1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
|
<?xml version="1.0" encoding="iso-8859-1"?>
<chapter id="profiling">
<title>Profiling</title>
<indexterm><primary>profiling</primary>
</indexterm>
<indexterm><primary>cost-centre profiling</primary></indexterm>
<para>GHC comes with a time and space profiling system, so that you
can answer questions like "why is my program so slow?", or "why is
my program using so much memory?".</para>
<para>Profiling a program is a three-step process:</para>
<orderedlist>
<listitem>
<para>Re-compile your program for profiling with the
<literal>-prof</literal> option, and probably one of the options
for adding automatic annotations:
<literal>-fprof-auto</literal> is the most common<footnote><para><option>-fprof-auto</option> was known as <option>-auto-all</option><indexterm><primary><literal>-auto-all</literal></primary>
</indexterm> prior to GHC 7.4.1.</para></footnote>.
<indexterm><primary><literal>-fprof-auto</literal></primary>
</indexterm></para>
<para>If you are using external packages with
<literal>cabal</literal>, you may need to reinstall these
packages with profiling support; typically this is done with
<literal>cabal install -p <replaceable>package</replaceable>
--reinstall</literal>.</para>
</listitem>
<listitem>
<para>Having compiled the program for profiling, you now need to
run it to generate the profile. For example, a simple time
profile can be generated by running the program with
<option>+RTS
-p</option><indexterm><primary><option>-p</option></primary><secondary>RTS
option</secondary></indexterm>, which generates a file named
<literal><replaceable>prog</replaceable>.prof</literal> where
<replaceable>prog</replaceable> is the name of your program
(without the <literal>.exe</literal> extension, if you are on
Windows).</para>
<para>There are many different kinds of profile that can be
generated, selected by different RTS options. We will be
describing the various kinds of profile throughout the rest of
this chapter. Some profiles require further processing using
additional tools after running the program.</para>
</listitem>
<listitem>
<para>Examine the generated profiling information, use the
information to optimise your program, and repeat as
necessary.</para>
</listitem>
</orderedlist>
<sect1 id="cost-centres">
<title>Cost centres and cost-centre stacks</title>
<para>GHC's profiling system assigns <firstterm>costs</firstterm>
to <firstterm>cost centres</firstterm>. A cost is simply the time
or space (memory) required to evaluate an expression. Cost centres are
program annotations around expressions; all costs incurred by the
annotated expression are assigned to the enclosing cost centre.
Furthermore, GHC will remember the stack of enclosing cost centres
for any given expression at run-time and generate a call-tree of
cost attributions.</para>
<para>Let's take a look at an example:</para>
<programlisting>
main = print (fib 30)
fib n = if n < 2 then 1 else fib (n-1) + fib (n-2)
</programlisting>
<para>Compile and run this program as follows:</para>
<screen>
$ ghc -prof -fprof-auto -rtsopts Main.hs
$ ./Main +RTS -p
121393
$
</screen>
<para>When a GHC-compiled program is run with the
<option>-p</option> RTS option, it generates a file called
<filename><replaceable>prog</replaceable>.prof</filename>. In this case, the file
will contain something like this:</para>
<screen>
Wed Oct 12 16:14 2011 Time and Allocation Profiling Report (Final)
Main +RTS -p -RTS
total time = 0.68 secs (34 ticks @ 20 ms)
total alloc = 204,677,844 bytes (excludes profiling overheads)
COST CENTRE MODULE %time %alloc
fib Main 100.0 100.0
individual inherited
COST CENTRE MODULE no. entries %time %alloc %time %alloc
MAIN MAIN 102 0 0.0 0.0 100.0 100.0
CAF GHC.IO.Handle.FD 128 0 0.0 0.0 0.0 0.0
CAF GHC.IO.Encoding.Iconv 120 0 0.0 0.0 0.0 0.0
CAF GHC.Conc.Signal 110 0 0.0 0.0 0.0 0.0
CAF Main 108 0 0.0 0.0 100.0 100.0
main Main 204 1 0.0 0.0 100.0 100.0
fib Main 205 2692537 100.0 100.0 100.0 100.0
</screen>
<para>The first part of the file gives the program name and
options, and the total time and total memory allocation measured
during the run of the program (note that the total memory
allocation figure isn't the same as the amount of
<emphasis>live</emphasis> memory needed by the program at any one
time; the latter can be determined using heap profiling, which we
will describe later in <xref linkend="prof-heap" />).</para>
<para>The second part of the file is a break-down by cost centre
of the most costly functions in the program. In this case, there
was only one significant function in the program, namely
<function>fib</function>, and it was responsible for 100%
of both the time and allocation costs of the program.</para>
<para>The third and final section of the file gives a profile
break-down by cost-centre stack. This is roughly a call-tree
profile of the program. In the example above, it is clear that
the costly call to <function>fib</function> came from
<function>main</function>.</para>
<para>The time and allocation incurred by a given part of the
program is displayed in two ways: “individual”, which
are the costs incurred by the code covered by this cost centre
stack alone, and “inherited”, which includes the costs
incurred by all the children of this node.</para>
<para>The usefulness of cost-centre stacks is better demonstrated
by modifying the example slightly:</para>
<programlisting>
main = print (f 30 + g 30)
where
f n = fib n
g n = fib (n `div` 2)
fib n = if n < 2 then 1 else fib (n-1) + fib (n-2)
</programlisting>
<para>Compile and run this program as before, and take a look at
the new profiling results:</para>
<screen>
COST CENTRE MODULE no. entries %time %alloc %time %alloc
MAIN MAIN 102 0 0.0 0.0 100.0 100.0
CAF GHC.IO.Handle.FD 128 0 0.0 0.0 0.0 0.0
CAF GHC.IO.Encoding.Iconv 120 0 0.0 0.0 0.0 0.0
CAF GHC.Conc.Signal 110 0 0.0 0.0 0.0 0.0
CAF Main 108 0 0.0 0.0 100.0 100.0
main Main 204 1 0.0 0.0 100.0 100.0
main.g Main 207 1 0.0 0.0 0.0 0.1
fib Main 208 1973 0.0 0.1 0.0 0.1
main.f Main 205 1 0.0 0.0 100.0 99.9
fib Main 206 2692537 100.0 99.9 100.0 99.9
</screen>
<para>Now although we had two calls to <function>fib</function> in
the program, it is immediately clear that it was the call from
<function>f</function> which took all the time. The functions
<literal>f</literal> and <literal>g</literal> which are defined in
the <literal>where</literal> clause in <literal>main</literal> are
given their own cost centres, <literal>main.f</literal> and
<literal>main.g</literal> respectively.</para>
<para>The actual meaning of the various columns in the output is:</para>
<variablelist>
<varlistentry>
<term>entries</term>
<listitem>
<para>The number of times this particular point in the call
tree was entered.</para>
</listitem>
</varlistentry>
<varlistentry>
<term>individual %time</term>
<listitem>
<para>The percentage of the total run time of the program
spent at this point in the call tree.</para>
</listitem>
</varlistentry>
<varlistentry>
<term>individual %alloc</term>
<listitem>
<para>The percentage of the total memory allocations
