft.com/~simonpj/papers/constraints/index.htm">the papers</ulink> "Let should not be generalised" and "Modular type inference with local assumptions", and
a related <ulink url="http://ghc.haskell.org/trac/ghc/blog/LetGeneralisationInGhc7">blog post</ulink>.
</para><para>
The flag <option>-XMonoLocalBinds</option> is implied by <option>-XTypeFamilies</option> and <option>-XGADTs</option>. You can switch it off again
with <option>-XNoMonoLocalBinds</option> but type inference becomes less predicatable if you do so. (Read the papers!)
</para>
</sect3>
</sect2>
</sect1>
<!-- ==================== End of type system extensions ================= -->
<sect1 id="typed-holes">
<title>Typed Holes</title>
<para>
Typed holes are a feature of GHC that allows special placeholders written with
a leading underscore (e.g., "<literal>_</literal>", "<literal>_foo</literal>",
"<literal>_bar</literal>"), to be used as expressions. During compilation these
holes will generate an error message that describes which type is expected at
the hole's location, information about the origin of any free type variables,
and a list of local bindings that might help fill the hole with actual code.
Typed holes are always enabled in GHC.
</para>
<para>
The goal of typed holes is to help with writing Haskell code rather than to
change the type system. Typed holes can be used to obtain extra information
from the type checker, which might otherwise be hard to get. Normally, using
GHCi, users can inspect the (inferred) type signatures of all top-level
bindings. However, this method is less convenient with terms that are not
defined on top-level or inside complex expressions. Holes allow the user to
check the type of the term they are about to write.
</para>
<para>
For example, compiling the following module with GHC:
<programlisting>
f :: a -> a
f x = _
</programlisting>
will fail with the following error:
<programlisting>
hole.hs:2:7:
Found hole `_' with type: a
Where: `a' is a rigid type variable bound by
the type signature for f :: a -> a at hole.hs:1:6
Relevant bindings include
f :: a -> a (bound at hole.hs:2:1)
x :: a (bound at hole.hs:2:3)
In the expression: _
In an equation for `f': f x = _
</programlisting>
</para>
<para>
Here are some more details:
<itemizedlist>
<listitem>
<para>
A "<literal>Found hole</literal>" error usually terminates compilation, like
any other type error. After all, you have omitted some code from your program.
Nevertheless, you can run and test a piece of code containing holes, by using the flag
<option>-fdefer-typed-holes</option> flag. This flag defers errors
produced by typed holes until runtime, and converts them into compile-time warnings.
These warnings can in turn
be suppressed entirely by <option>-fnowarn-typed-holes</option>).
</para>
<para>
The result is that a hole will behave
like <literal>undefined</literal>, but with the added benefits that it shows a
warning at compile time, and will show the same message if it gets
evaluated at runtime. This behaviour follows that of the
<literal>-fdefer-type-errors</literal> option, which implies
<literal>-fdefer-typed-holes</literal>. See <xref linkend="defer-type-errors"/>.
</para>
</listitem>
<listitem><para>
All unbound identifiers are treated as typed holes, <emphasis>whether or not they
start with an underscore</emphasis>. The only difference is in the error message:
<programlisting>
cons z = z : True : _x : y
</programlisting>
yields the errors
<programlisting>
Foo.hs:5:15: error:
Found hole: _x :: Bool
Relevant bindings include
p :: Bool (bound at Foo.hs:3:6)
cons :: Bool -> [Bool] (bound at Foo.hs:3:1)
Foo.hs:5:20: error:
Variable not in scope: y :: [Bool]
</programlisting>
More information is given for explicit holes (i.e. ones that start with an underscore),
than for out-of-scope variables, because the latter are often
unintended typos, so the extra information is distracting.
If you the detailed information, use a leading underscore to
make explicit your intent to use a hole.
</para></listitem>
<listitem><para>
Unbound identifiers with the same name are never unified, even within the
same function, but shown individually.
For example:
<programlisting>
cons = _x : _x
</programlisting>
results in the following errors:
<programlisting>
unbound.hs:1:8:
Found hole '_x' with type: a
Where: `a' is a rigid type variable bound by
the inferred type of cons :: [a] at unbound.hs:1:1
Relevant bindings include cons :: [a] (bound at unbound.hs:1:1)
In the first argument of `(:)', namely `_x'
In the expression: _x : _x
In an equation for `cons': cons = _x : _x
unbound.hs:1:13:
Found hole '_x' with type: [a]
Arising from: an undeclared identifier `_x' at unbound.hs:1:13-14
Where: `a' is a rigid type variable bound by
the inferred type of cons :: [a] at unbound.hs:1:1
Relevant bindings include cons :: [a] (bound at unbound.hs:1:1)
In the second argument of `(:)', namely `_x'
In the expression: _x : _x
In an equation for `cons': cons = _x : _x
</programlisting>
Notice the two different types reported for the two different occurrences of <literal>_x</literal>.
</para></listitem>
<listitem><para>
No language extension is required to use typed holes. The lexeme "<literal>_</literal>" was previously
illegal in Haskell, but now has a more informative error message. The lexeme "<literal>_x</literal>"
is a perfectly legal variable, and its behaviour is unchanged when it is in scope. For example
<programlisting>
f _x = _x + 1
</programlisting>
does not elict any errors. Only a variable <emphasis>that is not in scope</emphasis>
(whether or not it starts with an underscore)
is treated as an error (which it always was), albeit now with a more informative error message.
</para></listitem>
<listitem><para>
Unbound data constructors used in expressions behave exactly as above.
However, unbound data constructors used in <emphasis>patterns</emphasis> cannot
be deferred, and instead bring compilation to a halt. (In implementation terms, they
are reported by the renamer rather than the type checker.)
</para></listitem>
</itemizedlist>
</para>
</sect1>
<!-- ==================== Partial Type Signatures ================= -->
<sect1 id="partial-type-signatures">
<title>Partial Type Signatures</title>
<para>
A partial type signature is a type signature containing special placeholders
written with a leading underscore (e.g., "<literal>_</literal>",
"<literal>_foo</literal>", "<literal>_bar</literal>") called
<emphasis>wildcards</emphasis>. Partial type signatures are to type signatures
what <xref linkend="typed-holes"/> are to expressions. During compilation these
wildcards or holes will generate an error message that describes which type
was inferred at the hole's location, and information about the origin of any
free type variables. GHC reports such error messages by default.</para>
<para>
Unlike <xref linkend="typed-holes"/>, which make the program incomplete and
will generate errors when they are evaluated, this needn't be the case for
holes in type signatures. The type checker is capable (in most cases) of
type-checking a binding with or without a type signature. A partial type
signature bridges the gap between the two extremes, the programmer can choose
which parts of a type to annotate and which to leave over to the type-checker
to infer.
</para>
<para>
By default, the type-checker will report an error message for each hole in a
partial type signature, informing the programmer of the inferred type. When
the <option>-XPartialTypeSignatures</option> flag is enabled, the type-checker
will accept the inferred type for each hole, generating warnings instead of
errors. Additionally, these warnings can be silenced with the
<option>-fno-warn-partial-type-signatures</option> flag.
</para>
<sect2 id="pts-syntax">
<title>Syntax</title>
<para>
A (partial) type signature has the following form: <literal>forall a b .. .
(C1, C2, ..) => tau</literal>. It consists of three parts:
</para>
<itemizedlist>
<listitem>The type variables: <literal>a b ..</literal></listitem>
<listitem>The constraints: <literal>(C1, C2, ..)</literal></listitem>
<listitem>The (mono)type: <literal>tau</literal></listitem>
</itemizedlist>
<para>
We distinguish three kinds of wildcards.
</para>
<sect3 id="type-wildcards">
<title>Type Wildcards</title>
<para>
Wildcards occurring within the monotype (tau) part of the type signature are
<emphasis>type wildcards</emphasis> ("type" is often omitted as this is the
default kind of wildcard). Type wildcards can be instantiated to any monotype
like <literal>Bool</literal> or <literal>Maybe [Bool]</literal>, including
functions and higher-kinded types like <literal>(Int -> Bool)</literal> or
<literal>Maybe</literal>.
</para>
<programlisting>
not' :: Bool -> _
not' x = not x
-- Inferred: Bool -> Bool
maybools :: _
maybools = Just [True]
-- Inferred: Maybe [Bool]
just1 :: _ Int
just1 = Just 1
-- Inferred: Maybe Int
filterInt :: _ -> _ -> [Int]
filterInt = filter -- has type forall a. (a -> Bool) -> [a] -> [a]
-- Inferred: (Int -> Bool) -> [Int] -> [Int]
</programlisting>
<para>
For instance, the first wildcard in the type signature <literal>not'</literal>
would produce the following error message:
</para>
<programlisting>
Test.hs:4:17:
Found hole ‘_’ with type: Bool
To use the inferred type, enable PartialTypeSignatures
In the type signature for ‘not'’: Bool -> _
</programlisting>
<para>
When a wildcard is not instantiated to a monotype, it will be generalised
over, i.e. replaced by a fresh type variable (of which the name will often
start with <literal>w_</literal>), e.g.
</para>
<programlisting>
foo :: _ -> _
foo x = x
-- Inferred: forall w_. w_ -> w_
filter' :: _
filter' = filter -- has type forall a. (a -> Bool) -> [a] -> [a]
-- Inferred: (a -> Bool) -> [a] -> [a]
</programlisting>
</sect3>
<sect3 id="named-wildcards">
<title>Named Wildcards</title>
<para>
Type wildcards can also be named by giving the underscore an identifier as
suffix, i.e. <literal>_a</literal>. These are called <emphasis>named
wildcards</emphasis>. All occurrences of the same named wildcard within one
type signature will unify to the same type. For example:
</para>
<programlisting>
f :: _x -> _x
f ('c', y) = ('d', error "Urk")
-- Inferred: forall t. (Char, t) -> (Char, t)
</programlisting>
<para>
The named wildcard forces the argument and result types to be the same.
Lacking a signature, GHC would have inferred <literal>forall a b. (Char, a) ->
(Char, b)</literal>. A named wildcard can be mentioned in constraints,
provided it also occurs in the monotype part of the type signature to make
sure that it unifies with something:
</para>
<programlisting>
somethingShowable :: Show _x => _x -> _
somethingShowable x = show x
-- Inferred type: Show w_x => w_x -> String
somethingShowable' :: Show _x => _x -> _
somethingShowable' x = show (not x)
-- Inferred type: Bool -> String
</programlisting>
<para>
Besides an extra-constraints wildcard (see <xref
linkend="extra-constraints-wildcard"/>), only named wildcards can occur in the
constraints, e.g. the <literal>_x</literal> in <literal>Show _x</literal>.
</para>
<para>
Named wildcards <emphasis>should not be confused with type
variables</emphasis>. Even though syntactically similar, named wildcards can
unify with monotypes as well as be generalised over (and behave as type
variables).</para>
<para>
In the first example above, <literal>_x</literal> is generalised over (and is
effectively replaced by a fresh type variable <literal>w_x</literal>). In the
second example, <literal>_x</literal> is unified with the
<literal>Bool</literal> type, and as <literal>Bool</literal> implements the
<literal>Show</literal> type class, the constraint <literal>Show
Bool</literal> can be simplified away.
</para>
<para>
By default, GHC (as the Haskell 2010 standard prescribes) parses identifiers
starting with an underscore in a type as type variables. To treat them as
named wildcards, the <option>-XNamedWildCards</option> flag should be enabled.
The example below demonstrated the effect.
</para>
<programlisting>
foo :: _a -> _a
foo _ = False
</programlisting>
<para>
Compiling this program without enabling <option>-XNamedWildCards</option>
produces the following error message complaining about the type variable
<literal>_a</literal> no matching the actual type <literal>Bool</literal>.
</para>
<programlisting>
Test.hs:5:9:
Couldn't match expected type ‘_a’ with actual type ‘Bool’
‘_a’ is a rigid type variable bound by
the type signature for foo :: _a -> _a at Test.hs:4:8
Relevant bindings include foo :: _a -> _a (bound at Test.hs:4:1)
In the expression: False
In an equation for ‘foo’: foo _ = False
</programlisting>
<para>
Compiling this program with <option>-XNamedWildCards</option> enabled produces
the following error message reporting the inferred type of the named wildcard
<literal>_a</literal>.
</para>
<programlisting>
Test.hs:4:8: Warning:
Found hole ‘_a’ with type: Bool
In the type signature for ‘foo’: _a -> _a
</programlisting>
</sect3>
<sect3 id="extra-constraints-wildcard">
<title>Extra-Constraints Wildcard</title>
<para>
The third kind of wildcard is the <emphasis>extra-constraints
wildcard</emphasis>. The presence of an extra-constraints wildcard indicates
that an arbitrary number of extra constraints may be inferred during type
checking and will be added to the type signature. In the example below, the
extra-constraints wildcard is used to infer three extra constraints.
</para>
<programlisting>
arbitCs :: _ => a -> String
arbitCs x = show (succ x) ++ show (x == x)
-- Inferred:
-- forall a. (Enum a, Eq a, Show a) => a -> String
-- Error:
Test.hs:5:12:
Found hole ‘_’ with inferred constraints: (Enum a, Eq a, Show a)
To use the inferred type, enable PartialTypeSignatures
In the type signature for ‘arbitCs’: _ => a -> String
</programlisting>
<para>
An extra-constraints wildcard shouldn't prevent the programmer from already
listing the constraints he knows or wants to annotate, e.g.
</para>
<programlisting>
-- Also a correct partial type signature:
arbitCs' :: (Enum a, _) => a -> String
arbitCs' x = arbitCs x
-- Inferred:
-- forall a. (Enum a, Show a, Eq a) => a -> String
-- Error:
Test.hs:9:22:
Found hole ‘_’ with inferred constraints: (Eq a, Show a)
To use the inferred type, enable PartialTypeSignatures
In the type signature for ‘arbitCs'’: (Enum a, _) => a -> String
</programlisting>
<para>
An extra-constraints wildcard can also lead to zero extra constraints to be
inferred, e.g.
</para>
<programlisting>
noCs :: _ => String
noCs = "noCs"
-- Inferred: String
-- Error:
Test.hs:13:9:
Found hole ‘_’ with inferred constraints: ()
To use the inferred type, enable PartialTypeSignatures
In the type signature for ‘noCs’: _ => String
</programlisting>
<para>
As a single extra-constraints wildcard is enough to infer any number of
constraints, only one is allowed in a type signature and it should come last
in the list of constraints.
</para>
<para>
Extra-constraints wildcards cannot be named.
</para>
</sect3>
</sect2>
<sect2 id="pts-where">
<title>Where can they occur?</title>
<para>
Partial type signatures are allowed for bindings, pattern and expression signatures.
In all other contexts, e.g. type class or type family declarations, they are disallowed.
In the following example a wildcard is used in each of the three possible contexts.
</para>
<programlisting>
{-# LANGUAGE ScopedTypeVariables #-}
foo :: _
foo (x :: _) = (x :: _)
-- Inferred: forall w_. w_ -> w_
</programlisting>
</sect2>
</sect1>
<!-- ==================== Deferring type errors ================= -->
<sect1 id="defer-type-errors">
<title>Deferring type errors to runtime</title>
<para>
While developing, sometimes it is desirable to allow compilation to succeed
even if there are type errors in the code. Consider the following case:
<programlisting>
module Main where
a :: Int
a = 'a'
main = print "b"
</programlisting>
Even though <literal>a</literal> is ill-typed, it is not used in the end, so if
all that we're interested in is <literal>main</literal> it can be useful to be
able to ignore the problems in <literal>a</literal>.
</para>
<para>
For more motivation and details please refer to the <ulink
url="http://ghc.haskell.org/trac/ghc/wiki/DeferErrorsToRuntime">HaskellWiki</ulink>
page or the <ulink
url="http://research.microsoft.com/en-us/um/people/simonpj/papers/ext-f/">original
paper</ulink>.
</para>
<sect2><title>Enabling deferring of type errors</title>
<para>
The flag <literal>-fdefer-type-errors</literal> controls whether type
errors are deferred to runtime. Type errors will still be emitted as
warnings, but will not prevent compilation. You can use
<literal>-fno-warn-deferred-type-errors</literal> to suppress these warnings.
</para>
<para>
This flag implies the <literal>-fdefer-typed-holes</literal> flag,
which enables this behaviour for <link linkend="typed-holes">typed holes
</link>. Should you so wish, it is possible to enable
<literal>-fdefer-type-errors</literal> without enabling
<literal>-fdefer-typed-holes</literal>, by explicitly specifying
<literal>-fno-defer-typed-holes</literal> on the command-line after the
<literal>-fdefer-type-errors</literal> flag.
</para>
<para>
At runtime, whenever a term containing a type error would need to be
evaluated, the error is converted into a runtime exception of type
<literal>TypeError</literal>. Note that type errors are deferred as much
as possible during runtime, but invalid coercions are never performed,
even when they would ultimately result in a value of the correct type.
For example, given the following code:
<programlisting>
x :: Int
x = 0
y :: Char
y = x
z :: Int
z = y
</programlisting>
evaluating <literal>z</literal> will result in a runtime <literal>TypeError</literal>.
</para>
</sect2>
<sect2><title>Deferred type errors in GHCi</title>
<para>
The flag <literal>-fdefer-type-errors</literal> works in GHCi as well, with
one exception: for "naked" expressions typed at the prompt, type
errors don't get delayed, so for example:
<programlisting>
Prelude> fst (True, 1 == 'a')
<interactive>:2:12:
No instance for (Num Char) arising from the literal `1'
Possible fix: add an instance declaration for (Num Char)
In the first argument of `(==)', namely `1'
In the expression: 1 == 'a'
In the first argument of `fst', namely `(True, 1 == 'a')'
</programlisting>
Otherwise, in the common case of a simple type error such as
typing <literal>reverse True</literal> at the prompt, you would get a warning and then
an immediately-following type error when the expression is evaluated.
