1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
|
<?xml version="1.0" encoding="iso-8859-1"?>
<chapter id="sooner-faster-quicker">
<title>Advice on: sooner, faster, smaller, thriftier</title>
<para>Please advise us of other “helpful hints” that
should go here!</para>
<sect1 id="sooner">
<title>Sooner: producing a program more quickly
</title>
<indexterm><primary>compiling faster</primary></indexterm>
<indexterm><primary>faster compiling</primary></indexterm>
<variablelist>
<varlistentry>
<term>Don't use <option>-O</option> or (especially) <option>-O2</option>:</term>
<listitem>
<para>By using them, you are telling GHC that you are
willing to suffer longer compilation times for
better-quality code.</para>
<para>GHC is surprisingly zippy for normal compilations
without <option>-O</option>!</para>
</listitem>
</varlistentry>
<varlistentry>
<term>Use more memory:</term>
<listitem>
<para>Within reason, more memory for heap space means less
garbage collection for GHC, which means less compilation
time. If you use the <option>-Rghc-timing</option> option,
you'll get a garbage-collector report. (Again, you can use
the cheap-and-nasty <option>+RTS -S -RTS</option>
option to send the GC stats straight to standard
error.)</para>
<para>If it says you're using more than 20% of total
time in garbage collecting, then more memory might
help: use the
<option>-H<size></option><indexterm><primary><option>-H</option></primary></indexterm>
option. Increasing the default allocation area size used by
the compiler's RTS might also help: use the
<option>+RTS -A<size> -RTS</option><indexterm><primary>-A<size>
RTS option</primary></indexterm> option.</para>
<para>If GHC persists in being a bad memory citizen, please
report it as a bug.</para>
</listitem>
</varlistentry>
<varlistentry>
<term>Don't use too much memory!</term>
<listitem>
<para>As soon as GHC plus its “fellow citizens”
(other processes on your machine) start using more than the
<emphasis>real memory</emphasis> on your machine, and the
machine starts “thrashing,” <emphasis>the party
is over</emphasis>. Compile times will be worse than
terrible! Use something like the csh-builtin
<command>time</command> command to get a report on how many
page faults you're getting.</para>
<para>If you don't know what virtual memory, thrashing, and
page faults are, or you don't know the memory configuration
of your machine, <emphasis>don't</emphasis> try to be clever
about memory use: you'll just make your life a misery (and
for other people, too, probably).</para>
</listitem>
</varlistentry>
<varlistentry>
<term>Try to use local disks when linking:</term>
<listitem>
<para>Because Haskell objects and libraries tend to be
large, it can take many real seconds to slurp the bits
to/from a remote filesystem.</para>
<para>It would be quite sensible to
<emphasis>compile</emphasis> on a fast machine using
remotely-mounted disks; then <emphasis>link</emphasis> on a
slow machine that had your disks directly mounted.</para>
</listitem>
</varlistentry>
<varlistentry>
<term>Don't derive/use <function>Read</function> unnecessarily:</term>
<listitem>
<para>It's ugly and slow.</para>
</listitem>
</varlistentry>
<varlistentry>
<term>GHC compiles some program constructs slowly:</term>
<listitem>
<para>We'd rather you reported such behaviour as a bug, so
that we can try to correct it.</para>
<para>To figure out which part of the compiler is badly
behaved, the
<option>-v2</option><indexterm><primary><option>-v</option></primary>
</indexterm> option is your friend.</para>
</listitem>
</varlistentry>
</variablelist>
</sect1>
<sect1 id="faster">
<title>Faster: producing a program that runs quicker</title>
<indexterm><primary>faster programs, how to produce</primary></indexterm>
<para>The key tool to use in making your Haskell program run
faster are GHC's profiling facilities, described separately in
<xref linkend="profiling"/>. There is <emphasis>no
substitute</emphasis> for finding where your program's time/space
is <emphasis>really</emphasis> going, as opposed to where you
imagine it is going.</para>
<para>Another point to bear in mind: By far the best way to
improve a program's performance <emphasis>dramatically</emphasis>
is to use better algorithms. Once profiling has thrown the
spotlight on the guilty time-consumer(s), it may be better to
re-think your program than to try all the tweaks listed below.</para>
<para>Another extremely efficient way to make your program snappy
is to use library code that has been Seriously Tuned By Someone
Else. You <emphasis>might</emphasis> be able to write a better
quicksort than the one in <literal>Data.List</literal>, but it
will take you much longer than typing <literal>import
Data.List</literal>.</para>
<para>Please report any overly-slow GHC-compiled programs. Since
GHC doesn't have any credible competition in the performance
department these days it's hard to say what overly-slow means, so
just use your judgement! Of course, if a GHC compiled program
runs slower than the same program compiled with NHC or Hugs, then
it's definitely a bug.</para>
<variablelist>
<varlistentry>
<term>Optimise, using <option>-O</option> or <option>-O2</option>:</term>
<listitem>
<para>This is the most basic way to make your program go
faster. Compilation time will be slower, especially with
<option>-O2</option>.</para>
<para>At present, <option>-O2</option> is nearly
indistinguishable from <option>-O</option>.</para>
</listitem>
</varlistentry>
<varlistentry>
<term>Compile via LVM:</term>
<listitem>
<para>The LLVM code generator can sometimes do a far better job
at producing fast code then either the native code generator
or the C code generator. This is not universal and depends
on the code. Numeric heavy code seems to show the best
improvement when compiled via LLVM. You can also experiment
with passing specific flags to LLVM with the
<option>-optlo</option> and <option>-optlc</option> flags.