(excluding profiling overheads) of the program made by this
call.</para>
</listitem>
</varlistentry>
<varlistentry>
<term>inherited %time</term>
<listitem>
<para>The percentage of the total run time of the program
spent below this point in the call tree.</para>
</listitem>
</varlistentry>
<varlistentry>
<term>inherited %alloc</term>
<listitem>
<para>The percentage of the total memory allocations
(excluding profiling overheads) of the program made by this
call and all of its sub-calls.</para>
</listitem>
</varlistentry>
</variablelist>
<para>In addition you can use the <option>-P</option> RTS option
<indexterm><primary><option>-P</option></primary></indexterm> to
get the following additional information:</para>
<variablelist>
<varlistentry>
<term><literal>ticks</literal></term>
<listitem>
<para>The raw number of time “ticks” which were
attributed to this cost-centre; from this, we get the
<literal>%time</literal> figure mentioned
above.</para>
</listitem>
</varlistentry>
<varlistentry>
<term><literal>bytes</literal></term>
<listitem>
<para>Number of bytes allocated in the heap while in this
cost-centre; again, this is the raw number from which we get
the <literal>%alloc</literal> figure mentioned
above.</para>
</listitem>
</varlistentry>
</variablelist>
<para>What about recursive functions, and mutually recursive
groups of functions? Where are the costs attributed? Well,
although GHC does keep information about which groups of functions
called each other recursively, this information isn't displayed in
the basic time and allocation profile, instead the call-graph is
flattened into a tree as follows: a call to a function that occurs
elsewhere on the current stack does not push another entry on the
stack, instead the costs for this call are aggregated into the
caller<footnote><para>Note that this policy has changed slightly
in GHC 7.4.1 relative to earlier versions, and may yet change
further, feedback is welcome.</para></footnote>.</para>
<sect2 id="scc-pragma"><title>Inserting cost centres by hand</title>
<para>Cost centres are just program annotations. When you say
<option>-fprof-auto</option> to the compiler, it automatically
inserts a cost centre annotation around every binding not marked
INLINE in your program, but you are entirely free to add cost
centre annotations yourself.</para>
<para>The syntax of a cost centre annotation is</para>
<programlisting>
{-# SCC "name" #-} <expression>
</programlisting>
<para>where <literal>"name"</literal> is an arbitrary string,
that will become the name of your cost centre as it appears
in the profiling output, and
<literal><expression></literal> is any Haskell
expression. An <literal>SCC</literal> annotation extends as
far to the right as possible when parsing. (SCC stands for "Set
Cost Centre"). The double quotes can be omitted
if <literal>name</literal> is a Haskell identifier, for example:</para>
<programlisting>
{-# SCC my_function #-} <expression>
</programlisting>
<para>Here is an example of a program with a couple of SCCs:</para>
<programlisting>
main :: IO ()
main = do let xs = [1..1000000]
let ys = [1..2000000]
print $ {-# SCC last_xs #-} last xs
print $ {-# SCC last_init_xs #-} last $ init xs
print $ {-# SCC last_ys #-} last ys
print $ {-# SCC last_init_ys #-}last $ init ys
</programlisting>
<para>which gives this profile when run:</para>
<screen>
COST CENTRE MODULE no. entries %time %alloc %time %alloc
MAIN MAIN 102 0 0.0 0.0 100.0 100.0
CAF GHC.IO.Handle.FD 130 0 0.0 0.0 0.0 0.0
CAF GHC.IO.Encoding.Iconv 122 0 0.0 0.0 0.0 0.0
CAF GHC.Conc.Signal 111 0 0.0 0.0 0.0 0.0
CAF Main 108 0 0.0 0.0 100.0 100.0
main Main 204 1 0.0 0.0 100.0 100.0
last_init_ys Main 210 1 25.0 27.4 25.0 27.4
main.ys Main 209 1 25.0 39.2 25.0 39.2
last_ys Main 208 1 12.5 0.0 12.5 0.0
last_init_xs Main 207 1 12.5 13.7 12.5 13.7
main.xs Main 206 1 18.8 19.6 18.8 19.6
last_xs Main 205 1 6.2 0.0 6.2 0.0
</screen>
</sect2>
<sect2 id="prof-rules">
<title>Rules for attributing costs</title>
<para>While running a program with profiling turned on, GHC
maintains a cost-centre stack behind the scenes, and attributes
any costs (memory allocation and time) to whatever the current
cost-centre stack is at the time the cost is incurred.</para>
<para>The mechanism is simple: whenever the program evaluates an
expression with an SCC annotation, <literal>{-# SCC c -#}
E</literal>, the cost centre <literal>c</literal> is pushed on
the current stack, and the entry count for this stack is
incremented by one. The stack also sometimes has to be saved
and restored; in particular when the program creates a
<firstterm>thunk</firstterm> (a lazy suspension), the current
cost-centre stack is stored in the thunk, and restored when the
thunk is evaluated. In this way, the cost-centre stack is
independent of the actual evaluation order used by GHC at
runtime.</para>
<para>At a function call, GHC takes the stack stored in the
function being called (which for a top-level function will be
empty), and <emphasis>appends</emphasis> it to the current
stack, ignoring any prefix that is identical to a prefix of the
current stack.</para>
<para>We mentioned earlier that lazy computations, i.e. thunks,
capture the current stack when they are created, and restore
this stack when they are evaluated. What about top-level
thunks? They are "created" when the program is compiled, so
what stack should we give them? The technical name for a
top-level thunk is a CAF ("Constant Applicative Form"). GHC
assigns every CAF in a module a stack consisting of the single
cost centre <literal>M.CAF</literal>, where <literal>M</literal>
is the name of the module. It is also possible to give each CAF
a different stack, using the option
<option>-fprof-cafs</option><indexterm><primary><option>-fprof-cafs</option></primary></indexterm>.
This is especially useful when compiling with
<option>-ffull-laziness</option> (as is default with
<option>-O</option> and higher), as constants in function bodies
will be lifted to the top-level and become CAFs. You will probably
need to consult the Core (<option>-ddump-simpl</option>) in order
to determine what these CAFs correspond to.</para>
</sect2>
</sect1>
<sect1 id="prof-compiler-options">
<title>Compiler options for profiling</title>
<indexterm><primary>profiling</primary><secondary>options</secondary></indexterm>
<indexterm><primary>options</primary><secondary>for profiling</secondary></indexterm>
<variablelist>
<varlistentry>
<term>
<option>-prof</option>:
<indexterm><primary><option>-prof</option></primary></indexterm>
</term>
<listitem>
<para>To make use of the profiling system
<emphasis>all</emphasis> modules must be compiled and linked
with the <option>-prof</option> option. Any
<literal>SCC</literal> annotations you've put in your source
will spring to life.</para>
<para>Without a <option>-prof</option> option, your
<literal>SCC</literal>s are ignored; so you can compile
<literal>SCC</literal>-laden code without changing
it.</para>
</listitem>
</varlistentry>
</variablelist>
<para>There are a few other profiling-related compilation options.