</para>
<para>
This exception doesn't apply to statements, as the following example demonstrates:
<programlisting>
Prelude> let x = (True, 1 == 'a')
<interactive>:3:16: Warning:
No instance for (Num Char) arising from the literal `1'
Possible fix: add an instance declaration for (Num Char)
In the first argument of `(==)', namely `1'
In the expression: 1 == 'a'
In the expression: (True, 1 == 'a')
Prelude> fst x
True
</programlisting>
</para>
</sect2>
</sect1>
<!-- ====================== TEMPLATE HASKELL ======================= -->
<sect1 id="template-haskell">
<title>Template Haskell</title>
<para>Template Haskell allows you to do compile-time meta-programming in
Haskell.
The background to
the main technical innovations is discussed in "<ulink
url="http://research.microsoft.com/~simonpj/papers/meta-haskell/">
Template Meta-programming for Haskell</ulink>" (Proc Haskell Workshop 2002).
</para>
<para>
There is a Wiki page about
Template Haskell at <ulink url="http://www.haskell.org/haskellwiki/Template_Haskell">
http://www.haskell.org/haskellwiki/Template_Haskell</ulink>, and that is the best place to look for
further details.
You may also
consult the <ulink
url="http://www.haskell.org/ghc/docs/latest/html/libraries/index.html">online
Haskell library reference material</ulink>
(look for module <literal>Language.Haskell.TH</literal>).
Many changes to the original design are described in
<ulink url="http://research.microsoft.com/~simonpj/papers/meta-haskell/notes2.ps">
Notes on Template Haskell version 2</ulink>.
Not all of these changes are in GHC, however.
</para>
<para> The first example from that paper is set out below (<xref linkend="th-example"/>)
as a worked example to help get you started.
</para>
<para>
The documentation here describes the realisation of Template Haskell in GHC. It is not detailed enough to
understand Template Haskell; see the <ulink url="http://haskell.org/haskellwiki/Template_Haskell">
Wiki page</ulink>.
</para>
<sect2 id="th-syntax">
<title>Syntax</title>
<para> Template Haskell has the following new syntactic
constructions. You need to use the flag
<option>-XTemplateHaskell</option>
<indexterm><primary><option>-XTemplateHaskell</option></primary>
</indexterm>to switch these syntactic extensions on.</para>
<itemizedlist>
<listitem><para>
A splice is written <literal>$x</literal>, where <literal>x</literal> is an
identifier, or <literal>$(...)</literal>, where the "..." is an arbitrary expression.
There must be no space between the "$" and the identifier or parenthesis. This use
of "$" overrides its meaning as an infix operator, just as "M.x" overrides the meaning
of "." as an infix operator. If you want the infix operator, put spaces around it.
</para>
<para> A splice can occur in place of
<itemizedlist>
<listitem><para> an expression; the spliced expression must
have type <literal>Q Exp</literal></para></listitem>
<listitem><para> a pattern; the spliced pattern must
have type <literal>Q Pat</literal></para></listitem>
<listitem><para> a type; the spliced expression must
have type <literal>Q Type</literal></para></listitem>
<listitem><para> a list of declarations at top level; the spliced expression
must have type <literal>Q [Dec]</literal></para></listitem>
</itemizedlist>
Inside a splice you can only call functions defined in imported modules,
not functions defined elsewhere in the same module. Note that
declaration splices are not allowed anywhere except at top level
(outside any other declarations).</para></listitem>
<listitem><para>
A expression quotation is written in Oxford brackets, thus:
<itemizedlist>
<listitem><para> <literal>[| ... |]</literal>, or <literal>[e| ... |]</literal>,
where the "..." is an expression;
the quotation has type <literal>Q Exp</literal>.</para></listitem>
<listitem><para> <literal>[d| ... |]</literal>, where the "..." is a list of top-level declarations;
the quotation has type <literal>Q [Dec]</literal>.</para></listitem>
<listitem><para> <literal>[t| ... |]</literal>, where the "..." is a type;
the quotation has type <literal>Q Type</literal>.</para></listitem>
<listitem><para> <literal>[p| ... |]</literal>, where the "..." is a pattern;
the quotation has type <literal>Q Pat</literal>.</para></listitem>
</itemizedlist></para></listitem>
<listitem>
<para>
A <emphasis>typed</emphasis> expression splice is written
<literal>$$x</literal>, where <literal>x</literal> is an
identifier, or <literal>$$(...)</literal>, where the "..." is
an arbitrary expression.
</para>
<para>
A typed expression splice can occur in place of an
expression; the spliced expression must have type <literal>Q
(TExp a)</literal>
</para>
</listitem>
<listitem>
<para>
A <emphasis>typed</emphasis> expression quotation is written
as <literal>[|| ... ||]</literal>, or <literal>[e||
... ||]</literal>, where the "..." is an expression; if the
"..." expression has type <literal>a</literal>, then the
quotation has type <literal>Q (TExp a)</literal>.
</para>
<para>
Values of type <literal>TExp a</literal> may be converted to
values of type <literal>Exp</literal> using the function
<literal>unType :: TExp a -> Exp</literal>.
</para>
</listitem>
<listitem><para>
A quasi-quotation can appear in either a pattern context or an
expression context and is also written in Oxford brackets:
<itemizedlist>
<listitem><para> <literal>[<replaceable>varid</replaceable>| ... |]</literal>,
where the "..." is an arbitrary string; a full description of the
quasi-quotation facility is given in <xref linkend="th-quasiquotation"/>.</para></listitem>
</itemizedlist></para></listitem>
<listitem><para>
A name can be quoted with either one or two prefix single quotes:
<itemizedlist>
<listitem><para> <literal>'f</literal> has type <literal>Name</literal>, and names the function <literal>f</literal>.
Similarly <literal>'C</literal> has type <literal>Name</literal> and names the data constructor <literal>C</literal>.
In general <literal>'</literal><replaceable>thing</replaceable>
interprets <replaceable>thing</replaceable> in an expression context.</para>
<para>A name whose second character is a single
quote (sadly) cannot be quoted in this way,
because it will be parsed instead as a quoted
character. For example, if the function is called
<literal>f'7</literal> (which is a legal Haskell
identifier), an attempt to quote it as
<literal>'f'7</literal> would be parsed as the
character literal <literal>'f'</literal> followed
by the numeric literal <literal>7</literal>. There
is no current escape mechanism in this (unusual)
situation.
</para></listitem>
<listitem><para> <literal>''T</literal> has type <literal>Name</literal>, and names the type constructor <literal>T</literal>.
That is, <literal>''</literal><replaceable>thing</replaceable> interprets <replaceable>thing</replaceable> in a type context.
</para></listitem>
</itemizedlist>
These <literal>Names</literal> can be used to construct Template Haskell expressions, patterns, declarations etc. They
may also be given as an argument to the <literal>reify</literal> function.
</para>
</listitem>
<listitem><para> You may omit the <literal>$(...)</literal> in a top-level declaration splice.
Simply writing an expression (rather than a declaration) implies a splice. For example, you can write
<programlisting>
module Foo where
import Bar
f x = x
$(deriveStuff 'f) -- Uses the $(...) notation
g y = y+1
deriveStuff 'g -- Omits the $(...)
h z = z-1
</programlisting>
This abbreviation makes top-level declaration slices quieter and less intimidating.
</para></listitem>
<listitem>
<para>
Outermost pattern splices may bind variables. By "outermost" here, we refer to
a pattern splice that occurs outside of any quotation brackets. For example,
<programlisting>
mkPat :: Bool -> Q Pat
mkPat True = [p| (x, y) |]
mkPat False = [p| (y, x) |]
-- in another module:
foo :: (Char, String) -> String
foo $(mkPat True) = x : y
bar :: (String, Char) -> String
bar $(mkPat False) = x : y
</programlisting>
</para>
</listitem>
<listitem>
<para>
Nested pattern splices do <emphasis>not</emphasis> bind variables.
By "nested" here, we refer to a pattern splice occurring within a
quotation bracket. Continuing the example from the last bullet:
<programlisting>
baz :: Bool -> Q Exp
baz b = [| quux $(mkPat b) = x + y |]
</programlisting>
would fail with <literal>x</literal> and <literal>y</literal>
being out of scope.
</para>
<para>
The difference in treatment of outermost and nested pattern splices is
because outermost splices are run at compile time. GHC can then use
the result of running the splice when analysing the expressions within
the pattern's scope. Nested splices, on the other hand, are <emphasis>not</emphasis>
run at compile time; they are run when the bracket is spliced in, sometime later.
Since nested pattern splices may refer to local variables, there is no way for GHC
to know, at splice compile time, what variables are bound, so it binds none.
</para>
</listitem>
<listitem>
<para>
A pattern quasiquoter <emphasis>may</emphasis>
generate binders that scope over the right-hand side of a
definition because these binders are in scope lexically. For
example, given a quasiquoter <literal>haskell</literal> that
parses Haskell, in the following code, the <literal>y</literal>
in the right-hand side of <literal>f</literal> refers to the
<literal>y</literal> bound by the <literal>haskell</literal>
pattern quasiquoter, <emphasis>not</emphasis> the top-level
<literal>y = 7</literal>.
<programlisting>
y :: Int
y = 7
f :: Int -> Int -> Int
f n = \ [haskell|y|] -> y+n
</programlisting>
</para>
</listitem>
<listitem>
<para>
Top-level declaration splices break up a source file into
<emphasis>declaration groups</emphasis>. A
<emphasis>declaration group</emphasis> is the group of
declarations created by a top-level declaration splice, plus
those following it, down to but not including the next
top-level declaration splice. The first declaration group in a
module includes all top-level definitions down to but not
including the first top-level declaration splice.
</para>
<para>
Each declaration group is mutually recursive only within
the group. Declaration groups can refer to definitions within
previous groups, but not later ones.
</para>
<para>
Accordingly, the type environment seen by
<literal>reify</literal> includes all the top-level
declarations up to the end of the immediately preceding
declaration group, but no more.
</para>
<para>
Concretely, consider the following code
<programlisting>
module M where
import ...
f x = x
$(th1 4)
h y = k y y $(blah1)
$(th2 10)
w z = $(blah2)
</programlisting>
In this example
<orderedlist>
<listitem>
<para>
The body of <literal>h</literal> would be unable to refer
to the function <literal>w</literal>.
</para>
<para>
A <literal>reify</literal> inside the splice <literal>$(th1
..)</literal> would see the definition of
<literal>f</literal>.
</para>
</listitem>
<listitem>
<para>
A <literal>reify</literal> inside the splice
<literal>$(blah1)</literal> would see the definition of
<literal>f</literal>, but would not see the definition of
<literal>h</literal>.
</para>
</listitem>
<listitem>
<para>
A <literal>reify</literal> inside the splice
<literal>$(th2..)</literal> would see the definition of
<literal>f</literal>, all the bindings created by
<literal>$(th1..)</literal>, and the definition of
<literal>h</literal>.
</para>
</listitem>
<listitem>
<para>
A <literal>reify</literal> inside the splice
<literal>$(blah2)</literal> would see the same definitions
as the splice <literal>$(th2...)</literal>.
</para>
</listitem>
</orderedlist>
</para>
</listitem>
</itemizedlist>
(Compared to the original paper, there are many differences of detail.
The syntax for a declaration splice uses "<literal>$</literal>" not "<literal>splice</literal>".
The type of the enclosed expression must be <literal>Q [Dec]</literal>, not <literal>[Q Dec]</literal>.
Typed expression splices and quotations are supported.)
</sect2>
<sect2> <title> Using Template Haskell </title>
<para>
<itemizedlist>
<listitem><para>
The data types and monadic constructor functions for Template Haskell are in the library
<literal>Language.Haskell.THSyntax</literal>.
</para></listitem>
<listitem><para>
You can only run a function at compile time if it is imported from another module. That is,
you can't define a function in a module, and call it from within a splice in the same module.
(It would make sense to do so, but it's hard to implement.)
</para></listitem>
<listitem><para>
You can only run a function at compile time if it is imported
from another module <emphasis>that is not part of a mutually-recursive group of modules
that includes the module currently being compiled</emphasis>. Furthermore, all of the modules of
the mutually-recursive group must be reachable by non-SOURCE imports from the module where the
splice is to be run.</para>
<para>
For example, when compiling module A,
you can only run Template Haskell functions imported from B if B does not import A (directly or indirectly).
The reason should be clear: to run B we must compile and run A, but we are currently type-checking A.
</para></listitem>
<listitem><para>
If you are building GHC from source, you need at least a stage-2 bootstrap compiler to
run Template Haskell splices and quasi-quotes. A stage-1 compiler will only accept regular quotes of Haskell. Reason: TH splices and quasi-quotes
compile and run a program, and then looks at the result. So it's important that
the program it compiles produces results whose representations are identical to
those of the compiler itself.
</para></listitem>
</itemizedlist>
</para>
<para> Template Haskell works in any mode (<literal>--make</literal>, <literal>--interactive</literal>,
or file-at-a-time). There used to be a restriction to the former two, but that restriction
has been lifted.
</para>
</sect2>
<sect2 id="th-view-gen-code"> <title> Viewing Template Haskell generated code </title>
<para>
The flag <literal>-ddump-splices</literal> shows the expansion of all top-level declaration splices, both typed and untyped, as they happen.
As with all dump flags, the default is for this output to be sent to stdout.
For a non-trivial program, you may be interested in combining this with the <literal>-ddump-to-file flag</literal> (see <xref linkend="dumping-output"/>.
For each file using Template Haskell, this will show the output in a <literal>.dump-splices</literal> file.
</para>
<para>
The flag <literal>-dth-dec-file</literal> shows the expansions of all top-level TH declaration splices, both typed and untyped, in the file <literal>M.th.hs</literal> where M is the name of the module being compiled.
Note that other types of splices (expressions, types, and patterns) are not shown.
Application developers can check this into their repository so that they can grep for identifiers that were defined in Template Haskell.
This is similar to using <option>-ddump-to-file</option> with <option>-ddump-splices</option> but it always generates a file instead of being coupled to <option>-ddump-to-file</option>. The format is also different: it does not show code from the original file, instead it only shows generated code and has a comment for the splice location of the original file.
</para>
<para>
Below is a sample output of <literal>-ddump-splices</literal>
</para>
<programlisting>
TH_pragma.hs:(6,4)-(8,26): Splicing declarations
[d| foo :: Int -> Int
foo x = x + 1 |]
======>
foo :: Int -> Int
foo x = (x + 1)
</programlisting>
<para>
Below is the output of the same sample using <literal>-dth-dec-file</literal>
</para>
<programlisting>
-- TH_pragma.hs:(6,4)-(8,26): Splicing declarations
foo :: Int -> Int
foo x = (x + 1)
</programlisting>
</sect2>
<sect2 id="th-example"> <title> A Template Haskell Worked Example </title>
<para>To help you get over the confidence barrier, try out this skeletal worked example.
First cut and paste the two modules below into "Main.hs" and "Printf.hs":</para>
<programlisting>
{- Main.hs -}
module Main where
-- Import our template "pr"
import Printf ( pr )
-- The splice operator $ takes the Haskell source code
-- generated at compile time by "pr" and splices it into
-- the argument of "putStrLn".
main = putStrLn ( $(pr "Hello") )
{- Printf.hs -}
module Printf where
-- Skeletal printf from the paper.
-- It needs to be in a separate module to the one where
-- you intend to use it.
-- Import some Template Haskell syntax
import Language.Haskell.TH
-- Describe a format string
data Format = D | S | L String
-- Parse a format string. This is left largely to you
-- as we are here interested in building our first ever
-- Template Haskell program and not in building printf.
parse :: String -> [Format]
parse s = [ L s ]
-- Generate Haskell source code from a parsed representation
-- of the format string. This code will be spliced into
-- the module which calls "pr", at compile time.
gen :: [Format] -> Q Exp
gen [D] = [| \n -> show n |]
gen [S] = [| \s -> s |]
gen [L s] = stringE s
-- Here we generate the Haskell code for the splice
-- from an input format string.
pr :: String -> Q Exp
pr s = gen (parse s)
</programlisting>
<para>Now run the compiler (here we are a Cygwin prompt on Windows):
</para>
<programlisting>
$ ghc --make -XTemplateHaskell main.hs -o main.exe
</programlisting>
<para>Run "main.exe" and here is your output:</para>
<programlisting>
$ ./main
Hello
</programlisting>
</sect2>
<sect2>
<title>Using Template Haskell with Profiling</title>
<indexterm><primary>profiling</primary><secondary>with Template Haskell</secondary></indexterm>
<para>Template Haskell relies on GHC's built-in bytecode compiler and
interpreter to run the splice expressions. The bytecode interpreter
runs the compiled expression on top of the same runtime on which GHC
itself is running; this means that the compiled code referred to by
the interpreted expression must be compatible with this runtime, and
in particular this means that object code that is compiled for
profiling <emphasis>cannot</emphasis> be loaded and used by a splice
expression, because profiled object code is only compatible with the
profiling version of the runtime.</para>
<para>This causes difficulties if you have a multi-module program
containing Template Haskell code and you need to compile it for
profiling, because GHC cannot load the profiled object code and use it
when executing the splices. Fortunately GHC provides a workaround.