Use them <emphasis>in addition to</emphasis>
<option>-prof</option>. These do not have to be used consistently
for all modules in a program.</para>
<variablelist>
<varlistentry>
<term>
<option>-fprof-auto</option>:
<indexterm><primary><option>-fprof-auto</option></primary></indexterm>
</term>
<listitem>
<para><emphasis>All</emphasis> bindings not marked INLINE,
whether exported or not, top level or nested, will be given
automatic <literal>SCC</literal> annotations. Functions
marked INLINE must be given a cost centre manually.</para>
</listitem>
</varlistentry>
<varlistentry>
<term>
<option>-fprof-auto-top</option>:
<indexterm><primary><option>-fprof-auto-top</option></primary></indexterm>
<indexterm><primary>cost centres</primary><secondary>automatically inserting</secondary></indexterm>
</term>
<listitem>
<para>GHC will automatically add <literal>SCC</literal>
annotations for all top-level bindings not marked INLINE. If
you want a cost centre on an INLINE function, you have to
add it manually.</para>
</listitem>
</varlistentry>
<varlistentry>
<term>
<option>-fprof-auto-exported</option>:
<indexterm><primary><option>-fprof-auto-top</option></primary></indexterm>
<indexterm><primary>cost centres</primary><secondary>automatically inserting</secondary></indexterm>
</term>
<listitem>
<para>GHC will automatically add <literal>SCC</literal>
annotations for all exported functions not marked
INLINE. If you want a cost centre on an INLINE function, you
have to add it manually.</para>
</listitem>
</varlistentry>
<varlistentry>
<term>
<option>-fprof-auto-calls</option>:
<indexterm><primary><option>-fprof-auto-calls</option></primary></indexterm>
</term>
<listitem>
<para>Adds an automatic <literal>SCC</literal> annotation to
all <emphasis>call sites</emphasis>. This is particularly
useful when using profiling for the purposes of generating
stack traces; see the
function <literal>traceStack</literal> in the
module <literal>Debug.Trace</literal>, or
the <literal>-xc</literal> RTS flag
(<xref linkend="rts-options-debugging" />) for more
details.</para>
</listitem>
</varlistentry>
<varlistentry>
<term>
<option>-fprof-cafs</option>:
<indexterm><primary><option>-fprof-cafs</option></primary></indexterm>
</term>
<listitem>
<para>The costs of all CAFs in a module are usually
attributed to one “big” CAF cost-centre. With
this option, all CAFs get their own cost-centre. An
“if all else fails” option…</para>
</listitem>
</varlistentry>
<varlistentry>
<term>
<option>-fno-prof-auto</option>:
<indexterm><primary><option>-no-fprof-auto</option></primary></indexterm>
</term>
<listitem>
<para>Disables any previous <option>-fprof-auto</option>,
<option>-fprof-auto-top</option>, or
<option>-fprof-auto-exported</option> options.
</para>
</listitem>
</varlistentry>
<varlistentry>
<term>
<option>-fno-prof-cafs</option>:
<indexterm><primary><option>-fno-prof-cafs</option></primary></indexterm>
</term>
<listitem>
<para>Disables any previous <option>-fprof-cafs</option> option.
</para>
</listitem>
</varlistentry>
<varlistentry>
<term>
<option>-fno-prof-count-entries</option>:
<indexterm><primary><option>-fno-prof-count-entries</option></primary></indexterm>
</term>
<listitem>
<para>Tells GHC not to collect information about how often
functions are entered at runtime (the "entries" column of
the time profile), for this module. This tends to make the
profiled code run faster, and hence closer to the speed of
the unprofiled code, because GHC is able to optimise more
aggressively if it doesn't have to maintain correct entry
counts. This option can be useful if you aren't interested
in the entry counts (for example, if you only intend to do
heap profiling).
</para>
</listitem>
</varlistentry>
</variablelist>
</sect1>
<sect1 id="prof-time-options">
<title>Time and allocation profiling</title>
<para>To generate a time and allocation profile, give one of the
following RTS options to the compiled program when you run it (RTS
options should be enclosed between <literal>+RTS...-RTS</literal>
as usual):</para>
<variablelist>
<varlistentry>
<term>
<option>-p</option> or <option>-P</option> or <option>-pa</option>:
<indexterm><primary><option>-p</option></primary></indexterm>
<indexterm><primary><option>-P</option></primary></indexterm>
<indexterm><primary><option>-pa</option></primary></indexterm>
<indexterm><primary>time profile</primary></indexterm>
</term>
<listitem>
<para>The <option>-p</option> option produces a standard
<emphasis>time profile</emphasis> report. It is written
into the file
<filename><replaceable>program</replaceable>.prof</filename>.</para>
<para>The <option>-P</option> option produces a more
detailed report containing the actual time and allocation
data as well. (Not used much.)</para>
<para>The <option>-pa</option> option produces the most detailed
report containing all cost centres in addition to the actual time
and allocation data.</para>
</listitem>
</varlistentry>
<varlistentry>
<term><option>-V<replaceable>secs</replaceable></option>
<indexterm><primary><option>-V</option></primary><secondary>RTS
option</secondary></indexterm></term>
<listitem>
<para>Sets the interval that the RTS clock ticks at, which is
also the sampling interval of the time and allocation profile.
The default is 0.02 seconds.</para>
</listitem>
</varlistentry>
<varlistentry>
<term>
<option>-xc</option>
<indexterm><primary><option>-xc</option></primary><secondary>RTS option</secondary></indexterm>
</term>
<listitem>
<para>This option causes the runtime to print out the
current cost-centre stack whenever an exception is raised.
This can be particularly useful for debugging the location
of exceptions, such as the notorious <literal>Prelude.head:
empty list</literal> error. See <xref
linkend="rts-options-debugging"/>.</para>
</listitem>
</varlistentry>
</variablelist>
</sect1>
<sect1 id="prof-heap">
<title>Profiling memory usage</title>
<para>In addition to profiling the time and allocation behaviour
of your program, you can also generate a graph of its memory usage
over time. This is useful for detecting the causes of
<firstterm>space leaks</firstterm>, when your program holds on to
more memory at run-time that it needs to. Space leaks lead to
slower execution due to heavy garbage collector activity, and may
even cause the program to run out of memory altogether.</para>
<para>To generate a heap profile from your program:</para>
<orderedlist>
<listitem>
<para>Compile the program for profiling (<xref
linkend="prof-compiler-options"/>).</para>
</listitem>
<listitem>
<para>Run it with one of the heap profiling options described
below (eg. <option>-h</option> for a basic producer profile).