The basic idea is to compile the program twice:</para>
<orderedlist>
<listitem>
<para>Compile the program or library first the normal way, without
<option>-prof</option><indexterm><primary><option>-prof</option></primary></indexterm>.</para>
</listitem>
<listitem>
<para>Then compile it again with <option>-prof</option>, and
additionally use <option>-osuf
p_o</option><indexterm><primary><option>-osuf</option></primary></indexterm>
to name the object files differently (you can choose any suffix
that isn't the normal object suffix here). GHC will automatically
load the object files built in the first step when executing splice
expressions. If you omit the <option>-osuf</option> flag when
building with <option>-prof</option> and Template Haskell is used,
GHC will emit an error message. </para>
</listitem>
</orderedlist>
</sect2>
<sect2 id="th-quasiquotation"> <title> Template Haskell Quasi-quotation </title>
<para>Quasi-quotation allows patterns and expressions to be written using
programmer-defined concrete syntax; the motivation behind the extension and
several examples are documented in
"<ulink url="http://www.cs.tufts.edu/comp/150FP/archive/geoff-mainland/quasiquoting.pdf">Why It's
Nice to be Quoted: Quasiquoting for Haskell</ulink>" (Proc Haskell Workshop
2007). The example below shows how to write a quasiquoter for a simple
expression language.</para>
<para>
Here are the salient features
<itemizedlist>
<listitem><para>
A quasi-quote has the form
<literal>[<replaceable>quoter</replaceable>| <replaceable>string</replaceable> |]</literal>.
<itemizedlist>
<listitem><para>
The <replaceable>quoter</replaceable> must be the name of an imported quoter,
either qualified or unqualified; it cannot be an arbitrary expression.
</para></listitem>
<listitem><para>
The <replaceable>quoter</replaceable> cannot be "<literal>e</literal>",
"<literal>t</literal>", "<literal>d</literal>", or "<literal>p</literal>", since
those overlap with Template Haskell quotations.
</para></listitem>
<listitem><para>
There must be no spaces in the token
<literal>[<replaceable>quoter</replaceable>|</literal>.
</para></listitem>
<listitem><para>
The quoted <replaceable>string</replaceable>
can be arbitrary, and may contain newlines.
</para></listitem>
<listitem><para>
The quoted <replaceable>string</replaceable>
finishes at the first occurrence of the two-character sequence <literal>"|]"</literal>.
Absolutely no escaping is performed. If you want to embed that character
sequence in the string, you must invent your own escape convention (such
as, say, using the string <literal>"|~]"</literal> instead), and make your
quoter function interpret <literal>"|~]"</literal> as <literal>"|]"</literal>.
One way to implement this is to compose your quoter with a pre-processing pass to
perform your escape conversion. See the
<ulink url="http://ghc.haskell.org/trac/ghc/ticket/5348">
discussion in Trac</ulink> for details.
</para></listitem>
</itemizedlist>
</para></listitem>
<listitem><para>
A quasiquote may appear in place of
<itemizedlist>
<listitem><para>An expression</para></listitem>
<listitem><para>A pattern</para></listitem>
<listitem><para>A type</para></listitem>
<listitem><para>A top-level declaration</para></listitem>
</itemizedlist>
(Only the first two are described in the paper.)
</para></listitem>
<listitem><para>
A quoter is a value of type <literal>Language.Haskell.TH.Quote.QuasiQuoter</literal>,
which is defined thus:
<programlisting>
data QuasiQuoter = QuasiQuoter { quoteExp :: String -> Q Exp,
quotePat :: String -> Q Pat,
quoteType :: String -> Q Type,
quoteDec :: String -> Q [Dec] }
</programlisting>
That is, a quoter is a tuple of four parsers, one for each of the contexts
in which a quasi-quote can occur.
</para></listitem>
<listitem><para>
A quasi-quote is expanded by applying the appropriate parser to the string
enclosed by the Oxford brackets. The context of the quasi-quote (expression, pattern,
type, declaration) determines which of the parsers is called.
</para></listitem>
</itemizedlist>
</para>
<para>
The example below shows quasi-quotation in action. The quoter <literal>expr</literal>
is bound to a value of type <literal>QuasiQuoter</literal> defined in module <literal>Expr</literal>.
The example makes use of an antiquoted
variable <literal>n</literal>, indicated by the syntax <literal>'int:n</literal>
(this syntax for anti-quotation was defined by the parser's
author, <emphasis>not</emphasis> by GHC). This binds <literal>n</literal> to the
integer value argument of the constructor <literal>IntExpr</literal> when
pattern matching. Please see the referenced paper for further details regarding
anti-quotation as well as the description of a technique that uses SYB to
leverage a single parser of type <literal>String -> a</literal> to generate both
an expression parser that returns a value of type <literal>Q Exp</literal> and a
pattern parser that returns a value of type <literal>Q Pat</literal>.
</para>
<para>
Quasiquoters must obey the same stage restrictions as Template Haskell, e.g., in
the example, <literal>expr</literal> cannot be defined
in <literal>Main.hs</literal> where it is used, but must be imported.
</para>
<programlisting>
{- ------------- file Main.hs --------------- -}
module Main where
import Expr
main :: IO ()
main = do { print $ eval [expr|1 + 2|]
; case IntExpr 1 of
{ [expr|'int:n|] -> print n
; _ -> return ()
}
}
{- ------------- file Expr.hs --------------- -}
module Expr where
import qualified Language.Haskell.TH as TH
import Language.Haskell.TH.Quote
data Expr = IntExpr Integer
| AntiIntExpr String
| BinopExpr BinOp Expr Expr
| AntiExpr String
deriving(Show, Typeable, Data)
data BinOp = AddOp
| SubOp
| MulOp
| DivOp
deriving(Show, Typeable, Data)
eval :: Expr -> Integer
eval (IntExpr n) = n
eval (BinopExpr op x y) = (opToFun op) (eval x) (eval y)
where
opToFun AddOp = (+)
opToFun SubOp = (-)
opToFun MulOp = (*)
opToFun DivOp = div
expr = QuasiQuoter { quoteExp = parseExprExp, quotePat = parseExprPat }
-- Parse an Expr, returning its representation as
-- either a Q Exp or a Q Pat. See the referenced paper
-- for how to use SYB to do this by writing a single
-- parser of type String -> Expr instead of two
-- separate parsers.
parseExprExp :: String -> Q Exp
parseExprExp ...
parseExprPat :: String -> Q Pat
parseExprPat ...
</programlisting>
<para>Now run the compiler:
<programlisting>
$ ghc --make -XQuasiQuotes Main.hs -o main
</programlisting>
</para>
<para>Run "main" and here is your output:
<programlisting>
$ ./main
3
1
</programlisting>
</para>
</sect2>
</sect1>
<!-- ===================== Arrow notation =================== -->
<sect1 id="arrow-notation">
<title>Arrow notation
</title>
<para>Arrows are a generalisation of monads introduced by John Hughes.
For more details, see
<itemizedlist>
<listitem>
<para>
“Generalising Monads to Arrows”,
John Hughes, in <citetitle>Science of Computer Programming</citetitle> 37,
pp67–111, May 2000.
The paper that introduced arrows: a friendly introduction, motivated with
programming examples.
</para>
</listitem>
<listitem>
<para>
“<ulink url="http://www.soi.city.ac.uk/~ross/papers/notation.html">A New Notation for Arrows</ulink>”,
Ross Paterson, in <citetitle>ICFP</citetitle>, Sep 2001.
Introduced the notation described here.
</para>
</listitem>
<listitem>
<para>
“<ulink url="http://www.soi.city.ac.uk/~ross/papers/fop.html">Arrows and Computation</ulink>”,
Ross Paterson, in <citetitle>The Fun of Programming</citetitle>,
Palgrave, 2003.
</para>
</listitem>
<listitem>
<para>
“<ulink url="http://www.cse.chalmers.se/~rjmh/afp-arrows.pdf">Programming with Arrows</ulink>”,
John Hughes, in <citetitle>5th International Summer School on
Advanced Functional Programming</citetitle>,
<citetitle>Lecture Notes in Computer Science</citetitle> vol. 3622,
Springer, 2004.
This paper includes another introduction to the notation,
with practical examples.
</para>
</listitem>
<listitem>
<para>
“<ulink url="http://www.haskell.org/ghc/docs/papers/arrow-rules.pdf">Type and Translation Rules for Arrow Notation in GHC</ulink>”,
Ross Paterson and Simon Peyton Jones, September 16, 2004.
A terse enumeration of the formal rules used
(extracted from comments in the source code).
</para>
</listitem>
<listitem>
<para>
The arrows web page at
<ulink url="http://www.haskell.org/arrows/"><literal>http://www.haskell.org/arrows/</literal></ulink>.
</para>
</listitem>
</itemizedlist>
With the <option>-XArrows</option> flag, GHC supports the arrow
notation described in the second of these papers,
translating it using combinators from the
<ulink url="&libraryBaseLocation;/Control-Arrow.html"><literal>Control.Arrow</literal></ulink>
module.
What follows is a brief introduction to the notation;
it won't make much sense unless you've read Hughes's paper.
</para>
<para>The extension adds a new kind of expression for defining arrows:
<screen>
<replaceable>exp</replaceable><superscript>10</superscript> ::= ...
| proc <replaceable>apat</replaceable> -> <replaceable>cmd</replaceable>
</screen>
where <literal>proc</literal> is a new keyword.
The variables of the pattern are bound in the body of the
<literal>proc</literal>-expression,
which is a new sort of thing called a <firstterm>command</firstterm>.
The syntax of commands is as follows:
<screen>
<replaceable>cmd</replaceable> ::= <replaceable>exp</replaceable><superscript>10</superscript> -< <replaceable>exp</replaceable>
| <replaceable>exp</replaceable><superscript>10</superscript> -<< <replaceable>exp</replaceable>
| <replaceable>cmd</replaceable><superscript>0</superscript>
</screen>
with <replaceable>cmd</replaceable><superscript>0</superscript> up to
<replaceable>cmd</replaceable><superscript>9</superscript> defined using
infix operators as for expressions, and
<screen>
<replaceable>cmd</replaceable><superscript>10</superscript> ::= \ <replaceable>apat</replaceable> ... <replaceable>apat</replaceable> -> <replaceable>cmd</replaceable>
| let <replaceable>decls</replaceable> in <replaceable>cmd</replaceable>
| if <replaceable>exp</replaceable> then <replaceable>cmd</replaceable> else <replaceable>cmd</replaceable>
| case <replaceable>exp</replaceable> of { <replaceable>calts</replaceable> }
| do { <replaceable>cstmt</replaceable> ; ... <replaceable>cstmt</replaceable> ; <replaceable>cmd</replaceable> }
| <replaceable>fcmd</replaceable>
<replaceable>fcmd</replaceable> ::= <replaceable>fcmd</replaceable> <replaceable>aexp</replaceable>
| ( <replaceable>cmd</replaceable> )
| (| <replaceable>aexp</replaceable> <replaceable>cmd</replaceable> ... <replaceable>cmd</replaceable> |)
<replaceable>cstmt</replaceable> ::= let <replaceable>decls</replaceable>
| <replaceable>pat</replaceable> <- <replaceable>cmd</replaceable>
| rec { <replaceable>cstmt</replaceable> ; ... <replaceable>cstmt</replaceable> [;] }
| <replaceable>cmd</replaceable>
</screen>
where <replaceable>calts</replaceable> are like <replaceable>alts</replaceable>
except that the bodies are commands instead of expressions.
</para>
<para>
Commands produce values, but (like monadic computations)
may yield more than one value,
or none, and may do other things as well.
For the most part, familiarity with monadic notation is a good guide to
using commands.
However the values of expressions, even monadic ones,
are determined by the values of the variables they contain;
this is not necessarily the case for commands.
</para>
<para>
A simple example of the new notation is the expression
<screen>
proc x -> f -< x+1
</screen>
We call this a <firstterm>procedure</firstterm> or
<firstterm>arrow abstraction</firstterm>.
As with a lambda expression, the variable <literal>x</literal>
is a new variable bound within the <literal>proc</literal>-expression.
It refers to the input to the arrow.
In the above example, <literal>-<</literal> is not an identifier but an
new reserved symbol used for building commands from an expression of arrow
type and an expression to be fed as input to that arrow.
(The weird look will make more sense later.)
It may be read as analogue of application for arrows.
The above example is equivalent to the Haskell expression
<screen>
arr (\ x -> x+1) >>> f
</screen>
That would make no sense if the expression to the left of
<literal>-<</literal> involves the bound variable <literal>x</literal>.
More generally, the expression to the left of <literal>-<</literal>
may not involve any <firstterm>local variable</firstterm>,
i.e. a variable bound in the current arrow abstraction.
For such a situation there is a variant <literal>-<<</literal>, as in
<screen>
proc x -> f x -<< x+1
</screen>
which is equivalent to
<screen>
arr (\ x -> (f x, x+1)) >>> app
</screen>
so in this case the arrow must belong to the <literal>ArrowApply</literal>
class.
Such an arrow is equivalent to a monad, so if you're using this form
you may find a monadic formulation more convenient.
</para>
<sect2>
<title>do-notation for commands</title>
<para>
Another form of command is a form of <literal>do</literal>-notation.
For example, you can write
<screen>
proc x -> do
y <- f -< x+1
g -< 2*y
let z = x+y
t <- h -< x*z
returnA -< t+z
</screen>
You can read this much like ordinary <literal>do</literal>-notation,
but with commands in place of monadic expressions.
The first line sends the value of <literal>x+1</literal> as an input to
the arrow <literal>f</literal>, and matches its output against
<literal>y</literal>.
In the next line, the output is discarded.
The arrow <function>returnA</function> is defined in the
<ulink url="&libraryBaseLocation;/Control-Arrow.html"><literal>Control.Arrow</literal></ulink>
module as <literal>arr id</literal>.
The above example is treated as an abbreviation for
<screen>
arr (\ x -> (x, x)) >>>
first (arr (\ x -> x+1) >>> f) >>>
arr (\ (y, x) -> (y, (x, y))) >>>
first (arr (\ y -> 2*y) >>> g) >>>
arr snd >>>
arr (\ (x, y) -> let z = x+y in ((x, z), z)) >>>
first (arr (\ (x, z) -> x*z) >>> h) >>>
arr (\ (t, z) -> t+z) >>>
returnA
</screen>
Note that variables not used later in the composition are projected out.
After simplification using rewrite rules (see <xref linkend="rewrite-rules"/>)
defined in the
<ulink url="&libraryBaseLocation;/Control-Arrow.html"><literal>Control.Arrow</literal></ulink>
module, this reduces to
<screen>
arr (\ x -> (x+1, x)) >>>
first f >>>
arr (\ (y, x) -> (2*y, (x, y))) >>>
first g >>>
arr (\ (_, (x, y)) -> let z = x+y in (x*z, z)) >>>
first h >>>
arr (\ (t, z) -> t+z)
</screen>
which is what you might have written by hand.
With arrow notation, GHC keeps track of all those tuples of variables for you.
</para>
<para>
Note that although the above translation suggests that
<literal>let</literal>-bound variables like <literal>z</literal> must be
monomorphic, the actual translation produces Core,
so polymorphic variables are allowed.
</para>
<para>
It's also possible to have mutually recursive bindings,
using the new <literal>rec</literal> keyword, as in the following example:
<programlisting>
counter :: ArrowCircuit a => a Bool Int
counter = proc reset -> do
rec output <- returnA -< if reset then 0 else next
next <- delay 0 -< output+1
returnA -< output
</programlisting>
The translation of such forms uses the <function>loop</function> combinator,
so the arrow concerned must belong to the <literal>ArrowLoop</literal> class.
</para>
</sect2>
<sect2>
<title>Conditional commands</title>
<para>
In the previous example, we used a conditional expression to construct the
input for an arrow.
Sometimes we want to conditionally execute different commands, as in
<screen>
proc (x,y) ->
if f x y
then g -< x+1
else h -< y+2
</screen>
which is translated to
<screen>
arr (\ (x,y) -> if f x y then Left x else Right y) >>>
(arr (\x -> x+1) >>> g) ||| (arr (\y -> y+2) >>> h)
</screen>
Since the translation uses <function>|||</function>,
the arrow concerned must belong to the <literal>ArrowChoice</literal> class.
</para>
<para>
There are also <literal>case</literal> commands, like
<screen>
case input of
[] -> f -< ()
[x] -> g -< x+1
x1:x2:xs -> do
y <- h -< (x1, x2)
ys <- k -< xs
returnA -< y:ys
</screen>
The syntax is the same as for <literal>case</literal> expressions,
except that the bodies of the alternatives are commands rather than expressions.
The translation is similar to that of <literal>if</literal> commands.
</para>
</sect2>
<sect2>
<title>Defining your own control structures</title>
<para>
As we're seen, arrow notation provides constructs,
modelled on those for expressions,
for sequencing, value recursion and conditionals.
But suitable combinators,
which you can define in ordinary Haskell,
may also be used to build new commands out of existing ones.
The basic idea is that a command defines an arrow from environments to values.
These environments assign values to the free local variables of the command.
Thus combinators that produce arrows from arrows
may also be used to build commands from commands.
For example, the <literal>ArrowPlus</literal> class includes a combinator
<programlisting>
ArrowPlus a => (<+>) :: a b c -> a b c -> a b c
</programlisting>
so we can use it to build commands:
<programlisting>
expr' = proc x -> do
returnA -< x
<+> do
symbol Plus -< ()
y <- term -< ()
expr' -< x + y
<+> do
symbol Minus -< ()
y <- term -< ()
expr' -< x - y
</programlisting>
(The <literal>do</literal> on the first line is needed to prevent the first
<literal><+> ...</literal> from being interpreted as part of the
expression on the previous line.)
This is equivalent to
<programlisting>
expr' = (proc x -> returnA -< x)
<+> (proc x -> do
symbol Plus -< ()
y <- term -< ()
expr' -< x + y)
<+> (proc x -> do
symbol Minus -< ()
y <- term -< ()
expr' -< x - y)
</programlisting>
We are actually using <literal><+></literal> here with the more specific type
<programlisting>
ArrowPlus a => (<+>) :: a (e,()) c -> a (e,()) c -> a (e,()) c
</programlisting>
It is essential that this operator be polymorphic in <literal>e</literal>
(representing the environment input to the command
and thence to its subcommands)
and satisfy the corresponding naturality property
<screen>
arr (first k) >>> (f <+> g) = (arr (first k) >>> f) <+> (arr (first k) >>> g)
</screen>
at least for strict <literal>k</literal>.
(This should be automatic if you're not using <function>seq</function>.)
This ensures that environments seen by the subcommands are environments
of the whole command,
and also allows the translation to safely trim these environments.
(The second component of the input pairs can contain unnamed input values,
as described in the next section.)
The operator must also not use any variable defined within the current
arrow abstraction.
</para>
<para>
We could define our own operator
<programlisting>
untilA :: ArrowChoice a => a (e,s) () -> a (e,s) Bool -> a (e,s) ()
untilA body cond = proc x ->
b <- cond -< x
if b then returnA -< ()
else do
body -< x
untilA body cond -< x
</programlisting>
and use it in the same way.
Of course this infix syntax only makes sense for binary operators;
there is also a more general syntax involving special brackets:
<screen>
proc x -> do
y <- f -< x+1
(|untilA (increment -< x+y) (within 0.5 -< x)|)
</screen>
</para>
</sect2>
<sect2>
<title>Primitive constructs</title>
<para>
Some operators will need to pass additional inputs to their subcommands.
For example, in an arrow type supporting exceptions,
the operator that attaches an exception handler will wish to pass the
exception that occurred to the handler.
Such an operator might have a type
<screen>
handleA :: ... => a (e,s) c -> a (e,(Ex,s)) c -> a (e,s) c
</screen>
where <literal>Ex</literal> is the type of exceptions handled.
You could then use this with arrow notation by writing a command
<screen>
body `handleA` \ ex -> handler
</screen>
so that if an exception is raised in the command <literal>body</literal>,
the variable <literal>ex</literal> is bound to the value of the exception
and the command <literal>handler</literal>,
which typically refers to <literal>ex</literal>, is entered.
Though the syntax here looks like a functional lambda,
we are talking about commands, and something different is going on.
The input to the arrow represented by a command consists of values for
the free local variables in the command, plus a stack of anonymous values.
In all the prior examples, we made no assumptions about this stack.
In the second argument to <function>handleA</function>,
the value of the exception has been added to the stack input to the handler.
The command form of lambda merely gives this value a name.
</para>
<para>
More concretely,
the input to a command consists of a pair of an environment and a stack.
Each value on the stack is paired with the remainder of the stack,
with an empty stack being <literal>()</literal>.
So operators like <function>handleA</function> that pass
extra inputs to their subcommands can be designed for use with the notation
by placing the values on the stack paired with the environment in this way.
More precisely, the type of each argument of the operator (and its result)
should have the form
<screen>
a (e, (t1, ... (tn, ())...)) t
</screen>
where <replaceable>e</replaceable> is a polymorphic variable
(representing the environment)
and <replaceable>ti</replaceable> are the types of the values on the stack,
with <replaceable>t1</replaceable> being the <quote>top</quote>.
The polymorphic variable <replaceable>e</replaceable> must not occur in
<replaceable>a</replaceable>, <replaceable>ti</replaceable> or
<replaceable>t</replaceable>.
However the arrows involved need not be the same.
Here are some more examples of suitable operators:
<screen>
bracketA :: ... => a (e,s) b -> a (e,(b,s)) c -> a (e,(c,s)) d -> a (e,s) d
runReader :: ... => a (e,s) c -> a' (e,(State,s)) c
runState :: ... => a (e,s) c -> a' (e,(State,s)) (c,State)
</screen>
We can supply the extra input required by commands built with the last two
by applying them to ordinary expressions, as in
<screen>
proc x -> do
s <- ...
(|runReader (do { ... })|) s
</screen>
which adds <literal>s</literal> to the stack of inputs to the command
built using <function>runReader</function>.
</para>
<para>
The command versions of lambda abstraction and application are analogous to
the expression versions.
In particular, the beta and eta rules describe equivalences of commands.
These three features (operators, lambda abstraction and application)
are the core of the notation; everything else can be built using them,
though the results would be somewhat clumsy.
For example, we could simulate <literal>do</literal>-notation by defining
<programlisting>
bind :: Arrow a => a (e,s) b -> a (e,(b,s)) c -> a (e,s) c
u `bind` f = returnA &&& u >>> f
bind_ :: Arrow a => a (e,s) b -> a (e,s) c -> a (e,s) c
u `bind_` f = u `bind` (arr fst >>> f)
</programlisting>
We could simulate <literal>if</literal> by defining
<programlisting>
cond :: ArrowChoice a => a (e,s) b -> a (e,s) b -> a (e,(Bool,s)) b
cond f g = arr (\ (e,(b,s)) -> if b then Left (e,s) else Right (e,s)) >>> f ||| g
</programlisting>
</para>
</sect2>
<sect2>
<title>Differences with the paper</title>
<itemizedlist>
<listitem>
<para>Instead of a single form of arrow application (arrow tail) with two
translations, the implementation provides two forms
<quote><literal>-<</literal></quote> (first-order)
and <quote><literal>-<<</literal></quote> (higher-order).
</para>
</listitem>
<listitem>
<para>User-defined operators are flagged with banana brackets instead of
a new <literal>form</literal> keyword.
</para>
</listitem>
<listitem>
<para>In the paper and the previous implementation,
values on the stack were paired to the right of the environment
in a single argument,
but now the environment and stack are separate arguments.
</para>
</listitem>
</itemizedlist>
</sect2>
<sect2>
<title>Portability</title>
<para>
Although only GHC implements arrow notation directly,
there is also a preprocessor
(available from the
<ulink url="http://www.haskell.org/arrows/">arrows web page</ulink>)
that translates arrow notation into Haskell 98
for use with other Haskell systems.
You would still want to check arrow programs with GHC;
tracing type errors in the preprocessor output is not easy.
Modules intended for both GHC and the preprocessor must observe some
additional restrictions:
<itemizedlist>
<listitem>
<para>
The module must import
<ulink url="&libraryBaseLocation;/Control-Arrow.html"><literal>Control.Arrow</literal></ulink>.
</para>
</listitem>
<listitem>
<para>
The preprocessor cannot cope with other Haskell extensions.
These would have to go in separate modules.
</para>
</listitem>
<listitem>
<para>
Because the preprocessor targets Haskell (rather than Core),
<literal>let</literal>-bound variables are monomorphic.
</para>
</listitem>
</itemizedlist>
</para>
</sect2>
</sect1>
<!-- ==================== BANG PATTERNS ================= -->
<sect1 id="bang-patterns">
<title>Bang patterns
<indexterm><primary>Bang patterns</primary></indexterm>
</title>
<para>GHC supports an extension of pattern matching called <emphasis>bang
patterns</emphasis>, written <literal>!<replaceable>pat</replaceable></literal>.
Bang patterns are under consideration for Haskell Prime.
The <ulink
url="http://ghc.haskell.org/trac/haskell-prime/wiki/BangPatterns">Haskell
prime feature description</ulink> contains more discussion and examples
than the material below.
</para>
<para>
The key change is the addition of a new rule to the
<ulink url="http://haskell.org/onlinereport/exps.html#sect3.17.2">semantics of pattern matching in the Haskell 98 report</ulink>.
Add new bullet 10, saying: Matching the pattern <literal>!</literal><replaceable>pat</replaceable>
against a value <replaceable>v</replaceable> behaves as follows:
<itemizedlist>
<listitem><para>if <replaceable>v</replaceable> is bottom, the match diverges</para></listitem>
<listitem><para>otherwise, <replaceable>pat</replaceable> is matched against <replaceable>v</replaceable> </para></listitem>
</itemizedlist>
</para>
<para>
Bang patterns are enabled by the flag <option>-XBangPatterns</option>.
</para>
<sect2 id="bang-patterns-informal">
<title>Informal description of bang patterns
</title>
<para>
The main idea is to add a single new production to the syntax of patterns:
<programlisting>
pat ::= !pat
</programlisting>
Matching an expression <literal>e</literal> against a pattern <literal>!p</literal> is done by first
evaluating <literal>e</literal> (to WHNF) and then matching the result against <literal>p</literal>.
Example:
<programlisting>
f1 !x = True
</programlisting>
This definition makes <literal>f1</literal> is strict in <literal>x</literal>,
whereas without the bang it would be lazy.
Bang patterns can be nested of course:
<programlisting>
f2 (!x, y) = [x,y]
</programlisting>
Here, <literal>f2</literal> is strict in <literal>x</literal> but not in
<literal>y</literal>.
A bang only really has an effect if it precedes a variable or wild-card pattern:
<programlisting>
f3 !(x,y) = [x,y]
f4 (x,y) = [x,y]
</programlisting>
Here, <literal>f3</literal> and <literal>f4</literal> are identical;
putting a bang before a pattern that
forces evaluation anyway does nothing.
</para>
<para>
There is one (apparent) exception to this general rule that a bang only
makes a difference when it precedes a variable or wild-card: a bang at the
top level of a <literal>let</literal> or <literal>where</literal>
binding makes the binding strict, regardless of the pattern.
(We say "apparent" exception because the Right Way to think of it is that the bang
at the top of a binding is not part of the <emphasis>pattern</emphasis>; rather it
is part of the syntax of the <emphasis>binding</emphasis>,
creating a "bang-pattern binding".)
For example:
<programlisting>
let ![x,y] = e in b
</programlisting>
is a bang-pattern binding. Operationally, it behaves just like a case expression:
<programlisting>
case e of [x,y] -> b
</programlisting>
Like a case expression, a bang-pattern binding must be non-recursive, and
is monomorphic.
However, <emphasis>nested</emphasis> bangs in a pattern binding behave uniformly with all other forms of
pattern matching. For example
<programlisting>
let (!x,[y]) = e in b
</programlisting>
is equivalent to this:
<programlisting>
let { t = case e of (x,[y]) -> x `seq` (x,y)
x = fst t
y = snd t }
in b
</programlisting>
The binding is lazy, but when either <literal>x</literal> or <literal>y</literal> is
evaluated by <literal>b</literal> the entire pattern is matched, including forcing the
evaluation of <literal>x</literal>.
</para>
<para>
Bang patterns work in <literal>case</literal> expressions too, of course:
<programlisting>
g5 x = let y = f x in body
g6 x = case f x of { y -> body }
g7 x = case f x of { !y -> body }
</programlisting>
The functions <literal>g5</literal> and <literal>g6</literal> mean exactly the same thing.
But <literal>g7</literal> evaluates <literal>(f x)</literal>, binds <literal>y</literal> to the
result, and then evaluates <literal>body</literal>.
</para>
</sect2>
<sect2 id="bang-patterns-sem">
<title>Syntax and semantics
</title>
<para>
We add a single new production to the syntax of patterns:
<programlisting>
pat ::= !pat
</programlisting>
There is one problem with syntactic ambiguity. Consider:
<programlisting>
f !x = 3
</programlisting>
Is this a definition of the infix function "<literal>(!)</literal>",
or of the "<literal>f</literal>" with a bang pattern? GHC resolves this
ambiguity in favour of the latter. If you want to define
<literal>(!)</literal> with bang-patterns enabled, you have to do so using
prefix notation:
<programlisting>
(!) f x = 3
</programlisting>
The semantics of Haskell pattern matching is described in <ulink
url="http://www.haskell.org/onlinereport/exps.html#sect3.17.2">
Section 3.17.2</ulink> of the Haskell Report. To this description add
one extra item 10, saying:
<itemizedlist><listitem><para>Matching
the pattern <literal>!pat</literal> against a value <literal>v</literal> behaves as follows:
<itemizedlist><listitem><para>if <literal>v</literal> is bottom, the match diverges</para></listitem>
<listitem><para>otherwise, <literal>pat</literal> is matched against
<literal>v</literal></para></listitem>
</itemizedlist>
</para></listitem></itemizedlist>
Similarly, in Figure 4 of <ulink url="http://www.haskell.org/onlinereport/exps.html#sect3.17.3">
Section 3.17.3</ulink>, add a new case (t):
<programlisting>
case v of { !pat -> e; _ -> e' }
= v `seq` case v of { pat -> e; _ -> e' }
</programlisting>
</para><para>
That leaves let expressions, whose translation is given in
<ulink url="http://www.haskell.org/onlinereport/exps.html#sect3.12">Section
3.12</ulink>
of the Haskell Report.
In the translation box, first apply
the following transformation: for each pattern <literal>pi</literal> that is of
form <literal>!qi = ei</literal>, transform it to <literal>(xi,!qi) = ((),ei)</literal>, and replace <literal>e0</literal>
by <literal>(xi `seq` e0)</literal>. Then, when none of the left-hand-side patterns
have a bang at the top, apply the rules in the existing box.
</para>
<para>The effect of the let rule is to force complete matching of the pattern
<literal>qi</literal> before evaluation of the body is begun. The bang is
retained in the translated form in case <literal>qi</literal> is a variable,
thus:
<programlisting>
let !y = f x in b
</programlisting>
</para>
<para>
The let-binding can be recursive. However, it is much more common for
the let-binding to be non-recursive, in which case the following law holds:
<literal>(let !p = rhs in body)</literal>
is equivalent to
<literal>(case rhs of !p -> body)</literal>
</para>
<para>
A pattern with a bang at the outermost level is not allowed at the top level of
a module.
</para>
</sect2>
</sect1>
<!-- ==================== ASSERTIONS ================= -->
<sect1 id="assertions">
<title>Assertions
<indexterm><primary>Assertions</primary></indexterm>
</title>
<para>
If you want to make use of assertions in your standard Haskell code, you
could define a function like the following:
</para>
<para>
<programlisting>
assert :: Bool -> a -> a
assert False x = error "assertion failed!"
assert _ x = x
</programlisting>
</para>
<para>
which works, but gives you back a less than useful error message --
an assertion failed, but which and where?
</para>
<para>
One way out is to define an extended <function>assert</function> function which also
takes a descriptive string to include in the error message and
perhaps combine this with the use of a pre-processor which inserts
the source location where <function>assert</function> was used.
</para>
<para>
Ghc offers a helping hand here, doing all of this for you. For every
use of <function>assert</function> in the user's source:
</para>
<para>
<programlisting>
kelvinToC :: Double -> Double
kelvinToC k = assert (k >= 0.0) (k+273.15)
</programlisting>
</para>
<para>
Ghc will rewrite this to also include the source location where the
assertion was made,
</para>
<para>
<programlisting>
assert pred val ==> assertError "Main.hs|15" pred val
</programlisting>
</para>
<para>
The rewrite is only performed by the compiler when it spots
applications of <function>Control.Exception.assert</function>, so you
can still define and use your own versions of
<function>assert</function>, should you so wish. If not, import
<literal>Control.Exception</literal> to make use
<function>assert</function> in your code.
</para>
<para>
GHC ignores assertions when optimisation is turned on with the
<option>-O</option><indexterm><primary><option>-O</option></primary></indexterm> flag. That is, expressions of the form
<literal>assert pred e</literal> will be rewritten to
<literal>e</literal>. You can also disable assertions using the
<option>-fignore-asserts</option>
option<indexterm><primary><option>-fignore-asserts</option></primary>
</indexterm>. The option <option>-fno-ignore-asserts</option> allows
enabling assertions even when optimisation is turned on.
</para>
<para>
Assertion failures can be caught, see the documentation for the
<literal>Control.Exception</literal> library for the details.
</para>
</sect1>
<!-- =============================== STATIC POINTERS =========================== -->
<sect1 id="static-pointers">
<title>Static pointers
<indexterm><primary>Static pointers</primary></indexterm>
</title>
<para>
The language extension <literal>-XStaticPointers</literal> adds a new
syntactic form <literal>static <replaceable>e</replaceable></literal>,
which stands for a reference to the closed expression
<replaceable>e</replaceable>. This reference is stable and portable,
in the sense that it remains valid across different processes on
possibly different machines. Thus, a process can create a reference
and send it to another process that can resolve it to
<replaceable>e</replaceable>.
</para>
<para>
With this extension turned on, <literal>static</literal> is no longer
a valid identifier.
</para>
<para>
Static pointers were first proposed in the paper <ulink
url="http://research.microsoft.com/en-us/um/people/simonpj/papers/parallel/remote.pdf">
Towards Haskell in the cloud</ulink>, Jeff Epstein, Andrew P. Black and Simon
Peyton-Jones, Proceedings of the 4th ACM Symposium on Haskell, pp.
118-129, ACM, 2011.
</para>
<sect2 id="using-static-pointers">
<title>Using static pointers</title>
<para>
Each reference is given a key which can be used to locate it at runtime with
<ulink url="&libraryBaseLocation;/GHC.StaticPtr.html#v%3AunsafeLookupStaticPtr"><literal>unsafeLookupStaticPtr</literal></ulink>
which uses a global and immutable table called the Static Pointer Table.
The compiler includes entries in this table for all static forms found in
the linked modules. The value can be obtained from the reference via
<ulink url="&libraryBaseLocation;/GHC.StaticPtr.html#v%3AdeRefStaticPtr"><literal>deRefStaticPtr</literal></ulink>
</para>
<para>
The body <literal>e</literal> of a <literal>static
e</literal> expression must be a closed expression. That is, there can
be no free variables occurring in <literal>e</literal>, i.e. lambda-
or let-bound variables bound locally in the context of the expression.
</para>
<para>
All of the following are permissible:
<programlisting>
inc :: Int -> Int
inc x = x + 1
ref1 = static 1
ref2 = static inc
ref3 = static (inc 1)
ref4 = static ((\x -> x + 1) (1 :: Int))
ref5 y = static (let x = 1 in x)
</programlisting>
While the following definitions are rejected:
<programlisting>
ref6 = let x = 1 in static x
ref7 y = static (let x = 1 in y)
</programlisting>
</para>
</sect2>
<sect2 id="typechecking-static-pointers">
<title>Static semantics of static pointers</title>
<para>
Informally, if we have a closed expression
<programlisting>
e :: forall a_1 ... a_n . t
</programlisting>
the static form is of type
<programlisting>
static e :: (Typeable a_1, ... , Typeable a_n) => StaticPtr t
</programlisting>
Furthermore, type <literal>t</literal> is constrained to have a
<literal>Typeable</literal> instance.