This generates the file
<filename><replaceable>prog</replaceable>.hp</filename>.</para>
</listitem>
<listitem>
<para>Run <command>hp2ps</command> to produce a Postscript
file,
<filename><replaceable>prog</replaceable>.ps</filename>. The
<command>hp2ps</command> utility is described in detail in
<xref linkend="hp2ps"/>.</para>
</listitem>
<listitem>
<para>Display the heap profile using a postscript viewer such
as <application>Ghostview</application>, or print it out on a
Postscript-capable printer.</para>
</listitem>
</orderedlist>
<para>For example, here is a heap profile produced for the program given above in <xref linkend="scc-pragma" />:</para>
<!--
contentwidth/contentheight don't appear to have any effect
other than making the PS file generation work, rather than
falling over. The result seems to be broken PS on the page
with the image. -->
<imagedata fileref="prof_scc" contentwidth="645px"
contentdepth="428px"/>
<para>You might also want to take a look
at <ulink url="http://www.haskell.org/haskellwiki/Hp2any">hp2any</ulink>,
a more advanced suite of tools (not distributed with GHC) for
displaying heap profiles.</para>
<sect2 id="rts-options-heap-prof">
<title>RTS options for heap profiling</title>
<para>There are several different kinds of heap profile that can
be generated. All the different profile types yield a graph of
live heap against time, but they differ in how the live heap is
broken down into bands. The following RTS options select which
break-down to use:</para>
<variablelist>
<varlistentry>
<term>
<option>-hc</option>
<indexterm><primary><option>-hc</option></primary><secondary>RTS option</secondary></indexterm>
</term>
<listitem>
<para>(can be shortened to <option>-h</option>). Breaks down the graph by the cost-centre stack which
produced the data.</para>
</listitem>
</varlistentry>
<varlistentry>
<term>
<option>-hm</option>
<indexterm><primary><option>-hm</option></primary><secondary>RTS option</secondary></indexterm>
</term>
<listitem>
<para>Break down the live heap by the module containing
the code which produced the data.</para>
</listitem>
</varlistentry>
<varlistentry>
<term>
<option>-hd</option>
<indexterm><primary><option>-hd</option></primary><secondary>RTS option</secondary></indexterm>
</term>
<listitem>
<para>Breaks down the graph by <firstterm>closure
description</firstterm>. For actual data, the description
is just the constructor name, for other closures it is a
compiler-generated string identifying the closure.</para>
</listitem>
</varlistentry>
<varlistentry>
<term>
<option>-hy</option>
<indexterm><primary><option>-hy</option></primary><secondary>RTS option</secondary></indexterm>
</term>
<listitem>
<para>Breaks down the graph by
<firstterm>type</firstterm>. For closures which have
function type or unknown/polymorphic type, the string will
represent an approximation to the actual type.</para>
</listitem>
</varlistentry>
<varlistentry>
<term>
<option>-hr</option>
<indexterm><primary><option>-hr</option></primary><secondary>RTS option</secondary></indexterm>
</term>
<listitem>
<para>Break down the graph by <firstterm>retainer
set</firstterm>. Retainer profiling is described in more
detail below (<xref linkend="retainer-prof"/>).</para>
</listitem>
</varlistentry>
<varlistentry>
<term>
<option>-hb</option>
<indexterm><primary><option>-hb</option></primary><secondary>RTS option</secondary></indexterm>
</term>
<listitem>
<para>Break down the graph by
<firstterm>biography</firstterm>. Biographical profiling
is described in more detail below (<xref
linkend="biography-prof"/>).</para>
</listitem>
</varlistentry>
</variablelist>
<para>In addition, the profile can be restricted to heap data
which satisfies certain criteria - for example, you might want
to display a profile by type but only for data produced by a
certain module, or a profile by retainer for a certain type of
data. Restrictions are specified as follows:</para>
<variablelist>
<varlistentry>
<term>
<option>-hc</option><replaceable>name</replaceable>,...
<indexterm><primary><option>-hc</option></primary><secondary>RTS option</secondary></indexterm>
</term>
<listitem>
<para>Restrict the profile to closures produced by
cost-centre stacks with one of the specified cost centres
at the top.</para>
</listitem>
</varlistentry>
<varlistentry>
<term>
<option>-hC</option><replaceable>name</replaceable>,...
<indexterm><primary><option>-hC</option></primary><secondary>RTS option</secondary></indexterm>
</term>
<listitem>
<para>Restrict the profile to closures produced by
cost-centre stacks with one of the specified cost centres
anywhere in the stack.</para>
</listitem>
</varlistentry>
<varlistentry>
<term>
<option>-hm</option><replaceable>module</replaceable>,...
<indexterm><primary><option>-hm</option></primary><secondary>RTS option</secondary></indexterm>
</term>
<listitem>
<para>Restrict the profile to closures produced by the
specified modules.</para>
</listitem>
</varlistentry>
<varlistentry>
<term>
<option>-hd</option><replaceable>desc</replaceable>,...
<indexterm><primary><option>-hd</option></primary><secondary>RTS option</secondary></indexterm>
</term>
<listitem>
<para>Restrict the profile to closures with the specified
description strings.</para>
</listitem>
</varlistentry>
<varlistentry>
<term>
<option>-hy</option><replaceable>type</replaceable>,...
<indexterm><primary><option>-hy</option></primary><secondary>RTS option</secondary></indexterm>
</term>
<listitem>
<para>Restrict the profile to closures with the specified
types.</para>
</listitem>
</varlistentry>
<varlistentry>
<term>
<option>-hr</option><replaceable>cc</replaceable>,...
<indexterm><primary><option>-hr</option></primary><secondary>RTS option</secondary></indexterm>
</term>
<listitem>
<para>Restrict the profile to closures with retainer sets
containing cost-centre stacks with one of the specified
cost centres at the top.</para>
</listitem>
</varlistentry>
<varlistentry>
<term>
<option>-hb</option><replaceable>bio</replaceable>,...
<indexterm><primary><option>-hb</option></primary><secondary>RTS option</secondary></indexterm>
</term>
<listitem>
<para>Restrict the profile to closures with one of the
specified biographies, where
<replaceable>bio</replaceable> is one of
<literal>lag</literal>, <literal>drag</literal>,
<literal>void</literal>, or <literal>use</literal>.</para>
</listitem>
</varlistentry>
</variablelist>
<para>For example, the following options will generate a
retainer profile restricted to <literal>Branch</literal> and
<literal>Leaf</literal> constructors:</para>
<screen>
<replaceable>prog</replaceable> +RTS -hr -hdBranch,Leaf
</screen>
<para>There can only be one "break-down" option
(eg. <option>-hr</option> in the example above), but there is no
limit on the number of further restrictions that may be applied.
All the options may be combined, with one exception: GHC doesn't
currently support mixing the <option>-hr</option> and
<option>-hb</option> options.</para>
<para>There are three more options which relate to heap
profiling:</para>
<variablelist>
<varlistentry>
<term>
<option>-i<replaceable>secs</replaceable></option>:
<indexterm><primary><option>-i</option></primary></indexterm>
</term>
<listitem>
<para>Set the profiling (sampling) interval to
<replaceable>secs</replaceable> seconds (the default is
0.1 second). Fractions are allowed: for example
<option>-i0.2</option> will get 5 samples per second.
This only affects heap profiling; time profiles are always
sampled with the frequency of the RTS clock. See
<xref linkend="prof-time-options"/> for changing that.</para>
</listitem>
</varlistentry>
<varlistentry>
<term>
<option>-xt</option>
<indexterm><primary><option>-xt</option></primary><secondary>RTS option</secondary></indexterm>
</term>
<listitem>
<para>Include the memory occupied by threads in a heap
profile. Each thread takes up a small area for its thread
state in addition to the space allocated for its stack
(stacks normally start small and then grow as
necessary).</para>
<para>This includes the main thread, so using
<option>-xt</option> is a good way to see how much stack
space the program is using.</para>
<para>Memory occupied by threads and their stacks is
labelled as “TSO” and “STACK”
respectively when displaying the profile by closure
description or type description.</para>
</listitem>
</varlistentry>
<varlistentry>
<term>
<option>-L<replaceable>num</replaceable></option>
<indexterm><primary><option>-L</option></primary><secondary>RTS option</secondary></indexterm>
</term>
<listitem>
<para>
Sets the maximum length of a cost-centre stack name in a
heap profile. Defaults to 25.