The following are therefore illegal:
<programlisting>
static show -- No Typeable instance for (Show a => a -> String)
static Control.Monad.ST.runST -- No Typeable instance for ((forall s. ST s a) -> a)
</programlisting>
That being said, with the appropriate use of wrapper datatypes, the
above limitations induce no loss of generality:
<programlisting>
{-# LANGUAGE ConstraintKinds #-}
{-# LANGUAGE DeriveDataTypeable #-}
{-# LANGUAGE ExistentialQuantification #-}
{-# LANGUAGE Rank2Types #-}
{-# LANGUAGE StandaloneDeriving #-}
{-# LANGUAGE StaticPointers #-}
import Control.Monad.ST
import Data.Typeable
import GHC.StaticPtr
data Dict c = c => Dict
deriving Typeable
g1 :: Typeable a => StaticPtr (Dict (Show a) -> a -> String)
g1 = static (\Dict -> show)
data Rank2Wrapper f = R2W (forall s. f s)
deriving Typeable
newtype Flip f a s = Flip { unFlip :: f s a }
deriving Typeable
g2 :: Typeable a => StaticPtr (Rank2Wrapper (Flip ST a) -> a)
g2 = static (\(R2W f) -> runST (unFlip f))
</programlisting>
</para>
</sect2>
</sect1>
<!-- =============================== PRAGMAS =========================== -->
<sect1 id="pragmas">
<title>Pragmas</title>
<indexterm><primary>pragma</primary></indexterm>
<para>GHC supports several pragmas, or instructions to the
compiler placed in the source code. Pragmas don't normally affect
the meaning of the program, but they might affect the efficiency
of the generated code.</para>
<para>Pragmas all take the form
<literal>{-# <replaceable>word</replaceable> ... #-}</literal>
where <replaceable>word</replaceable> indicates the type of
pragma, and is followed optionally by information specific to that
type of pragma. Case is ignored in
<replaceable>word</replaceable>. The various values for
<replaceable>word</replaceable> that GHC understands are described
in the following sections; any pragma encountered with an
unrecognised <replaceable>word</replaceable> is
ignored. The layout rule applies in pragmas, so the closing <literal>#-}</literal>
should start in a column to the right of the opening <literal>{-#</literal>. </para>
<para>Certain pragmas are <emphasis>file-header pragmas</emphasis>:
<itemizedlist>
<listitem><para>
A file-header
pragma must precede the <literal>module</literal> keyword in the file.
</para></listitem>
<listitem><para>
There can be as many file-header pragmas as you please, and they can be
preceded or followed by comments.
</para></listitem>
<listitem><para>
File-header pragmas are read once only, before
pre-processing the file (e.g. with cpp).
</para></listitem>
<listitem><para>
The file-header pragmas are: <literal>{-# LANGUAGE #-}</literal>,
<literal>{-# OPTIONS_GHC #-}</literal>, and
<literal>{-# INCLUDE #-}</literal>.
</para></listitem>
</itemizedlist>
</para>
<sect2 id="language-pragma">
<title>LANGUAGE pragma</title>
<indexterm><primary>LANGUAGE</primary><secondary>pragma</secondary></indexterm>
<indexterm><primary>pragma</primary><secondary>LANGUAGE</secondary></indexterm>
<para>The <literal>LANGUAGE</literal> pragma allows language extensions to be enabled
in a portable way.
It is the intention that all Haskell compilers support the
<literal>LANGUAGE</literal> pragma with the same syntax, although not
all extensions are supported by all compilers, of
course. The <literal>LANGUAGE</literal> pragma should be used instead
of <literal>OPTIONS_GHC</literal>, if possible.</para>
<para>For example, to enable the FFI and preprocessing with CPP:</para>
<programlisting>{-# LANGUAGE ForeignFunctionInterface, CPP #-}</programlisting>
<para><literal>LANGUAGE</literal> is a file-header pragma (see <xref linkend="pragmas"/>).</para>
<para>Every language extension can also be turned into a command-line flag
by prefixing it with "<literal>-X</literal>"; for example <option>-XForeignFunctionInterface</option>.
(Similarly, all "<literal>-X</literal>" flags can be written as <literal>LANGUAGE</literal> pragmas.)
</para>
<para>A list of all supported language extensions can be obtained by invoking
<literal>ghc --supported-extensions</literal> (see <xref linkend="modes"/>).</para>
<para>Any extension from the <literal>Extension</literal> type defined in
<ulink
url="&libraryCabalLocation;/Language-Haskell-Extension.html"><literal>Language.Haskell.Extension</literal></ulink>
may be used. GHC will report an error if any of the requested extensions are not supported.</para>
</sect2>
<sect2 id="options-pragma">
<title>OPTIONS_GHC pragma</title>
<indexterm><primary>OPTIONS_GHC</primary>
</indexterm>
<indexterm><primary>pragma</primary><secondary>OPTIONS_GHC</secondary>
</indexterm>
<para>The <literal>OPTIONS_GHC</literal> pragma is used to specify
additional options that are given to the compiler when compiling
this source file. See <xref linkend="source-file-options"/> for
details.</para>
<para>Previous versions of GHC accepted <literal>OPTIONS</literal> rather
than <literal>OPTIONS_GHC</literal>, but that is now deprecated.</para>
</sect2>
<para><literal>OPTIONS_GHC</literal> is a file-header pragma (see <xref linkend="pragmas"/>).</para>
<sect2 id="include-pragma">
<title>INCLUDE pragma</title>
<para>The <literal>INCLUDE</literal> used to be necessary for
specifying header files to be included when using the FFI and
compiling via C. It is no longer required for GHC, but is
accepted (and ignored) for compatibility with other
compilers.</para>
</sect2>
<sect2 id="warning-deprecated-pragma">
<title>WARNING and DEPRECATED pragmas</title>
<indexterm><primary>WARNING</primary></indexterm>
<indexterm><primary>DEPRECATED</primary></indexterm>
<para>The WARNING pragma allows you to attach an arbitrary warning
to a particular function, class, or type.
A DEPRECATED pragma lets you specify that
a particular function, class, or type is deprecated.
There are two ways of using these pragmas.
<itemizedlist>
<listitem>
<para>You can work on an entire module thus:</para>
<programlisting>
module Wibble {-# DEPRECATED "Use Wobble instead" #-} where
...
</programlisting>
<para>Or:</para>
<programlisting>
module Wibble {-# WARNING "This is an unstable interface." #-} where
...
</programlisting>
<para>When you compile any module that import
<literal>Wibble</literal>, GHC will print the specified
message.</para>
</listitem>
<listitem>
<para>You can attach a warning to a function, class, type, or data constructor, with the
following top-level declarations:</para>
<programlisting>
{-# DEPRECATED f, C, T "Don't use these" #-}
{-# WARNING unsafePerformIO "This is unsafe; I hope you know what you're doing" #-}
</programlisting>
<para>When you compile any module that imports and uses any
of the specified entities, GHC will print the specified
message.</para>
<para> You can only attach to entities declared at top level in the module
being compiled, and you can only use unqualified names in the list of
entities. A capitalised name, such as <literal>T</literal>
refers to <emphasis>either</emphasis> the type constructor <literal>T</literal>
<emphasis>or</emphasis> the data constructor <literal>T</literal>, or both if
both are in scope. If both are in scope, there is currently no way to
specify one without the other (c.f. fixities
<xref linkend="infix-tycons"/>).</para>
</listitem>
</itemizedlist>
Warnings and deprecations are not reported for
(a) uses within the defining module,
(b) defining a method in a class instance, and
(c) uses in an export list.
The latter reduces spurious complaints within a library
in which one module gathers together and re-exports
the exports of several others.
</para>
<para>You can suppress the warnings with the flag
<option>-fno-warn-warnings-deprecations</option>.</para>
</sect2>
<sect2 id="minimal-pragma">
<title>MINIMAL pragma</title>
<indexterm><primary>MINIMAL</primary></indexterm>
<para>The MINIMAL pragma is used to specify the minimal complete definition of a class. I.e. specify which methods must be implemented by all instances. If an instance does not satisfy the minimal complete definition, then a warning is generated.
This can be useful when a class has methods with circular defaults. For example
</para>
<programlisting>
class Eq a where
(==) :: a -> a -> Bool
(/=) :: a -> a -> Bool
x == y = not (x /= y)
x /= y = not (x == y)
{-# MINIMAL (==) | (/=) #-}
</programlisting>
<para>Without the MINIMAL pragma no warning would be generated for an instance that implements neither method.
</para>
<para>The syntax for minimal complete definition is:</para>
<screen>
mindef ::= name
| '(' mindef ')'
| mindef '|' mindef
| mindef ',' mindef
</screen>
<para>A vertical bar denotes disjunction, i.e. one of the two sides is required.
A comma denotes conjunction, i.e. both sides are required.
Conjunction binds stronger than disjunction.</para>
<para>
If no MINIMAL pragma is given in the class declaration, it is just as if
a pragma <literal>{-# MINIMAL op1, op2, ..., opn #-}</literal> was given, where
the <literal>opi</literal> are the methods
(a) that lack a default method in the class declaration, and
(b) whose name that does not start with an underscore
(c.f. <option>-fwarn-missing-methods</option>, <xref linkend="options-sanity"/>).
</para>
<para>This warning can be turned off with the flag <option>-fno-warn-missing-methods</option>.</para>
</sect2>
<sect2 id="inline-noinline-pragma">
<title>INLINE and NOINLINE pragmas</title>
<para>These pragmas control the inlining of function
definitions.</para>
<sect3 id="inline-pragma">
<title>INLINE pragma</title>
<indexterm><primary>INLINE</primary></indexterm>
<para>
GHC (with <option>-O</option>, as always) tries to inline
(or “unfold”) functions/values that are
“small enough,” thus avoiding the call overhead
and possibly exposing other more-wonderful optimisations.
GHC has a set of heuristics, tuned over a long period of
time using many benchmarks, that decide when it is
beneficial to inline a function at its call site. The
heuristics are designed to inline functions when it appears
to be beneficial to do so, but without incurring excessive
code bloat. If a function looks too big, it won't be
inlined, and functions larger than a certain size will not
even have their definition exported in the interface file.
Some of the thresholds that govern these heuristic decisions
can be changed using flags, see <xref linkend="options-f"
/>.
</para>
<para>
Normally GHC will do a reasonable job of deciding by itself
when it is a good idea to inline a function. However,
sometimes you might want to override the default behaviour.
For example, if you have a key function that is important to
inline because it leads to further optimisations, but GHC
judges it to be too big to inline.
</para>
<para>The sledgehammer you can bring to bear is the
<literal>INLINE</literal><indexterm><primary>INLINE
pragma</primary></indexterm> pragma, used thusly:</para>
<programlisting>
key_function :: Int -> String -> (Bool, Double)
{-# INLINE key_function #-}
</programlisting>
<para>The major effect of an <literal>INLINE</literal> pragma
is to declare a function's “cost” to be very low.
The normal unfolding machinery will then be very keen to
inline it. However, an <literal>INLINE</literal> pragma for a
function "<literal>f</literal>" has a number of other effects:
<itemizedlist>
<listitem><para>
While GHC is keen to inline the function, it does not do so
blindly. For example, if you write
<programlisting>
map key_function xs
</programlisting>
there really isn't any point in inlining <literal>key_function</literal> to get
<programlisting>
map (\x -> <replaceable>body</replaceable>) xs
</programlisting>
In general, GHC only inlines the function if there is some reason (no matter
how slight) to suppose that it is useful to do so.
</para></listitem>
<listitem><para>
Moreover, GHC will only inline the function if it is <emphasis>fully applied</emphasis>,
where "fully applied"
means applied to as many arguments as appear (syntactically)
on the LHS of the function
definition. For example:
<programlisting>
comp1 :: (b -> c) -> (a -> b) -> a -> c
{-# INLINE comp1 #-}
comp1 f g = \x -> f (g x)
comp2 :: (b -> c) -> (a -> b) -> a -> c
{-# INLINE comp2 #-}
comp2 f g x = f (g x)
</programlisting>
The two functions <literal>comp1</literal> and <literal>comp2</literal> have the
same semantics, but <literal>comp1</literal> will be inlined when applied
to <emphasis>two</emphasis> arguments, while <literal>comp2</literal> requires
<emphasis>three</emphasis>. This might make a big difference if you say
<programlisting>
map (not `comp1` not) xs
</programlisting>
which will optimise better than the corresponding use of `comp2`.
</para></listitem>
<listitem><para>
It is useful for GHC to optimise the definition of an
INLINE function <literal>f</literal> just like any other non-INLINE function,
in case the non-inlined version of <literal>f</literal> is
ultimately called. But we don't want to inline
the <emphasis>optimised</emphasis> version
of <literal>f</literal>;
a major reason for INLINE pragmas is to expose functions
in <literal>f</literal>'s RHS that have
rewrite rules, and it's no good if those functions have been optimised
away.
</para>
<para>
So <emphasis>GHC guarantees to inline precisely the code that you wrote</emphasis>, no more
and no less. It does this by capturing a copy of the definition of the function to use
for inlining (we call this the "inline-RHS"), which it leaves untouched,
while optimising the ordinarily RHS as usual. For externally-visible functions
the inline-RHS (not the optimised RHS) is recorded in the interface file.
</para></listitem>
<listitem><para>
An INLINE function is not worker/wrappered by strictness analysis.
It's going to be inlined wholesale instead.
</para></listitem>
</itemizedlist>
</para>
<para>GHC ensures that inlining cannot go on forever: every mutually-recursive
group is cut by one or more <emphasis>loop breakers</emphasis> that is never inlined
(see <ulink url="http://research.microsoft.com/%7Esimonpj/Papers/inlining/index.htm">
Secrets of the GHC inliner, JFP 12(4) July 2002</ulink>).
GHC tries not to select a function with an INLINE pragma as a loop breaker, but
when there is no choice even an INLINE function can be selected, in which case
the INLINE pragma is ignored.
For example, for a self-recursive function, the loop breaker can only be the function
itself, so an INLINE pragma is always ignored.</para>
<para>Syntactically, an <literal>INLINE</literal> pragma for a
function can be put anywhere its type signature could be
put.</para>
<para><literal>INLINE</literal> pragmas are a particularly
good idea for the
<literal>then</literal>/<literal>return</literal> (or
<literal>bind</literal>/<literal>unit</literal>) functions in
a monad. For example, in GHC's own
<literal>UniqueSupply</literal> monad code, we have:</para>
<programlisting>
{-# INLINE thenUs #-}
{-# INLINE returnUs #-}
</programlisting>
<para>See also the <literal>NOINLINE</literal> (<xref linkend="noinline-pragma"/>)
and <literal>INLINABLE</literal> (<xref linkend="inlinable-pragma"/>)
pragmas.</para>
</sect3>
<sect3 id="inlinable-pragma">
<title>INLINABLE pragma</title>
<para>An <literal>{-# INLINABLE f #-}</literal> pragma on a
function <literal>f</literal> has the following behaviour:
<itemizedlist>
<listitem><para>
While <literal>INLINE</literal> says "please inline me", the <literal>INLINABLE</literal>
says "feel free to inline me; use your
discretion". In other words the choice is left to GHC, which uses the same
rules as for pragma-free functions. Unlike <literal>INLINE</literal>, that decision is made at
the <emphasis>call site</emphasis>, and
will therefore be affected by the inlining threshold, optimisation level etc.
</para></listitem>
<listitem><para>
Like <literal>INLINE</literal>, the <literal>INLINABLE</literal> pragma retains a
copy of the original RHS for
inlining purposes, and persists it in the interface file, regardless of
the size of the RHS.
</para></listitem>
<listitem><para>
One way to use <literal>INLINABLE</literal> is in conjunction with
the special function <literal>inline</literal> (<xref linkend="special-ids"/>).
The call <literal>inline f</literal> tries very hard to inline <literal>f</literal>.
To make sure that <literal>f</literal> can be inlined,
it is a good idea to mark the definition
of <literal>f</literal> as <literal>INLINABLE</literal>,
so that GHC guarantees to expose an unfolding regardless of how big it is.
Moreover, by annotating <literal>f</literal> as <literal>INLINABLE</literal>,
you ensure that <literal>f</literal>'s original RHS is inlined, rather than
whatever random optimised version of <literal>f</literal> GHC's optimiser
has produced.
</para></listitem>
<listitem><para>
The <literal>INLINABLE</literal> pragma also works with <literal>SPECIALISE</literal>:
if you mark function <literal>f</literal> as <literal>INLINABLE</literal>, then
you can subsequently <literal>SPECIALISE</literal> in another module
(see <xref linkend="specialize-pragma"/>).</para></listitem>
<listitem><para>
Unlike <literal>INLINE</literal>, it is OK to use
an <literal>INLINABLE</literal> pragma on a recursive function.
The principal reason do to so to allow later use of <literal>SPECIALISE</literal>
</para></listitem>
</itemizedlist>
</para>
</sect3>
<sect3 id="noinline-pragma">
<title>NOINLINE pragma</title>
<indexterm><primary>NOINLINE</primary></indexterm>
<indexterm><primary>NOTINLINE</primary></indexterm>
<para>The <literal>NOINLINE</literal> pragma does exactly what
you'd expect: it stops the named function from being inlined
by the compiler. You shouldn't ever need to do this, unless
you're very cautious about code size.</para>
<para><literal>NOTINLINE</literal> is a synonym for
<literal>NOINLINE</literal> (<literal>NOINLINE</literal> is
specified by Haskell 98 as the standard way to disable
inlining, so it should be used if you want your code to be
portable).</para>
</sect3>
<sect3 id="conlike-pragma">
<title>CONLIKE modifier</title>
<indexterm><primary>CONLIKE</primary></indexterm>
<para>An INLINE or NOINLINE pragma may have a CONLIKE modifier,
which affects matching in RULEs (only). See <xref linkend="conlike"/>.
</para>
</sect3>
<sect3 id="phase-control">
<title>Phase control</title>
<para> Sometimes you want to control exactly when in GHC's
pipeline the INLINE pragma is switched on. Inlining happens
only during runs of the <emphasis>simplifier</emphasis>. Each
run of the simplifier has a different <emphasis>phase
number</emphasis>; the phase number decreases towards zero.
If you use <option>-dverbose-core2core</option> you'll see the
sequence of phase numbers for successive runs of the
simplifier. In an INLINE pragma you can optionally specify a
phase number, thus:
<itemizedlist>
<listitem>
<para>"<literal>INLINE[k] f</literal>" means: do not inline
<literal>f</literal>
until phase <literal>k</literal>, but from phase
<literal>k</literal> onwards be very keen to inline it.
</para></listitem>
<listitem>
<para>"<literal>INLINE[~k] f</literal>" means: be very keen to inline
<literal>f</literal>
until phase <literal>k</literal>, but from phase
<literal>k</literal> onwards do not inline it.
</para></listitem>
<listitem>
<para>"<literal>NOINLINE[k] f</literal>" means: do not inline
<literal>f</literal>
until phase <literal>k</literal>, but from phase
<literal>k</literal> onwards be willing to inline it (as if
there was no pragma).
</para></listitem>
<listitem>
<para>"<literal>NOINLINE[~k] f</literal>" means: be willing to inline
<literal>f</literal>
until phase <literal>k</literal>, but from phase
<literal>k</literal> onwards do not inline it.
</para></listitem>
</itemizedlist>
The same information is summarised here:
<programlisting>
-- Before phase 2 Phase 2 and later
{-# INLINE [2] f #-} -- No Yes
{-# INLINE [~2] f #-} -- Yes No
{-# NOINLINE [2] f #-} -- No Maybe
{-# NOINLINE [~2] f #-} -- Maybe No
{-# INLINE f #-} -- Yes Yes
{-# NOINLINE f #-} -- No No
</programlisting>
By "Maybe" we mean that the usual heuristic inlining rules apply (if the
function body is small, or it is applied to interesting-looking arguments etc).
Another way to understand the semantics is this:
<itemizedlist>
<listitem><para>For both INLINE and NOINLINE, the phase number says
when inlining is allowed at all.</para></listitem>
<listitem><para>The INLINE pragma has the additional effect of making the
function body look small, so that when inlining is allowed it is very likely to
happen.
</para></listitem>
</itemizedlist>
</para>
<para>The same phase-numbering control is available for RULES
(<xref linkend="rewrite-rules"/>).</para>
</sect3>
</sect2>
<sect2 id="line-pragma">
<title>LINE pragma</title>
<indexterm><primary>LINE</primary><secondary>pragma</secondary></indexterm>
<indexterm><primary>pragma</primary><secondary>LINE</secondary></indexterm>
<para>This pragma is similar to C's <literal>#line</literal>
pragma, and is mainly for use in automatically generated Haskell
code. It lets you specify the line number and filename of the
original code; for example</para>
<programlisting>{-# LINE 42 "Foo.vhs" #-}</programlisting>
<para>if you'd generated the current file from something called
<filename>Foo.vhs</filename> and this line corresponds to line
42 in the original. GHC will adjust its error messages to refer
to the line/file named in the <literal>LINE</literal>
pragma.</para>
<para><literal>LINE</literal> pragmas generated from Template Haskell set
the file and line position for the duration of the splice and are limited
to the splice. Note that because Template Haskell splices abstract syntax,
the file positions are not automatically advanced.</para>
</sect2>
<sect2 id="rules">
<title>RULES pragma</title>
<para>The RULES pragma lets you specify rewrite rules. It is
described in <xref linkend="rewrite-rules"/>.</para>
</sect2>
<sect2 id="specialize-pragma">
<title>SPECIALIZE pragma</title>
<indexterm><primary>SPECIALIZE pragma</primary></indexterm>
<indexterm><primary>pragma, SPECIALIZE</primary></indexterm>
<indexterm><primary>overloading, death to</primary></indexterm>
<para>(UK spelling also accepted.) For key overloaded
functions, you can create extra versions (NB: more code space)
specialised to particular types. Thus, if you have an
overloaded function:</para>
<programlisting>
hammeredLookup :: Ord key => [(key, value)] -> key -> value
</programlisting>
<para>If it is heavily used on lists with
<literal>Widget</literal> keys, you could specialise it as
follows:</para>
<programlisting>
{-# SPECIALIZE hammeredLookup :: [(Widget, value)] -> Widget -> value #-}
</programlisting>
<itemizedlist>
<listitem>
<para>A <literal>SPECIALIZE</literal> pragma for a function can
be put anywhere its type signature could be put. Moreover, you
can also <literal>SPECIALIZE</literal> an <emphasis>imported</emphasis>
function provided it was given an <literal>INLINABLE</literal> pragma at
its definition site (<xref linkend="inlinable-pragma"/>).</para>
</listitem>
<listitem>
<para>A <literal>SPECIALIZE</literal> has the effect of generating
(a) a specialised version of the function and (b) a rewrite rule
(see <xref linkend="rewrite-rules"/>) that rewrites a call to
the un-specialised function into a call to the specialised one.
Moreover, given a <literal>SPECIALIZE</literal> pragma for a
function <literal>f</literal>, GHC will automatically create
specialisations for any type-class-overloaded functions called
by <literal>f</literal>, if they are in the same module as
the <literal>SPECIALIZE</literal> pragma, or if they are
<literal>INLINABLE</literal>; and so on, transitively.</para>
</listitem>
<listitem>
<para>You can add phase control (<xref linkend="phase-control"/>)
to the RULE generated by a <literal>SPECIALIZE</literal> pragma,
just as you can if you write a RULE directly. For example:
<programlisting>
{-# SPECIALIZE [0] hammeredLookup :: [(Widget, value)] -> Widget -> value #-}
</programlisting>
generates a specialisation rule that only fires in Phase 0 (the final phase).
If you do not specify any phase control in the <literal>SPECIALIZE</literal> pragma,
the phase control is inherited from the inline pragma (if any) of the function.
For example:
<programlisting>
foo :: Num a => a -> a
foo = ...blah...
{-# NOINLINE [0] foo #-}
{-# SPECIALIZE foo :: Int -> Int #-}
</programlisting>
The <literal>NOINLINE</literal> pragma tells GHC not to inline <literal>foo</literal>
until Phase 0; and this property is inherited by the specialisation RULE, which will
therefore only fire in Phase 0.</para>
<para>The main reason for using phase control on specialisations is so that you can
write optimisation RULES that fire early in the compilation pipeline, and only
<emphasis>then</emphasis> specialise the calls to the function. If specialisation is
done too early, the optimisation rules might fail to fire.
</para>
</listitem>
<listitem>
<para>The type in a SPECIALIZE pragma can be any type that is less
polymorphic than the type of the original function. In concrete terms,
if the original function is <literal>f</literal> then the pragma
<programlisting>
{-# SPECIALIZE f :: <type> #-}
</programlisting>
is valid if and only if the definition
<programlisting>
f_spec :: <type>
f_spec = f
</programlisting>
is valid. Here are some examples (where we only give the type signature
for the original function, not its code):
<programlisting>
f :: Eq a => a -> b -> b
{-# SPECIALISE f :: Int -> b -> b #-}
g :: (Eq a, Ix b) => a -> b -> b
{-# SPECIALISE g :: (Eq a) => a -> Int -> Int #-}
h :: Eq a => a -> a -> a
{-# SPECIALISE h :: (Eq a) => [a] -> [a] -> [a] #-}
</programlisting>
The last of these examples will generate a
RULE with a somewhat-complex left-hand side (try it yourself), so it might not fire very
well. If you use this kind of specialisation, let us know how well it works.
</para>
</listitem>
</itemizedlist>
<sect3 id="specialize-inline">
<title>SPECIALIZE INLINE</title>
<para>A <literal>SPECIALIZE</literal> pragma can optionally be followed with a
<literal>INLINE</literal> or <literal>NOINLINE</literal> pragma, optionally
followed by a phase, as described in <xref linkend="inline-noinline-pragma"/>.
The <literal>INLINE</literal> pragma affects the specialised version of the
function (only), and applies even if the function is recursive. The motivating
example is this:
<programlisting>
-- A GADT for arrays with type-indexed representation
data Arr e where
ArrInt :: !Int -> ByteArray# -> Arr Int
ArrPair :: !Int -> Arr e1 -> Arr e2 -> Arr (e1, e2)
(!:) :: Arr e -> Int -> e
{-# SPECIALISE INLINE (!:) :: Arr Int -> Int -> Int #-}
{-# SPECIALISE INLINE (!:) :: Arr (a, b) -> Int -> (a, b) #-}
(ArrInt _ ba) !: (I# i) = I# (indexIntArray# ba i)
(ArrPair _ a1 a2) !: i = (a1 !: i, a2 !: i)
</programlisting>
Here, <literal>(!:)</literal> is a recursive function that indexes arrays
of type <literal>Arr e</literal>. Consider a call to <literal>(!:)</literal>
at type <literal>(Int,Int)</literal>. The second specialisation will fire, and
the specialised function will be inlined. It has two calls to
<literal>(!:)</literal>,
both at type <literal>Int</literal>. Both these calls fire the first
specialisation, whose body is also inlined. The result is a type-based
unrolling of the indexing function.</para>
<para>You can add explicit phase control (<xref linkend="phase-control"/>)
to <literal>SPECIALISE INLINE</literal> pragma,
just like on an <literal>INLINE</literal> pragma; if you do so, the same phase
is used for the rewrite rule and the INLINE control of the specialised function.</para>
<para>Warning: you can make GHC diverge by using <literal>SPECIALISE INLINE</literal>
on an ordinarily-recursive function.</para>
</sect3>
<sect3><title>SPECIALIZE for imported functions</title>
<para>
Generally, you can only give a <literal>SPECIALIZE</literal> pragma
for a function defined in the same module.
However if a function <literal>f</literal> is given an <literal>INLINABLE</literal>
pragma at its definition site, then it can subsequently be specialised by
importing modules (see <xref linkend="inlinable-pragma"/>).
For example
<programlisting>
module Map( lookup, blah blah ) where
lookup :: Ord key => [(key,a)] -> key -> Maybe a
lookup = ...
{-# INLINABLE lookup #-}
module Client where
import Map( lookup )
data T = T1 | T2 deriving( Eq, Ord )
{-# SPECIALISE lookup :: [(T,a)] -> T -> Maybe a
</programlisting>
Here, <literal>lookup</literal> is declared <literal>INLINABLE</literal>, but
it cannot be specialised for type <literal>T</literal> at its definition site,
because that type does not exist yet. Instead a client module can define <literal>T</literal>
and then specialise <literal>lookup</literal> at that type.
</para>
<para>
Moreover, every module that imports <literal>Client</literal> (or imports a module
that imports <literal>Client</literal>, transitively) will "see", and make use of,
the specialised version of <literal>lookup</literal>. You don't need to put
a <literal>SPECIALIZE</literal> pragma in every module.
</para>
<para>
Moreover you often don't even need the <literal>SPECIALIZE</literal> pragma in the
first place. When compiling a module M,
GHC's optimiser (with -O) automatically considers each top-level
overloaded function declared in M, and specialises it
for the different types at which it is called in M. The optimiser
<emphasis>also</emphasis> considers each <emphasis>imported</emphasis>
<literal>INLINABLE</literal> overloaded function, and specialises it
for the different types at which it is called in M.
So in our example, it would be enough for <literal>lookup</literal> to
be called at type <literal>T</literal>:
<programlisting>
module Client where
import Map( lookup )
data T = T1 | T2 deriving( Eq, Ord )
findT1 :: [(T,a)] -> Maybe a
findT1 m = lookup m T1 -- A call of lookup at type T
</programlisting>
However, sometimes there are no such calls, in which case the
pragma can be useful.
</para>
</sect3>
<sect3><title>Obsolete SPECIALIZE syntax</title>
<para>Note: In earlier versions of GHC, it was possible to provide your own
specialised function for a given type:
<programlisting>
{-# SPECIALIZE hammeredLookup :: [(Int, value)] -> Int -> value = intLookup #-}
</programlisting>
This feature has been removed, as it is now subsumed by the
<literal>RULES</literal> pragma (see <xref linkend="rule-spec"/>).</para>
</sect3>
</sect2>
<sect2 id="specialize-instance-pragma">
<title>SPECIALIZE instance pragma
</title>
<para>
<indexterm><primary>SPECIALIZE pragma</primary></indexterm>
<indexterm><primary>overloading, death to</primary></indexterm>
Same idea, except for instance declarations. For example:
<programlisting>
instance (Eq a) => Eq (Foo a) where {
{-# SPECIALIZE instance Eq (Foo [(Int, Bar)]) #-}
... usual stuff ...
}
</programlisting>
The pragma must occur inside the <literal>where</literal> part
of the instance declaration.
</para>
</sect2>
<sect2 id="unpack-pragma">
<title>UNPACK pragma</title>
<indexterm><primary>UNPACK</primary></indexterm>
<para>The <literal>UNPACK</literal> indicates to the compiler
that it should unpack the contents of a constructor field into
the constructor itself, removing a level of indirection. For
example:</para>
<programlisting>
data T = T {-# UNPACK #-} !Float
{-# UNPACK #-} !Float
</programlisting>
<para>will create a constructor <literal>T</literal> containing
two unboxed floats. This may not always be an optimisation: if
the <function>T</function> constructor is scrutinised and the
floats passed to a non-strict function for example, they will
have to be reboxed (this is done automatically by the
compiler).</para>
<para>Unpacking constructor fields should only be used in
conjunction with <option>-O</option><footnote>in fact, UNPACK
has no effect without <option>-O</option>, for technical
reasons
(see <ulink url="http://ghc.haskell.org/trac/ghc/ticket/5252">tick
5252</ulink>)</footnote>, in order to expose
unfoldings to the compiler so the reboxing can be removed as
often as possible. For example:</para>
<programlisting>
f :: T -> Float
f (T f1 f2) = f1 + f2
</programlisting>
<para>The compiler will avoid reboxing <function>f1</function>
and <function>f2</function> by inlining <function>+</function>
on floats, but only when <option>-O</option> is on.</para>
<para>Any single-constructor data is eligible for unpacking; for
example</para>
<programlisting>
data T = T {-# UNPACK #-} !(Int,Int)
</programlisting>
<para>will store the two <literal>Int</literal>s directly in the
<function>T</function> constructor, by flattening the pair.
Multi-level unpacking is also supported:
<programlisting>
data T = T {-# UNPACK #-} !S
data S = S {-# UNPACK #-} !Int {-# UNPACK #-} !Int
</programlisting>
will store two unboxed <literal>Int#</literal>s
directly in the <function>T</function> constructor. The
unpacker can see through newtypes, too.</para>
<para>See also the <option>-funbox-strict-fields</option> flag,
which essentially has the effect of adding
<literal>{-# UNPACK #-}</literal> to every strict
constructor field.</para>
</sect2>
<sect2 id="nounpack-pragma">
<title>NOUNPACK pragma</title>
<indexterm><primary>NOUNPACK</primary></indexterm>
<para>The <literal>NOUNPACK</literal> pragma indicates to the compiler
that it should not unpack the contents of a constructor field.
Example:
</para>
<programlisting>
data T = T {-# NOUNPACK #-} !(Int,Int)
</programlisting>
<para>
Even with the flags
<option>-funbox-strict-fields</option> and <option>-O</option>,
the field of the constructor <function>T</function> is not
unpacked.
</para>
</sect2>
<sect2 id="source-pragma">
<title>SOURCE pragma</title>
<indexterm><primary>SOURCE</primary></indexterm>
<para>The <literal>{-# SOURCE #-}</literal> pragma is used only in <literal>import</literal> declarations,
to break a module loop. It is described in detail in <xref linkend="mutual-recursion"/>.
</para>
</sect2>
<sect2 id="overlap-pragma">
<title>OVERLAPPING, OVERLAPPABLE, OVERLAPS, and INCOHERENT pragmas</title>
<para>
The pragmas
<literal>OVERLAPPING</literal>,
<literal>OVERLAPPABLE</literal>,
<literal>OVERLAPS</literal>,
<literal>INCOHERENT</literal> are used to specify the overlap
behavior for individual instances, as described in Section
<xref linkend="instance-overlap"/>. The pragmas are written immediately
after the <literal>instance</literal> keyword, like this:
</para>
<programlisting>
instance {-# OVERLAPPING #-} C t where ...
</programlisting>
</sect2>
</sect1>
<!-- ======================= REWRITE RULES ======================== -->
<sect1 id="rewrite-rules">
<title>Rewrite rules
<indexterm><primary>RULES pragma</primary></indexterm>
<indexterm><primary>pragma, RULES</primary></indexterm>
<indexterm><primary>rewrite rules</primary></indexterm></title>
<para>
The programmer can specify rewrite rules as part of the source program
(in a pragma).
Here is an example:
<programlisting>
{-# RULES
"map/map" forall f g xs. map f (map g xs) = map (f.g) xs
#-}
</programlisting>
</para>
<para>
Use the debug flag <option>-ddump-simpl-stats</option> to see what rules fired.
If you need more information, then <option>-ddump-rule-firings</option> shows you
each individual rule firing and <option>-ddump-rule-rewrites</option> also shows what the code looks like before and after the rewrite.
</para>
<sect2>
<title>Syntax</title>
<para>
From a syntactic point of view:
<itemizedlist>
<listitem>
<para>
There may be zero or more rules in a <literal>RULES</literal> pragma, separated by semicolons (which
may be generated by the layout rule).