</para>
</listitem>
</varlistentry>
</variablelist>
</sect2>
<sect2 id="retainer-prof">
<title>Retainer Profiling</title>
<para>Retainer profiling is designed to help answer questions
like <quote>why is this data being retained?</quote>. We start
by defining what we mean by a retainer:</para>
<blockquote>
<para>A retainer is either the system stack, an unevaluated
closure (thunk), or an explicitly mutable object.</para>
</blockquote>
<para>In particular, constructors are <emphasis>not</emphasis>
retainers.</para>
<para>An object B retains object A if (i) B is a retainer object and
(ii) object A can be reached by recursively following pointers
starting from object B, but not meeting any other retainer
objects on the way. Each live object is retained by one or more
retainer objects, collectively called its retainer set, or its
<firstterm>retainer set</firstterm>, or its
<firstterm>retainers</firstterm>.</para>
<para>When retainer profiling is requested by giving the program
the <option>-hr</option> option, a graph is generated which is
broken down by retainer set. A retainer set is displayed as a
set of cost-centre stacks; because this is usually too large to
fit on the profile graph, each retainer set is numbered and
shown abbreviated on the graph along with its number, and the
full list of retainer sets is dumped into the file
<filename><replaceable>prog</replaceable>.prof</filename>.</para>
<para>Retainer profiling requires multiple passes over the live
heap in order to discover the full retainer set for each
object, which can be quite slow. So we set a limit on the
maximum size of a retainer set, where all retainer sets larger
than the maximum retainer set size are replaced by the special
set <literal>MANY</literal>. The maximum set size defaults to 8
and can be altered with the <option>-R</option> RTS
option:</para>
<variablelist>
<varlistentry>
<term><option>-R</option><replaceable>size</replaceable></term>
<listitem>
<para>Restrict the number of elements in a retainer set to
<replaceable>size</replaceable> (default 8).</para>
</listitem>
</varlistentry>
</variablelist>
<sect3>
<title>Hints for using retainer profiling</title>
<para>The definition of retainers is designed to reflect a
common cause of space leaks: a large structure is retained by
an unevaluated computation, and will be released once the
computation is forced. A good example is looking up a value in
a finite map, where unless the lookup is forced in a timely
manner the unevaluated lookup will cause the whole mapping to
be retained. These kind of space leaks can often be
eliminated by forcing the relevant computations to be
performed eagerly, using <literal>seq</literal> or strictness
annotations on data constructor fields.</para>
<para>Often a particular data structure is being retained by a
chain of unevaluated closures, only the nearest of which will
be reported by retainer profiling - for example A retains B, B
retains C, and C retains a large structure. There might be a
large number of Bs but only a single A, so A is really the one
we're interested in eliminating. However, retainer profiling
will in this case report B as the retainer of the large
structure. To move further up the chain of retainers, we can
ask for another retainer profile but this time restrict the
profile to B objects, so we get a profile of the retainers of
B:</para>
<screen>
<replaceable>prog</replaceable> +RTS -hr -hcB
</screen>
<para>This trick isn't foolproof, because there might be other
B closures in the heap which aren't the retainers we are
interested in, but we've found this to be a useful technique
in most cases.</para>
</sect3>
</sect2>
<sect2 id="biography-prof">
<title>Biographical Profiling</title>
<para>A typical heap object may be in one of the following four
states at each point in its lifetime:</para>
<itemizedlist>
<listitem>
<para>The <firstterm>lag</firstterm> stage, which is the
time between creation and the first use of the
object,</para>
</listitem>
<listitem>
<para>the <firstterm>use</firstterm> stage, which lasts from
the first use until the last use of the object, and</para>
</listitem>
<listitem>
<para>The <firstterm>drag</firstterm> stage, which lasts
from the final use until the last reference to the object
is dropped.</para>
</listitem>
<listitem>
<para>An object which is never used is said to be in the
<firstterm>void</firstterm> state for its whole
lifetime.</para>
</listitem>
</itemizedlist>
<para>A biographical heap profile displays the portion of the
live heap in each of the four states listed above. Usually the
most interesting states are the void and drag states: live heap
in these states is more likely to be wasted space than heap in
the lag or use states.</para>
<para>It is also possible to break down the heap in one or more
of these states by a different criteria, by restricting a
profile by biography. For example, to show the portion of the
heap in the drag or void state by producer: </para>
<screen>
<replaceable>prog</replaceable> +RTS -hc -hbdrag,void
</screen>
<para>Once you know the producer or the type of the heap in the
drag or void states, the next step is usually to find the
retainer(s):</para>
<screen>
<replaceable>prog</replaceable> +RTS -hr -hc<replaceable>cc</replaceable>...
</screen>
<para>NOTE: this two stage process is required because GHC
cannot currently profile using both biographical and retainer
information simultaneously.</para>
</sect2>
<sect2 id="mem-residency">
<title>Actual memory residency</title>
<para>How does the heap residency reported by the heap profiler relate to
the actual memory residency of your program when you run it? You might
see a large discrepancy between the residency reported by the heap
profiler, and the residency reported by tools on your system
(eg. <literal>ps</literal> or <literal>top</literal> on Unix, or the
Task Manager on Windows). There are several reasons for this:</para>
<itemizedlist>
<listitem>
<para>There is an overhead of profiling itself, which is subtracted
from the residency figures by the profiler. This overhead goes
away when compiling without profiling support, of course. The
space overhead is currently 2 extra
words per heap object, which probably results in
about a 30% overhead.</para>
</listitem>
<listitem>
<para>Garbage collection requires more memory than the actual
residency. The factor depends on the kind of garbage collection
algorithm in use: a major GC in the standard
generation copying collector will usually require 3L bytes of
memory, where L is the amount of live data. This is because by
default (see the <option>+RTS -F</option> option) we allow the old
generation to grow to twice its size (2L) before collecting it, and
we require additionally L bytes to copy the live data into. When
using compacting collection (see the <option>+RTS -c</option>
option), this is reduced to 2L, and can further be reduced by
tweaking the <option>-F</option> option. Also add the size of the
allocation area (currently a fixed 512Kb).</para>
</listitem>
<listitem>
<para>The stack isn't counted in the heap profile by default. See the
<option>+RTS -xt</option> option.</para>
</listitem>
<listitem>
<para>The program text itself, the C stack, any non-heap data (eg. data
allocated by foreign libraries, and data allocated by the RTS), and
<literal>mmap()</literal>'d memory are not counted in the heap profile.</para>
</listitem>
</itemizedlist>
</sect2>
</sect1>
<sect1 id="hp2ps">
<title><command>hp2ps</command>--heap profile to PostScript</title>
<indexterm><primary><command>hp2ps</command></primary></indexterm>
<indexterm><primary>heap profiles</primary></indexterm>
<indexterm><primary>postscript, from heap profiles</primary></indexterm>
<indexterm><primary><option>-h<break-down></option></primary></indexterm>
<para>Usage:</para>
<screen>
hp2ps [flags] [<file>[.hp]]
</screen>
<para>The program
<command>hp2ps</command><indexterm><primary>hp2ps
program</primary></indexterm> converts a heap profile as produced
by the <option>-h<break-down></option> runtime option into a
PostScript graph of the heap profile. By convention, the file to
be processed by <command>hp2ps</command> has a
<filename>.hp</filename> extension. The PostScript output is
written to <filename><file>@.ps</filename>. If
<filename><file></filename> is omitted entirely, then the
program behaves as a filter.</para>
<para><command>hp2ps</command> is distributed in
<filename>ghc/utils/hp2ps</filename> in a GHC source
distribution. It was originally developed by Dave Wakeling as part
of the HBC/LML heap profiler.</para>
<para>The flags are:</para>
<variablelist>
<varlistentry>
<term><option>-d</option></term>
<listitem>
<para>In order to make graphs more readable,
<command>hp2ps</command> sorts the shaded bands for each
identifier. The default sort ordering is for the bands with
the largest area to be stacked on top of the smaller ones.
The <option>-d</option> option causes rougher bands (those
representing series of values with the largest standard
deviations) to be stacked on top of smoother ones.</para>
</listitem>
</varlistentry>
<varlistentry>
<term><option>-b</option></term>
<listitem>
<para>Normally, <command>hp2ps</command> puts the title of
the graph in a small box at the top of the page. However, if
the JOB string is too long to fit in a small box (more than
35 characters), then <command>hp2ps</command> will choose to
use a big box instead. The <option>-b</option> option
forces <command>hp2ps</command> to use a big box.</para>
</listitem>
</varlistentry>
<varlistentry>
<term><option>-e<float>[in|mm|pt]</option></term>
<listitem>
<para>Generate encapsulated PostScript suitable for
inclusion in LaTeX documents. Usually, the PostScript graph
is drawn in landscape mode in an area 9 inches wide by 6
inches high, and <command>hp2ps</command> arranges for this
area to be approximately centred on a sheet of a4 paper.