</para>
</listitem>
<listitem>
<para>
The layout rule applies in a pragma.
Currently no new indentation level
is set, so if you put several rules in single RULES pragma and wish to use layout to separate them,
you must lay out the starting in the same column as the enclosing definitions.
<programlisting>
{-# RULES
"map/map" forall f g xs. map f (map g xs) = map (f.g) xs
"map/append" forall f xs ys. map f (xs ++ ys) = map f xs ++ map f ys
#-}
</programlisting>
Furthermore, the closing <literal>#-}</literal>
should start in a column to the right of the opening <literal>{-#</literal>.
</para>
</listitem>
<listitem>
<para>
Each rule has a name, enclosed in double quotes. The name itself has
no significance at all. It is only used when reporting how many times the rule fired.
</para>
</listitem>
<listitem>
<para>
A rule may optionally have a phase-control number (see <xref linkend="phase-control"/>),
immediately after the name of the rule. Thus:
<programlisting>
{-# RULES
"map/map" [2] forall f g xs. map f (map g xs) = map (f.g) xs
#-}
</programlisting>
The "[2]" means that the rule is active in Phase 2 and subsequent phases. The inverse
notation "[~2]" is also accepted, meaning that the rule is active up to, but not including,
Phase 2.
</para>
<para>
Rules support the special phase-control notation "[~]", which means the rule is never active.
This feature supports plugins (see <xref linkend="compiler-plugins"/>), by making it possible
to define a RULE that is never run by GHC, but is nevertheless parsed, typechecked etc, so that
it is available to the plugin.
</para>
</listitem>
<listitem>
<para>
Each variable mentioned in a rule must either be in scope (e.g. <function>map</function>),
or bound by the <literal>forall</literal> (e.g. <function>f</function>, <function>g</function>, <function>xs</function>). The variables bound by
the <literal>forall</literal> are called the <emphasis>pattern</emphasis> variables. They are separated
by spaces, just like in a type <literal>forall</literal>.
</para>
</listitem>
<listitem>
<para>
A pattern variable may optionally have a type signature.
If the type of the pattern variable is polymorphic, it <emphasis>must</emphasis> have a type signature.
For example, here is the <literal>foldr/build</literal> rule:
<programlisting>
"fold/build" forall k z (g::forall b. (a->b->b) -> b -> b) .
foldr k z (build g) = g k z
</programlisting>
Since <function>g</function> has a polymorphic type, it must have a type signature.
</para>
</listitem>
<listitem>
<para>
The left hand side of a rule must consist of a top-level variable applied
to arbitrary expressions. For example, this is <emphasis>not</emphasis> OK:
<programlisting>
"wrong1" forall e1 e2. case True of { True -> e1; False -> e2 } = e1
"wrong2" forall f. f True = True
</programlisting>
In <literal>"wrong1"</literal>, the LHS is not an application; in <literal>"wrong2"</literal>, the LHS has a pattern variable
in the head.
</para>
</listitem>
<listitem>
<para>
A rule does not need to be in the same module as (any of) the
variables it mentions, though of course they need to be in scope.
</para>
</listitem>
<listitem>
<para>
All rules are implicitly exported from the module, and are therefore
in force in any module that imports the module that defined the rule, directly
or indirectly. (That is, if A imports B, which imports C, then C's rules are
in force when compiling A.) The situation is very similar to that for instance
declarations.
</para>
</listitem>
<listitem>
<para>
Inside a RULE "<literal>forall</literal>" is treated as a keyword, regardless of
any other flag settings. Furthermore, inside a RULE, the language extension
<option>-XScopedTypeVariables</option> is automatically enabled; see
<xref linkend="scoped-type-variables"/>.
</para>
</listitem>
<listitem>
<para>
Like other pragmas, RULE pragmas are always checked for scope errors, and
are typechecked. Typechecking means that the LHS and RHS of a rule are typechecked,
and must have the same type. However, rules are only <emphasis>enabled</emphasis>
if the <option>-fenable-rewrite-rules</option> flag is
on (see <xref linkend="rule-semantics"/>).
</para>
</listitem>
</itemizedlist>
</para>
</sect2>
<sect2 id="rule-semantics">
<title>Semantics</title>
<para>
From a semantic point of view:
<itemizedlist>
<listitem>
<para>
Rules are enabled (that is, used during optimisation)
by the <option>-fenable-rewrite-rules</option> flag.
This flag is implied by <option>-O</option>, and may be switched
off (as usual) by <option>-fno-enable-rewrite-rules</option>.
(NB: enabling <option>-fenable-rewrite-rules</option> without <option>-O</option>
may not do what you expect, though, because without <option>-O</option> GHC
ignores all optimisation information in interface files;
see <option>-fignore-interface-pragmas</option>, <xref linkend="options-f"/>.)
Note that <option>-fenable-rewrite-rules</option> is an <emphasis>optimisation</emphasis> flag, and
has no effect on parsing or typechecking.
</para>
</listitem>
<listitem>
<para>
Rules are regarded as left-to-right rewrite rules.
When GHC finds an expression that is a substitution instance of the LHS
of a rule, it replaces the expression by the (appropriately-substituted) RHS.
By "a substitution instance" we mean that the LHS can be made equal to the
expression by substituting for the pattern variables.
</para>
</listitem>
<listitem>
<para>
GHC makes absolutely no attempt to verify that the LHS and RHS
of a rule have the same meaning. That is undecidable in general, and
infeasible in most interesting cases. The responsibility is entirely the programmer's!
</para>
</listitem>
<listitem>
<para>
GHC makes no attempt to make sure that the rules are confluent or
terminating. For example:
<programlisting>
"loop" forall x y. f x y = f y x
</programlisting>
This rule will cause the compiler to go into an infinite loop.
</para>
</listitem>
<listitem>
<para>
If more than one rule matches a call, GHC will choose one arbitrarily to apply.
</para>
</listitem>
<listitem>
<para>
GHC currently uses a very simple, syntactic, matching algorithm
for matching a rule LHS with an expression. It seeks a substitution
which makes the LHS and expression syntactically equal modulo alpha
conversion. The pattern (rule), but not the expression, is eta-expanded if
necessary. (Eta-expanding the expression can lead to laziness bugs.)
But not beta conversion (that's called higher-order matching).
</para>
<para>
Matching is carried out on GHC's intermediate language, which includes
type abstractions and applications. So a rule only matches if the
types match too. See <xref linkend="rule-spec"/> below.
</para>
</listitem>
<listitem>
<para>
GHC keeps trying to apply the rules as it optimises the program.
For example, consider:
<programlisting>
let s = map f
t = map g
in
s (t xs)
</programlisting>
The expression <literal>s (t xs)</literal> does not match the rule <literal>"map/map"</literal>, but GHC
will substitute for <varname>s</varname> and <varname>t</varname>, giving an expression which does match.
If <varname>s</varname> or <varname>t</varname> was (a) used more than once, and (b) large or a redex, then it would
not be substituted, and the rule would not fire.
</para>
</listitem>
</itemizedlist>
</para>
</sect2>
<sect2 id="rules-inline">
<title>How rules interact with INLINE/NOINLINE pragmas</title>
<para>
Ordinary inlining happens at the same time as rule rewriting, which may lead to unexpected
results. Consider this (artificial) example
<programlisting>
f x = x
g y = f y
h z = g True
{-# RULES "f" f True = False #-}
</programlisting>
Since <literal>f</literal>'s right-hand side is small, it is inlined into <literal>g</literal>,
to give
<programlisting>
g y = y
</programlisting>
Now <literal>g</literal> is inlined into <literal>h</literal>, but <literal>f</literal>'s RULE has
no chance to fire.
If instead GHC had first inlined <literal>g</literal> into <literal>h</literal> then there
would have been a better chance that <literal>f</literal>'s RULE might fire.
</para>
<para>
The way to get predictable behaviour is to use a NOINLINE
pragma, or an INLINE[<replaceable>phase</replaceable>] pragma, on <literal>f</literal>, to ensure
that it is not inlined until its RULEs have had a chance to fire.
The warning flag <option>-fwarn-inline-rule-shadowing</option> (see <xref linkend="options-sanity"/>)
warns about this situation.
</para>
</sect2>
<sect2 id="conlike">
<title>How rules interact with CONLIKE pragmas</title>
<para>
GHC is very cautious about duplicating work. For example, consider
<programlisting>
f k z xs = let xs = build g
in ...(foldr k z xs)...sum xs...
{-# RULES "foldr/build" forall k z g. foldr k z (build g) = g k z #-}
</programlisting>
Since <literal>xs</literal> is used twice, GHC does not fire the foldr/build rule. Rightly
so, because it might take a lot of work to compute <literal>xs</literal>, which would be
duplicated if the rule fired.
</para>
<para>
Sometimes, however, this approach is over-cautious, and we <emphasis>do</emphasis> want the
rule to fire, even though doing so would duplicate redex. There is no way that GHC can work out
when this is a good idea, so we provide the CONLIKE pragma to declare it, thus:
<programlisting>
{-# INLINE CONLIKE [1] f #-}
f x = <replaceable>blah</replaceable>
</programlisting>
CONLIKE is a modifier to an INLINE or NOINLINE pragma. It specifies that an application
of f to one argument (in general, the number of arguments to the left of the '=' sign)
should be considered cheap enough to duplicate, if such a duplication would make rule
fire. (The name "CONLIKE" is short for "constructor-like", because constructors certainly
have such a property.)
The CONLIKE pragma is a modifier to INLINE/NOINLINE because it really only makes sense to match
<literal>f</literal> on the LHS of a rule if you are sure that <literal>f</literal> is
not going to be inlined before the rule has a chance to fire.
</para>
</sect2>
<sect2 id="rules-class-methods">
<title>How rules interact with class methods</title>
<para>
Giving a RULE for a class method is a bad idea:
<programlisting>
class C a where
op :: a -> a -> a
instance C Bool where
op x y = ...rhs for op at Bool...
{-# RULES "f" op True y = False #-}
</programlisting>
In this
example, <literal>op</literal> is not an ordinary top-level function;
it is a class method. GHC rapidly rewrites any occurrences of
<literal>op</literal>-used-at-type-Bool
to a specialised function, say <literal>opBool</literal>, where
<programlisting>
opBool :: Bool -> Bool -> Bool
opBool x y = ..rhs for op at Bool...
</programlisting>
So the RULE never has a chance to fire, for just the same reasons as in <xref linkend="rules-inline"/>.
</para>
<para>
The solution is to define the instance-specific function yourself, with a pragma to prevent
it being inlined too early, and give a RULE for it:
<programlisting>
instance C Bool where
op x y = opBool
opBool :: Bool -> Bool -> Bool
{-# NOINLINE [1] opBool #-}
opBool x y = ..rhs for op at Bool...
{-# RULES "f" opBool True y = False #-}
</programlisting>
If you want a RULE that truly applies to the overloaded class method, the only way to
do it is like this:
<programlisting>
class C a where
op_c :: a -> a -> a
op :: C a => a -> a -> a
{-# NOINLINE [1] op #-}
op = op_c
{-# RULES "reassociate" op (op x y) z = op x (op y z) #-}
</programlisting>
Now the inlining of <literal>op</literal> is delayed until the rule has a chance to fire.
The down-side is that instance declarations must define <literal>op_c</literal>, but
all other uses should go via <literal>op</literal>.
</para>
</sect2>
<sect2>
<title>List fusion</title>
<para>
The RULES mechanism is used to implement fusion (deforestation) of common list functions.
If a "good consumer" consumes an intermediate list constructed by a "good producer", the
intermediate list should be eliminated entirely.
</para>
<para>
The following are good producers:
<itemizedlist>
<listitem>
<para>
List comprehensions
</para>
</listitem>
<listitem>
<para>
Enumerations of <literal>Int</literal>, <literal>Integer</literal> and <literal>Char</literal> (e.g. <literal>['a'..'z']</literal>).
</para>
</listitem>
<listitem>
<para>
Explicit lists (e.g. <literal>[True, False]</literal>)
</para>
</listitem>
<listitem>
<para>
The cons constructor (e.g <literal>3:4:[]</literal>)
</para>
</listitem>
<listitem>
<para>
<function>++</function>
</para>
</listitem>
<listitem>
<para>
<function>map</function>
</para>
</listitem>
<listitem>
<para>
<function>take</function>, <function>filter</function>
</para>
</listitem>
<listitem>
<para>
<function>iterate</function>, <function>repeat</function>
</para>
</listitem>
<listitem>
<para>
<function>zip</function>, <function>zipWith</function>
</para>
</listitem>
</itemizedlist>
</para>
<para>
The following are good consumers:
<itemizedlist>
<listitem>
<para>
List comprehensions
</para>
</listitem>
<listitem>
<para>
<function>array</function> (on its second argument)
</para>
</listitem>
<listitem>
<para>
<function>++</function> (on its first argument)
</para>
</listitem>
<listitem>
<para>
<function>foldr</function>
</para>
</listitem>
<listitem>
<para>
<function>map</function>
</para>
</listitem>
<listitem>
<para>
<function>take</function>, <function>filter</function>
</para>
</listitem>
<listitem>
<para>
<function>concat</function>
</para>
</listitem>
<listitem>
<para>
<function>unzip</function>, <function>unzip2</function>, <function>unzip3</function>, <function>unzip4</function>
</para>
</listitem>
<listitem>
<para>
<function>zip</function>, <function>zipWith</function> (but on one argument only; if both are good producers, <function>zip</function>
will fuse with one but not the other)
</para>
</listitem>
<listitem>
<para>
<function>partition</function>
</para>
</listitem>
<listitem>
<para>
<function>head</function>
</para>
</listitem>
<listitem>
<para>
<function>and</function>, <function>or</function>, <function>any</function>, <function>all</function>
</para>
</listitem>
<listitem>
<para>
<function>sequence_</function>
</para>
</listitem>
<listitem>
<para>
<function>msum</function>
</para>
</listitem>
</itemizedlist>
</para>
<para>
So, for example, the following should generate no intermediate lists:
<programlisting>
array (1,10) [(i,i*i) | i <- map (+ 1) [0..9]]
</programlisting>
</para>
<para>
This list could readily be extended; if there are Prelude functions that you use
a lot which are not included, please tell us.
</para>
<para>
If you want to write your own good consumers or producers, look at the
Prelude definitions of the above functions to see how to do so.
</para>
</sect2>
<sect2 id="rule-spec">
<title>Specialisation
</title>
<para>
Rewrite rules can be used to get the same effect as a feature
present in earlier versions of GHC.
For example, suppose that:
<programlisting>
genericLookup :: Ord a => Table a b -> a -> b
intLookup :: Table Int b -> Int -> b
</programlisting>
where <function>intLookup</function> is an implementation of
<function>genericLookup</function> that works very fast for
keys of type <literal>Int</literal>. You might wish
to tell GHC to use <function>intLookup</function> instead of
<function>genericLookup</function> whenever the latter was called with
type <literal>Table Int b -> Int -> b</literal>.
It used to be possible to write
<programlisting>
{-# SPECIALIZE genericLookup :: Table Int b -> Int -> b = intLookup #-}
</programlisting>
This feature is no longer in GHC, but rewrite rules let you do the same thing:
<programlisting>
{-# RULES "genericLookup/Int" genericLookup = intLookup #-}
</programlisting>
This slightly odd-looking rule instructs GHC to replace
<function>genericLookup</function> by <function>intLookup</function>
<emphasis>whenever the types match</emphasis>.
What is more, this rule does not need to be in the same
file as <function>genericLookup</function>, unlike the
<literal>SPECIALIZE</literal> pragmas which currently do (so that they
have an original definition available to specialise).
</para>
<para>It is <emphasis>Your Responsibility</emphasis> to make sure that
<function>intLookup</function> really behaves as a specialised version
of <function>genericLookup</function>!!!</para>
<para>An example in which using <literal>RULES</literal> for
specialisation will Win Big:
<programlisting>
toDouble :: Real a => a -> Double
toDouble = fromRational . toRational
{-# RULES "toDouble/Int" toDouble = i2d #-}
i2d (I# i) = D# (int2Double# i) -- uses Glasgow prim-op directly
</programlisting>
The <function>i2d</function> function is virtually one machine
instruction; the default conversion—via an intermediate
<literal>Rational</literal>—is obscenely expensive by
comparison.
</para>
</sect2>
<sect2 id="controlling-rules">
<title>Controlling what's going on in rewrite rules</title>
<para>
<itemizedlist>
<listitem>
<para>
Use <option>-ddump-rules</option> to see the rules that are defined
<emphasis>in this module</emphasis>.
This includes rules generated by the specialisation pass, but excludes
rules imported from other modules.
</para>
</listitem>
<listitem>
<para>
Use <option>-ddump-simpl-stats</option> to see what rules are being fired.
If you add <option>-dppr-debug</option> you get a more detailed listing.
</para>
</listitem>
<listitem>
<para>
Use <option>-ddump-rule-firings</option> or <option>-ddump-rule-rewrites</option>
to see in great detail what rules are being fired.
If you add <option>-dppr-debug</option> you get a still more detailed listing.
</para>
</listitem>
<listitem>
<para>
The definition of (say) <function>build</function> in <filename>GHC/Base.lhs</filename> looks like this:
<programlisting>
build :: forall a. (forall b. (a -> b -> b) -> b -> b) -> [a]
{-# INLINE build #-}
build g = g (:) []
</programlisting>
Notice the <literal>INLINE</literal>! That prevents <literal>(:)</literal> from being inlined when compiling
<literal>PrelBase</literal>, so that an importing module will “see” the <literal>(:)</literal>, and can
match it on the LHS of a rule. <literal>INLINE</literal> prevents any inlining happening
in the RHS of the <literal>INLINE</literal> thing. I regret the delicacy of this.