This format is convenient of studying the graph in detail,
but it is unsuitable for inclusion in LaTeX documents. The
<option>-e</option> option causes the graph to be drawn in
portrait mode, with float specifying the width in inches,
millimetres or points (the default). The resulting
PostScript file conforms to the Encapsulated PostScript
(EPS) convention, and it can be included in a LaTeX document
using Rokicki's dvi-to-PostScript converter
<command>dvips</command>.</para>
</listitem>
</varlistentry>
<varlistentry>
<term><option>-g</option></term>
<listitem>
<para>Create output suitable for the <command>gs</command>
PostScript previewer (or similar). In this case the graph is
printed in portrait mode without scaling. The output is
unsuitable for a laser printer.</para>
</listitem>
</varlistentry>
<varlistentry>
<term><option>-l</option></term>
<listitem>
<para>Normally a profile is limited to 20 bands with
additional identifiers being grouped into an
<literal>OTHER</literal> band. The <option>-l</option> flag
removes this 20 band and limit, producing as many bands as
necessary. No key is produced as it won't fit!. It is useful
for creation time profiles with many bands.</para>
</listitem>
</varlistentry>
<varlistentry>
<term><option>-m<int></option></term>
<listitem>
<para>Normally a profile is limited to 20 bands with
additional identifiers being grouped into an
<literal>OTHER</literal> band. The <option>-m</option> flag
specifies an alternative band limit (the maximum is
20).</para>
<para><option>-m0</option> requests the band limit to be
removed. As many bands as necessary are produced. However no
key is produced as it won't fit! It is useful for displaying
creation time profiles with many bands.</para>
</listitem>
</varlistentry>
<varlistentry>
<term><option>-p</option></term>
<listitem>
<para>Use previous parameters. By default, the PostScript
graph is automatically scaled both horizontally and
vertically so that it fills the page. However, when
preparing a series of graphs for use in a presentation, it
is often useful to draw a new graph using the same scale,
shading and ordering as a previous one. The
<option>-p</option> flag causes the graph to be drawn using
the parameters determined by a previous run of
<command>hp2ps</command> on <filename>file</filename>. These
are extracted from <filename>file@.aux</filename>.</para>
</listitem>
</varlistentry>
<varlistentry>
<term><option>-s</option></term>
<listitem>
<para>Use a small box for the title.</para>
</listitem>
</varlistentry>
<varlistentry>
<term><option>-t<float></option></term>
<listitem>
<para>Normally trace elements which sum to a total of less
than 1% of the profile are removed from the
profile. The <option>-t</option> option allows this
percentage to be modified (maximum 5%).</para>
<para><option>-t0</option> requests no trace elements to be
removed from the profile, ensuring that all the data will be
displayed.</para>
</listitem>
</varlistentry>
<varlistentry>
<term><option>-c</option></term>
<listitem>
<para>Generate colour output.</para>
</listitem>
</varlistentry>
<varlistentry>
<term><option>-y</option></term>
<listitem>
<para>Ignore marks.</para>
</listitem>
</varlistentry>
<varlistentry>
<term><option>-?</option></term>
<listitem>
<para>Print out usage information.</para>
</listitem>
</varlistentry>
</variablelist>
<sect2 id="manipulating-hp">
<title>Manipulating the hp file</title>
<para>(Notes kindly offered by Jan-Willem Maessen.)</para>
<para>
The <filename>FOO.hp</filename> file produced when you ask for the
heap profile of a program <filename>FOO</filename> is a text file with a particularly
simple structure. Here's a representative example, with much of the
actual data omitted:
<screen>
JOB "FOO -hC"
DATE "Thu Dec 26 18:17 2002"
SAMPLE_UNIT "seconds"
VALUE_UNIT "bytes"
BEGIN_SAMPLE 0.00
END_SAMPLE 0.00
BEGIN_SAMPLE 15.07
... sample data ...
END_SAMPLE 15.07
BEGIN_SAMPLE 30.23
... sample data ...
END_SAMPLE 30.23
... etc.
BEGIN_SAMPLE 11695.47
END_SAMPLE 11695.47
</screen>
The first four lines (<literal>JOB</literal>, <literal>DATE</literal>, <literal>SAMPLE_UNIT</literal>, <literal>VALUE_UNIT</literal>) form a
header. Each block of lines starting with <literal>BEGIN_SAMPLE</literal> and ending
with <literal>END_SAMPLE</literal> forms a single sample (you can think of this as a
vertical slice of your heap profile). The hp2ps utility should accept
any input with a properly-formatted header followed by a series of
*complete* samples.
</para>
</sect2>
<sect2>
<title>Zooming in on regions of your profile</title>
<para>
You can look at particular regions of your profile simply by loading a
copy of the <filename>.hp</filename> file into a text editor and deleting the unwanted
samples. The resulting <filename>.hp</filename> file can be run through <command>hp2ps</command> and viewed
or printed.
</para>
</sect2>
<sect2>
<title>Viewing the heap profile of a running program</title>
<para>
The <filename>.hp</filename> file is generated incrementally as your
program runs. In principle, running <command>hp2ps</command> on the incomplete file
should produce a snapshot of your program's heap usage. However, the
last sample in the file may be incomplete, causing <command>hp2ps</command> to fail. If
you are using a machine with UNIX utilities installed, it's not too
hard to work around this problem (though the resulting command line
looks rather Byzantine):
<screen>
head -`fgrep -n END_SAMPLE FOO.hp | tail -1 | cut -d : -f 1` FOO.hp \
| hp2ps > FOO.ps
</screen>
The command <command>fgrep -n END_SAMPLE FOO.hp</command> finds the
end of every complete sample in <filename>FOO.hp</filename>, and labels each sample with
its ending line number. We then select the line number of the last
complete sample using <command>tail</command> and <command>cut</command>. This is used as a
parameter to <command>head</command>; the result is as if we deleted the final
incomplete sample from <filename>FOO.hp</filename>. This results in a properly-formatted
.hp file which we feed directly to <command>hp2ps</command>.
</para>
</sect2>
<sect2>
<title>Viewing a heap profile in real time</title>
<para>
The <command>gv</command> and <command>ghostview</command> programs
have a "watch file" option can be used to view an up-to-date heap
profile of your program as it runs. Simply generate an incremental
heap profile as described in the previous section. Run <command>gv</command> on your
profile:
<screen>
gv -watch -seascape FOO.ps
</screen>
If you forget the <literal>-watch</literal> flag you can still select
"Watch file" from the "State" menu. Now each time you generate a new
profile <filename>FOO.ps</filename> the view will update automatically.
</para>
<para>
This can all be encapsulated in a little script:
<screen>
#!/bin/sh
head -`fgrep -n END_SAMPLE FOO.hp | tail -1 | cut -d : -f 1` FOO.hp \
| hp2ps > FOO.ps
gv -watch -seascape FOO.ps &
while [ 1 ] ; do
sleep 10 # We generate a new profile every 10 seconds.
head -`fgrep -n END_SAMPLE FOO.hp | tail -1 | cut -d : -f 1` FOO.hp \
| hp2ps > FOO.ps
done
</screen>
Occasionally <command>gv</command> will choke as it tries to read an incomplete copy of
<filename>FOO.ps</filename> (because <command>hp2ps</command> is still running as an update
occurs). A slightly more complicated script works around this
problem, by using the fact that sending a SIGHUP to gv will cause it
to re-read its input file:
<screen>
#!/bin/sh
head -`fgrep -n END_SAMPLE FOO.hp | tail -1 | cut -d : -f 1` FOO.hp \
| hp2ps > FOO.ps
gv FOO.ps &
gvpsnum=$!
while [ 1 ] ; do
sleep 10
head -`fgrep -n END_SAMPLE FOO.hp | tail -1 | cut -d : -f 1` FOO.hp \
| hp2ps > FOO.ps
kill -HUP $gvpsnum
done
</screen>
</para>
</sect2>
</sect1>
<sect1 id="prof-threaded">
<title>Profiling Parallel and Concurrent Programs</title>
<para>Combining <option>-threaded</option>
and <option>-prof</option> is perfectly fine, and indeed it is
possible to profile a program running on multiple processors
with the <option>+RTS -N</option> option.<footnote>This feature
was added in GHC 7.4.1.</footnote>
</para>
<para>
Some caveats apply, however. In the current implementation, a
profiled program is likely to scale much less well than the
unprofiled program, because the profiling implementation uses
some shared data structures which require locking in the runtime
system. Furthermore, the memory allocation statistics collected
by the profiled program are stored in shared memory
but <emphasis>not</emphasis> locked (for speed), which means
that these figures might be inaccurate for parallel programs.
</para>
<para>
We strongly recommend that you
use <option>-fno-prof-count-entries</option> when compiling a
program to be profiled on multiple cores, because the entry
counts are also stored in shared memory, and continuously
updating them on multiple cores is extremely slow.
</para>
<para>
We also recommend
using <ulink url="http://www.haskell.org/haskellwiki/ThreadScope">ThreadScope</ulink>
for profiling parallel programs; it offers a GUI for visualising
parallel execution, and is complementary to the time and space
profiling features provided with GHC.
</para>
</sect1>
<sect1 id="hpc">
<title>Observing Code Coverage</title>
<indexterm><primary>code coverage</primary></indexterm>
<indexterm><primary>Haskell Program Coverage</primary></indexterm>
<indexterm><primary>hpc</primary></indexterm>
<para>
Code coverage tools allow a programmer to determine what parts
of their code have been actually executed, and which parts have
never actually been invoked. GHC has an option for generating
instrumented code that records code coverage as part of the
Haskell Program Coverage (HPC) toolkit, which is included with
GHC. HPC tools can be used to render the generated code coverage
information into human understandable format. </para>
<para>
Correctly instrumented code provides coverage information of two
kinds: source coverage and boolean-control coverage. Source
coverage is the extent to which every part of the program was
used, measured at three different levels: declarations (both
top-level and local), alternatives (among several equations or
case branches) and expressions (at every level). Boolean
coverage is the extent to which each of the values True and
False is obtained in every syntactic boolean context (ie. guard,
condition, qualifier). </para>
<para>
HPC displays both kinds of information in two primary ways:
textual reports with summary statistics (<literal>hpc report</literal>) and sources
with color mark-up (<literal>hpc markup</literal>). For boolean coverage, there
are four possible outcomes for each guard, condition or
qualifier: both True and False values occur; only True; only
False; never evaluated. In hpc-markup output, highlighting with
a yellow background indicates a part of the program that was
never evaluated; a green background indicates an always-True
expression and a red background indicates an always-False one.
</para>
<sect2><title>A small example: Reciprocation</title>
<para>
For an example we have a program, called <filename>Recip.hs</filename>, which computes exact decimal
representations of reciprocals, with recurring parts indicated in
brackets.
</para>
<programlisting>
reciprocal :: Int -> (String, Int)
reciprocal n | n > 1 = ('0' : '.' : digits, recur)
| otherwise = error
"attempting to compute reciprocal of number <= 1"
where
(digits, recur) = divide n 1 []
divide :: Int -> Int -> [Int] -> (String, Int)
divide n c cs | c `elem` cs = ([], position c cs)
| r == 0 = (show q, 0)
| r /= 0 = (show q ++ digits, recur)
where
(q, r) = (c*10) `quotRem` n
(digits, recur) = divide n r (c:cs)
position :: Int -> [Int] -> Int
position n (x:xs) | n==x = 1
| otherwise = 1 + position n xs
showRecip :: Int -> String
showRecip n =
"1/" ++ show n ++ " = " ++
if r==0 then d else take p d ++ "(" ++ drop p d ++ ")"
where
p = length d - r
(d, r) = reciprocal n
main = do
number <- readLn
putStrLn (showRecip number)
main
</programlisting>
<para>HPC instrumentation is enabled with the -fhpc flag:
</para>
<screen>
$ ghc -fhpc Recip.hs
</screen>
<para>GHC creates a subdirectory <filename>.hpc</filename> in the
current directory, and puts HPC index (<filename>.mix</filename>)
files in there, one for each module compiled. You don't need to
worry about these files: they contain information needed by the
<literal>hpc</literal> tool to generate the coverage data for
compiled modules after the program is run.</para>
<screen>
$ ./Recip
1/3
= 0.(3)
</screen>
<para>Running the program generates a file with the
<literal>.tix</literal> suffix, in this case
<filename>Recip.tix</filename>, which contains the coverage data
for this run of the program. The program may be run multiple
times (e.g. with different test data), and the coverage data from
the separate runs is accumulated in the <filename>.tix</filename>
file. To reset the coverage data and start again, just remove the
<filename>.tix</filename> file.
</para>
<para>Having run the program, we can generate a textual summary of
coverage:</para>
<screen>
$ hpc report Recip
80% expressions used (81/101)
12% boolean coverage (1/8)
14% guards (1/7), 3 always True,
1 always False,
2 unevaluated
0% 'if' conditions (0/1), 1 always False
100% qualifiers (0/0)
55% alternatives used (5/9)
100% local declarations used (9/9)
100% top-level declarations used (5/5)
</screen>
<para>We can also generate a marked-up version of the source.</para>
<screen>
$ hpc markup Recip
writing Recip.hs.html
</screen>
<para>
This generates one file per Haskell module, and 4 index files,
hpc_index.html, hpc_index_alt.html, hpc_index_exp.html,
hpc_index_fun.html.
</para>
</sect2>
<sect2><title>Options for instrumenting code for coverage</title>
<variablelist>
<varlistentry>
<term><option>-fhpc</option></term>
<indexterm><primary><option>-fhpc</option></primary></indexterm>
<listitem>
<para>Enable code coverage for the current module or modules
being compiled.</para>
<para>Modules compiled with this option can be freely mixed
with modules compiled without it; indeed, most libraries
will typically be compiled without <option>-fhpc</option>.
When the program is run, coverage data will only be
generated for those modules that were compiled with
<option>-fhpc</option>, and the <literal>hpc</literal> tool
will only show information about those modules.
</para>
</listitem>
</varlistentry>
</variablelist>
</sect2>
<sect2><title>The hpc toolkit</title>
<para>The hpc command has several sub-commands:</para>
<screen>
$ hpc
Usage: hpc COMMAND ...