</para>
</listitem>
<listitem>
<para>
In <filename>libraries/base/GHC/Base.lhs</filename> look at the rules for <function>map</function> to
see how to write rules that will do fusion and yet give an efficient
program even if fusion doesn't happen. More rules in <filename>GHC/List.lhs</filename>.
</para>
</listitem>
</itemizedlist>
</para>
</sect2>
</sect1>
<sect1 id="special-ids">
<title>Special built-in functions</title>
<para>GHC has a few built-in functions with special behaviour.
In particular:
<itemizedlist>
<listitem><para>
<ulink url="&libraryBaseLocation;/GHC-Exts.html#v%3Ainline"><literal>inline</literal></ulink>
allows control over inlining on a per-call-site basis.
</para></listitem>
<listitem><para>
<ulink url="&libraryBaseLocation;/GHC-Exts.html#v%3Alazy"><literal>lazy</literal></ulink>
restrains the strictness analyser.
</para></listitem>
<listitem><para>
<ulink url="&libraryBaseLocation;/GHC-Exts.html#v%3AoneShot"><literal>oneShot</literal></ulink>
gives a hint to the compiler about how often a function is being called.
</para></listitem>
</itemizedlist>
</para>
</sect1>
<sect1 id="generic-classes">
<title>Generic classes</title>
<para>
GHC used to have an implementation of generic classes as defined in the paper
"Derivable type classes", Ralf Hinze and Simon Peyton Jones, Haskell Workshop,
Montreal Sept 2000, pp94-105. These have been removed and replaced by the more
general <link linkend="generic-programming">support for generic programming</link>.
</para>
</sect1>
<sect1 id="generic-programming">
<title>Generic programming</title>
<para>
Using a combination of <option>-XDeriveGeneric</option>
(<xref linkend="deriving-typeable"/>),
<option>-XDefaultSignatures</option> (<xref linkend="class-default-signatures"/>),
and <option>-XDeriveAnyClass</option> (<xref linkend="derive-any-class"/>),
you can easily do datatype-generic
programming using the <literal>GHC.Generics</literal> framework. This section
gives a very brief overview of how to do it.
</para>
<para>
Generic programming support in GHC allows defining classes with methods that
do not need a user specification when instantiating: the method body is
automatically derived by GHC. This is similar to what happens for standard
classes such as <literal>Read</literal> and <literal>Show</literal>, for
instance, but now for user-defined classes.
</para>
<sect2>
<title>Deriving representations</title>
<para>
The first thing we need is generic representations. The
<literal>GHC.Generics</literal> module defines a couple of primitive types
that are used to represent Haskell datatypes:
<programlisting>
-- | Unit: used for constructors without arguments
data U1 p = U1
-- | Constants, additional parameters and recursion of kind *
newtype K1 i c p = K1 { unK1 :: c }
-- | Meta-information (constructor names, etc.)
newtype M1 i c f p = M1 { unM1 :: f p }
-- | Sums: encode choice between constructors
infixr 5 :+:
data (:+:) f g p = L1 (f p) | R1 (g p)
-- | Products: encode multiple arguments to constructors
infixr 6 :*:
data (:*:) f g p = f p :*: g p
</programlisting>
</para>
<para>
The <literal>Generic</literal> and <literal>Generic1</literal> classes mediate
between user-defined datatypes and their internal representation as a
sum-of-products:
<programlisting>
class Generic a where
-- Encode the representation of a user datatype
type Rep a :: * -> *
-- Convert from the datatype to its representation
from :: a -> (Rep a) x
-- Convert from the representation to the datatype
to :: (Rep a) x -> a
class Generic1 f where
type Rep1 f :: * -> *
from1 :: f a -> Rep1 f a
to1 :: Rep1 f a -> f a
</programlisting>
<literal>Generic1</literal> is used for functions that can only be defined over
type containers, such as <literal>map</literal>.
Instances of these classes can be derived by GHC with the
<option>-XDeriveGeneric</option> (<xref linkend="deriving-typeable"/>), and are
necessary to be able to define generic instances automatically.
</para>
<para>
For example, a user-defined datatype of trees <literal>data UserTree a = Node a
(UserTree a) (UserTree a) | Leaf</literal> gets the following representation:
<programlisting>
instance Generic (UserTree a) where
-- Representation type
type Rep (UserTree a) =
M1 D D1UserTree (
M1 C C1_0UserTree (
M1 S NoSelector (K1 R a)
:*: M1 S NoSelector (K1 R (UserTree a))
:*: M1 S NoSelector (K1 R (UserTree a)))
:+: M1 C C1_1UserTree U1)
-- Conversion functions
from (Node x l r) = M1 (L1 (M1 (M1 (K1 x) :*: M1 (K1 l) :*: M1 (K1 r))))
from Leaf = M1 (R1 (M1 U1))
to (M1 (L1 (M1 (M1 (K1 x) :*: M1 (K1 l) :*: M1 (K1 r))))) = Node x l r
to (M1 (R1 (M1 U1))) = Leaf
-- Meta-information
data D1UserTree
data C1_0UserTree
data C1_1UserTree
instance Datatype D1UserTree where
datatypeName _ = "UserTree"
moduleName _ = "Main"
packageName _ = "main"
instance Constructor C1_0UserTree where
conName _ = "Node"
instance Constructor C1_1UserTree where
conName _ = "Leaf"
</programlisting>
This representation is generated automatically if a
<literal>deriving Generic</literal> clause is attached to the datatype.
<link linkend="stand-alone-deriving">Standalone deriving</link> can also be
used.
</para>
</sect2>
<sect2>
<title>Writing generic functions</title>
<para>
A generic function is defined by creating a class and giving instances for
each of the representation types of <literal>GHC.Generics</literal>. As an
example we show generic serialization:
<programlisting>
data Bin = O | I
class GSerialize f where
gput :: f a -> [Bin]
instance GSerialize U1 where
gput U1 = []
instance (GSerialize a, GSerialize b) => GSerialize (a :*: b) where
gput (x :*: y) = gput x ++ gput y
instance (GSerialize a, GSerialize b) => GSerialize (a :+: b) where
gput (L1 x) = O : gput x
gput (R1 x) = I : gput x
instance (GSerialize a) => GSerialize (M1 i c a) where
gput (M1 x) = gput x
instance (Serialize a) => GSerialize (K1 i a) where
gput (K1 x) = put x
</programlisting>
Typically this class will not be exported, as it only makes sense to have
instances for the representation types.
</para>
</sect2>
<sect2>
<title>Generic defaults</title>
<para>
The only thing left to do now is to define a "front-end" class, which is
exposed to the user:
<programlisting>
class Serialize a where
put :: a -> [Bin]
default put :: (Generic a, GSerialize (Rep a)) => a -> [Bit]
put = gput . from
</programlisting>
Here we use a <link linkend="class-default-signatures">default signature</link>
to specify that the user does not have to provide an implementation for
<literal>put</literal>, as long as there is a <literal>Generic</literal>
instance for the type to instantiate. For the <literal>UserTree</literal> type,
for instance, the user can just write:
<programlisting>
instance (Serialize a) => Serialize (UserTree a)
</programlisting>
The default method for <literal>put</literal> is then used, corresponding to the
generic implementation of serialization.
If you are using <option>-XDeriveAnyClass</option>, the same instance is
generated by simply attaching a <literal>deriving Serialize</literal> clause
to the <literal>UserTree</literal> datatype declaration.
For more examples of generic functions please refer to the
<ulink url="http://hackage.haskell.org/package/generic-deriving">generic-deriving</ulink>
package on Hackage.
</para>
</sect2>
<sect2>
<title>More information</title>
<para>
For more details please refer to the
<ulink url="http://www.haskell.org/haskellwiki/GHC.Generics">HaskellWiki
page</ulink> or the original paper:
</para>
<itemizedlist>
<listitem>
<para>
Jose Pedro Magalhaes, Atze Dijkstra, Johan Jeuring, and Andres Loeh.
<ulink url="http://dreixel.net/research/pdf/gdmh.pdf">
A generic deriving mechanism for Haskell</ulink>.
<citetitle>Proceedings of the third ACM Haskell symposium on Haskell</citetitle>
(Haskell'2010), pp. 37-48, ACM, 2010.
</para>
</listitem>
</itemizedlist>
</sect2>
</sect1>
<sect1 id="roles">
<title>Roles
<indexterm><primary>roles</primary></indexterm>
</title>
<para>
Using <option>-XGeneralizedNewtypeDeriving</option> (<xref
linkend="generalized-newtype-deriving" />), a programmer can take existing
instances of classes and "lift" these into instances of that class for a
newtype. However, this is not always safe. For example, consider the following:
</para>
<programlisting>
newtype Age = MkAge { unAge :: Int }
type family Inspect x
type instance Inspect Age = Int
type instance Inspect Int = Bool
class BadIdea a where
bad :: a -> Inspect a
instance BadIdea Int where
bad = (> 0)
deriving instance BadIdea Age -- not allowed!
</programlisting>
<para>
If the derived instance were allowed, what would the type of its method
<literal>bad</literal> be? It would seem to be <literal>Age -> Inspect
Age</literal>, which is equivalent to <literal>Age -> Int</literal>, according
to the type family <literal>Inspect</literal>. Yet, if we simply adapt the
implementation from the instance for <literal>Int</literal>, the implementation
for <literal>bad</literal> produces a <literal>Bool</literal>, and we have trouble.
</para>
<para>
The way to identify such situations is to have <emphasis>roles</emphasis> assigned
to type variables of datatypes, classes, and type synonyms.</para>
<para>
Roles as implemented in GHC are a from a simplified version of the work
described in <ulink
url="http://www.seas.upenn.edu/~sweirich/papers/popl163af-weirich.pdf">Generative
type abstraction and type-level computation</ulink>, published at POPL 2011.</para>
<sect2 id="nominal-representational-and-phantom">
<title>Nominal, Representational, and Phantom</title>
<para>The goal of the roles system is to track when two types have the same
underlying representation. In the example above, <literal>Age</literal> and
<literal>Int</literal> have the same representation. But, the corresponding
instances of <literal>BadIdea</literal> would <emphasis>not</emphasis> have
the same representation, because the types of the implementations of
<literal>bad</literal> would be different.</para>
<para>Suppose we have two uses of a type constructor, each applied to the same
parameters except for one difference. (For example, <literal>T Age Bool
c</literal> and <literal>T Int Bool c</literal> for some type
<literal>T</literal>.) The role of a type parameter says what we need to
know about the two differing type arguments in order to know that the two
outer types have the same representation (in the example, what must be true
about <literal>Age</literal> and <literal>Int</literal> in order to show that
<literal>T Age Bool c</literal> has the same representation as <literal>
T Int Bool c</literal>).</para>
<para>GHC supports three different roles for type parameters: nominal,
representational, and phantom. If a type parameter has a nominal role, then
the two types that differ must not actually differ at all: they must be
identical (after type family reduction). If a type parameter has a
representational role, then the two types must have the same representation.
(If <literal>T</literal>'s first parameter's role is representational, then
<literal>T Age Bool c</literal> and <literal>T Int Bool c</literal> would have
the same representation, because <literal>Age</literal> and
<literal>Int</literal> have the same representation.) If a type parameter has
a phantom role, then we need no further information.</para>
<para>Here are some examples:</para>
<programlisting>
data Simple a = MkSimple a -- a has role representational
type family F
type instance F Int = Bool
type instance F Age = Char
data Complex a = MkComplex (F a) -- a has role nominal
data Phant a = MkPhant Bool -- a has role phantom
</programlisting>
<para>The type <literal>Simple</literal> has its parameter at role
representational, which is generally the most common case. <literal>Simple
Age</literal> would have the same representation as <literal>Simple
Int</literal>. The type <literal>Complex</literal>, on the other hand, has its
parameter at role nominal, because <literal>Simple Age</literal> and
<literal>Simple Int</literal> are <emphasis>not</emphasis> the same. Lastly,
<literal>Phant Age</literal> and <literal>Phant Bool</literal> have the same
representation, even though <literal>Age</literal> and <literal>Bool</literal>
are unrelated.</para>
</sect2>
<sect2 id="role-inference">
<title>Role inference</title>
<para>
What role should a given type parameter should have? GHC performs role
inference to determine the correct role for every parameter. It starts with a
few base facts: <literal>(->)</literal> has two representational parameters;
<literal>(~)</literal> has two nominal parameters; all type families'
parameters are nominal; and all GADT-like parameters are nominal. Then, these
facts are propagated to all places where these types are used. The default
role for datatypes and synonyms is phantom; the default role for classes is
nominal. Thus, for datatypes and synonyms, any parameters unused in the
right-hand side (or used only in other types in phantom positions) will be
phantom. Whenever a parameter is used in a representational position (that is,
used as a type argument to a constructor whose corresponding variable is at
role representational), we raise its role from phantom to representational.
Similarly, when a parameter is used in a nominal position, its role is
upgraded to nominal. We never downgrade a role from nominal to phantom or
representational, or from representational to phantom. In this way, we infer
the most-general role for each parameter.
</para>
<para>
Classes have their roles default to nominal to promote coherence of class
instances. If a <literal>C Int</literal> were stored in a datatype, it would
be quite bad if that were somehow changed into a <literal>C Age</literal>
somewhere, especially if another <literal>C Age</literal> had been declared!
</para>
<para>There is one particularly tricky case that should be explained:</para>
<programlisting>
data Tricky a b = MkTricky (a b)
</programlisting>
<para>What should <literal>Tricky</literal>'s roles be? At first blush, it
would seem that both <literal>a</literal> and <literal>b</literal> should be
at role representational, since both are used in the right-hand side and
neither is involved in a type family. However, this would be wrong, as the
following example shows:</para>
<programlisting>
data Nom a = MkNom (F a) -- type family F from example above
</programlisting>
<para>Is <literal>Tricky Nom Age</literal> representationally equal to
<literal>Tricky Nom Int</literal>? No! The former stores a
<literal>Char</literal> and the latter stores a <literal>Bool</literal>. The
solution to this is to require all parameters to type variables to have role
nominal. Thus, GHC would infer role representational for <literal>a</literal>
but role nominal for <literal>b</literal>.</para>
</sect2>
<sect2 id="role-annotations">
<title>Role annotations
<indexterm><primary>-XRoleAnnotations</primary></indexterm>
</title>
<para>
Sometimes the programmer wants to constrain the inference process. For
example, the base library contains the following definition:
</para>
<programlisting>
data Ptr a = Ptr Addr#
</programlisting>
<para>
The idea is that <literal>a</literal> should really be a representational
parameter, but role inference assigns it to phantom. This makes some level of
sense: a pointer to an <literal>Int</literal> really is representationally the
same as a pointer to a <literal>Bool</literal>. But, that's not at all how we
want to use <literal>Ptr</literal>s! So, we want to be able to say</para>
<programlisting>
type role Ptr representational
data Ptr a = Ptr Addr#
</programlisting>
<para>
The <literal>type role</literal> (enabled with
<option>-XRoleAnnotations</option>) declaration forces the parameter
<literal>a</literal> to be at role representational, not role phantom. GHC
then checks the user-supplied roles to make sure they don't break any
promises. It would be bad, for example, if the user could make
<literal>BadIdea</literal>'s role be representational.
</para>
<para>As another example, we can consider a type <literal>Set a</literal> that
represents a set of data, ordered according to <literal>a</literal>'s
<literal>Ord</literal> instance. While it would generally be type-safe to
consider <literal>a</literal> to be at role representational, it is possible
that a <literal>newtype</literal> and its base type have
<emphasis>different</emphasis> orderings encoded in their respective
<literal>Ord</literal> instances. This would lead to misbehavior at runtime.
So, the author of the <literal>Set</literal> datatype would like its parameter
to be at role nominal. This would be done with a declaration</para>
<programlisting>
type role Set nominal
</programlisting>
<para>Role annotations can also be used should a programmer wish to write
a class with a representational (or phantom) role. However, as a class
with non-nominal roles can quickly lead to class instance incoherence,
it is necessary to also specify <option>-XIncoherentInstances</option>
to allow non-nominal roles for classes.</para>
<para>The other place where role annotations may be necessary are in
<literal>hs-boot</literal> files (<xref linkend="mutual-recursion"/>), where
the right-hand sides of definitions can be omitted. As usual, the
types/classes declared in an <literal>hs-boot</literal> file must match up
with the definitions in the <literal>hs</literal> file, including down to the
roles. The default role for datatypes
is representational in <literal>hs-boot</literal> files,
corresponding to the common use case.</para>
<para>
Role annotations are allowed on data, newtype, and class declarations. A role
annotation declaration starts with <literal>type role</literal> and is
followed by one role listing for each parameter of the type. (This parameter
count includes parameters implicitly specified by a kind signature in a
GADT-style data or newtype declaration.) Each role listing is a role
(<literal>nominal</literal>, <literal>representational</literal>, or
<literal>phantom</literal>) or a <literal>_</literal>. Using a
<literal>_</literal> says that GHC should infer that role. The role annotation
may go anywhere in the same module as the datatype or class definition
(much like a value-level type signature).
Here are some examples:</para>
<programlisting>
type role T1 _ phantom
data T1 a b = MkT1 a -- b is not used; annotation is fine but unnecessary
type role T2 _ phantom
data T2 a b = MkT2 b -- ERROR: b is used and cannot be phantom
type role T3 _ nominal
data T3 a b = MkT3 a -- OK: nominal is higher than necessary, but safe
type role T4 nominal
data T4 a = MkT4 (a Int) -- OK, but nominal is higher than necessary
type role C representational _ -- OK, with -XIncoherentInstances
class C a b where ... -- OK, b will get a nominal role
type role X nominal
type X a = ... -- ERROR: role annotations not allowed for type synonyms
</programlisting>
</sect2>
</sect1>
<!-- Emacs stuff:
;;; Local Variables: ***
;;; sgml-parent-document: ("users_guide.xml" "book" "chapter" "sect1") ***
;;; ispell-local-dictionary: "british" ***
;;; End: ***
-->
|