Commands:
help Display help for hpc or a single command
Reporting Coverage:
report Output textual report about program coverage
markup Markup Haskell source with program coverage
Processing Coverage files:
sum Sum multiple .tix files in a single .tix file
combine Combine two .tix files in a single .tix file
map Map a function over a single .tix file
Coverage Overlays:
overlay Generate a .tix file from an overlay file
draft Generate draft overlay that provides 100% coverage
Others:
show Show .tix file in readable, verbose format
version Display version for hpc
</screen>
<para>In general, these options act on a
<filename>.tix</filename> file after an instrumented binary has
generated it.
</para>
<para>
The hpc tool assumes you are in the top-level directory of
the location where you built your application, and the <filename>.tix</filename>
file is in the same top-level directory. You can use the
flag <option>--srcdir</option> to use <literal>hpc</literal> for any other directory, and use
<option>--srcdir</option> multiple times to analyse programs compiled from
difference locations, as is typical for packages.
</para>
<para>
We now explain in more details the major modes of hpc.
</para>
<sect3><title>hpc report</title>
<para><literal>hpc report</literal> gives a textual report of coverage. By default,
all modules and packages are considered in generating report,
unless include or exclude are used. The report is a summary
unless the <option>--per-module</option> flag is used. The <option>--xml-output</option> option
allows for tools to use hpc to glean coverage.
</para>
<screen>
$ hpc help report
Usage: hpc report [OPTION] .. <TIX_FILE> [<MODULE> [<MODULE> ..]]
Options:
--per-module show module level detail
--decl-list show unused decls
--exclude=[PACKAGE:][MODULE] exclude MODULE and/or PACKAGE
--include=[PACKAGE:][MODULE] include MODULE and/or PACKAGE
--srcdir=DIR path to source directory of .hs files
multi-use of srcdir possible
--hpcdir=DIR append sub-directory that contains .mix files
default .hpc [rarely used]
--reset-hpcdirs empty the list of hpcdir's
[rarely used]
--xml-output show output in XML
</screen>
</sect3>
<sect3><title>hpc markup</title>
<para><literal>hpc markup</literal> marks up source files into colored html.
</para>
<screen>
$ hpc help markup
Usage: hpc markup [OPTION] .. <TIX_FILE> [<MODULE> [<MODULE> ..]]
Options:
--exclude=[PACKAGE:][MODULE] exclude MODULE and/or PACKAGE
--include=[PACKAGE:][MODULE] include MODULE and/or PACKAGE
--srcdir=DIR path to source directory of .hs files
multi-use of srcdir possible
--hpcdir=DIR append sub-directory that contains .mix files
default .hpc [rarely used]
--reset-hpcdirs empty the list of hpcdir's
[rarely used]
--fun-entry-count show top-level function entry counts
--highlight-covered highlight covered code, rather that code gaps
--destdir=DIR path to write output to
</screen>
</sect3>
<sect3><title>hpc sum</title>
<para><literal>hpc sum</literal> adds together any number of <filename>.tix</filename> files into a single
<filename>.tix</filename> file. <literal>hpc sum</literal> does not change the original <filename>.tix</filename> file; it generates a new <filename>.tix</filename> file.
</para>
<screen>
$ hpc help sum
Usage: hpc sum [OPTION] .. <TIX_FILE> [<TIX_FILE> [<TIX_FILE> ..]]
Sum multiple .tix files in a single .tix file
Options:
--exclude=[PACKAGE:][MODULE] exclude MODULE and/or PACKAGE
--include=[PACKAGE:][MODULE] include MODULE and/or PACKAGE
--output=FILE output FILE
--union use the union of the module namespace (default is intersection)
</screen>
</sect3>
<sect3><title>hpc combine</title>
<para><literal>hpc combine</literal> is the swiss army knife of <literal>hpc</literal>. It can be
used to take the difference between <filename>.tix</filename> files, to subtract one
<filename>.tix</filename> file from another, or to add two <filename>.tix</filename> files. hpc combine does not
change the original <filename>.tix</filename> file; it generates a new <filename>.tix</filename> file.
</para>
<screen>
$ hpc help combine
Usage: hpc combine [OPTION] .. <TIX_FILE> <TIX_FILE>
Combine two .tix files in a single .tix file
Options:
--exclude=[PACKAGE:][MODULE] exclude MODULE and/or PACKAGE
--include=[PACKAGE:][MODULE] include MODULE and/or PACKAGE
--output=FILE output FILE
--function=FUNCTION combine .tix files with join function, default = ADD
FUNCTION = ADD | DIFF | SUB
--union use the union of the module namespace (default is intersection)
</screen>
</sect3>
<sect3><title>hpc map</title>
<para>hpc map inverts or zeros a <filename>.tix</filename> file. hpc map does not
change the original <filename>.tix</filename> file; it generates a new <filename>.tix</filename> file.
</para>
<screen>
$ hpc help map
Usage: hpc map [OPTION] .. <TIX_FILE>
Map a function over a single .tix file
Options:
--exclude=[PACKAGE:][MODULE] exclude MODULE and/or PACKAGE
--include=[PACKAGE:][MODULE] include MODULE and/or PACKAGE
--output=FILE output FILE
--function=FUNCTION apply function to .tix files, default = ID
FUNCTION = ID | INV | ZERO
--union use the union of the module namespace (default is intersection)
</screen>
</sect3>
<sect3><title>hpc overlay and hpc draft</title>
<para>
Overlays are an experimental feature of HPC, a textual description
of coverage. hpc draft is used to generate a draft overlay from a .tix file,
and hpc overlay generates a .tix files from an overlay.
</para>
<screen>
% hpc help overlay
Usage: hpc overlay [OPTION] .. <OVERLAY_FILE> [<OVERLAY_FILE> [...]]
Options:
--srcdir=DIR path to source directory of .hs files
multi-use of srcdir possible
--hpcdir=DIR append sub-directory that contains .mix files
default .hpc [rarely used]
--reset-hpcdirs empty the list of hpcdir's
[rarely used]
--output=FILE output FILE
% hpc help draft
Usage: hpc draft [OPTION] .. <TIX_FILE>
Options:
--exclude=[PACKAGE:][MODULE] exclude MODULE and/or PACKAGE
--include=[PACKAGE:][MODULE] include MODULE and/or PACKAGE
--srcdir=DIR path to source directory of .hs files
multi-use of srcdir possible
--hpcdir=DIR append sub-directory that contains .mix files
default .hpc [rarely used]
--reset-hpcdirs empty the list of hpcdir's
[rarely used]
--output=FILE output FILE
</screen>
</sect3>
</sect2>
<sect2><title>Caveats and Shortcomings of Haskell Program Coverage</title>
<para>
HPC does not attempt to lock the <filename>.tix</filename> file, so multiple concurrently running
binaries in the same directory will exhibit a race condition. There is no way
to change the name of the <filename>.tix</filename> file generated, apart from renaming the binary.
HPC does not work with GHCi.
</para>
</sect2>
</sect1>
<sect1 id="ticky-ticky">
<title>Using “ticky-ticky” profiling (for implementors)</title>
<indexterm><primary>ticky-ticky profiling</primary></indexterm>
<para>Because ticky-ticky profiling requires a certain familiarity
with GHC internals, we have moved the documentation to the
GHC developers wiki. Take a look at its <ulink
url="http://ghc.haskell.org/trac/ghc/wiki/Commentary/Profiling">overview
of the profiling options</ulink>, which includeds a link to the
ticky-ticky profiling page.</para>
</sect1>
</chapter>
<!-- Emacs stuff:
;;; Local Variables: ***
;;; sgml-parent-document: ("users_guide.xml" "book" "chapter") ***
;;; ispell-local-dictionary: "british" ***
;;; End: ***
-->
|