Be careful though as setting these flags stops GHC from setting
its usual flags for the LLVM optimiser and compiler.</para>
</listitem>
</varlistentry>
<varlistentry>
<term>Overloaded functions are not your friend:</term>
<listitem>
<para>Haskell's overloading (using type classes) is elegant,
neat, etc., etc., but it is death to performance if left to
linger in an inner loop. How can you squash it?</para>
<variablelist>
<varlistentry>
<term>Give explicit type signatures:</term>
<listitem>
<para>Signatures are the basic trick; putting them on
exported, top-level functions is good
software-engineering practice, anyway. (Tip: using
<option>-fwarn-missing-signatures</option><indexterm><primary>-fwarn-missing-signatures
option</primary></indexterm> can help enforce good
signature-practice).</para>
<para>The automatic specialisation of overloaded
functions (with <option>-O</option>) should take care
of overloaded local and/or unexported functions.</para>
</listitem>
</varlistentry>
<varlistentry>
<term>Use <literal>SPECIALIZE</literal> pragmas:</term>
<listitem>
<indexterm><primary>SPECIALIZE pragma</primary></indexterm>
<indexterm><primary>overloading, death to</primary></indexterm>
<para>Specialize the overloading on key functions in
your program. See <xref linkend="specialize-pragma"/>
and <xref linkend="specialize-instance-pragma"/>.</para>
</listitem>
</varlistentry>
<varlistentry>
<term>“But how do I know where overloading is creeping in?”:</term>
<listitem>
<para>A low-tech way: grep (search) your interface
files for overloaded type signatures. You can view
interface files using the
<option>--show-iface</option> option (see <xref
linkend="hi-options"/>).
<programlisting>
% ghc --show-iface Foo.hi | egrep '^[a-z].*::.*=>'
</programlisting>
</para>
</listitem>
</varlistentry>
</variablelist>
</listitem>
</varlistentry>
<varlistentry>
<term>Strict functions are your dear friends:</term>
<listitem>
<para>and, among other things, lazy pattern-matching is your
enemy.</para>
<para>(If you don't know what a “strict
function” is, please consult a functional-programming
textbook. A sentence or two of explanation here probably
would not do much good.)</para>
<para>Consider these two code fragments:
<programlisting>
f (Wibble x y) = ... # strict
f arg = let { (Wibble x y) = arg } in ... # lazy
</programlisting>
The former will result in far better code.</para>
<para>A less contrived example shows the use of
<literal>cases</literal> instead of <literal>lets</literal>
to get stricter code (a good thing):
<programlisting>
f (Wibble x y) # beautiful but slow
= let
(a1, b1, c1) = unpackFoo x
(a2, b2, c2) = unpackFoo y
in ...
f (Wibble x y) # ugly, and proud of it
= case (unpackFoo x) of { (a1, b1, c1) ->
case (unpackFoo y) of { (a2, b2, c2) ->
...
}}
</programlisting>
</para>
</listitem>
</varlistentry>
<varlistentry>
<term>GHC loves single-constructor data-types:</term>
<listitem>
<para>It's all the better if a function is strict in a
single-constructor type (a type with only one
data-constructor; for example, tuples are single-constructor
types).</para>
</listitem>
</varlistentry>
<varlistentry>
<term>Newtypes are better than datatypes:</term>
<listitem>
<para>If your datatype has a single constructor with a
single field, use a <literal>newtype</literal> declaration
instead of a <literal>data</literal> declaration. The
<literal>newtype</literal> will be optimised away in most
cases.</para>
</listitem>
</varlistentry>
<varlistentry>
<term>“How do I find out a function's strictness?”</term>
<listitem>
<para>Don't guess—look it up.</para>
<para>Look for your function in the interface file, then for
the third field in the pragma; it should say
<literal>__S <string></literal>. The
<literal><string></literal> gives the strictness of
the function's arguments. <function>L</function> is lazy
(bad), <function>S</function> and <function>E</function> are
strict (good), <function>P</function> is
“primitive” (good), <function>U(...)</function>
is strict and “unpackable” (very good), and
<function>A</function> is absent (very good).</para>
<para>For an “unpackable”
<function>U(...)</function> argument, the info inside tells
the strictness of its components. So, if the argument is a
pair, and it says <function>U(AU(LSS))</function>, that
means “the first component of the pair isn't used; the
second component is itself unpackable, with three components
(lazy in the first, strict in the second \&
third).”</para>
<para>If the function isn't exported, just compile with the
extra flag <option>-ddump-simpl</option>; next to the
signature for any binder, it will print the self-same
pragmatic information as would be put in an interface file.
(Besides, Core syntax is fun to look at!)</para>
</listitem>
</varlistentry>
<varlistentry>
<term>Force key functions to be <literal>INLINE</literal>d (esp. monads):</term>
<listitem>
<para>Placing <literal>INLINE</literal> pragmas on certain
functions that are used a lot can have a dramatic effect.
See <xref linkend="inline-pragma"/>.</para>
</listitem>
</varlistentry>
<varlistentry>
<term>Explicit <literal>export</literal> list:</term>
<listitem>
<para>If you do not have an explicit export list in a
module, GHC must assume that everything in that module will
be exported. This has various pessimising effects. For
example, if a bit of code is actually
<emphasis>unused</emphasis> (perhaps because of unfolding
effects), GHC will not be able to throw it away, because it
is exported and some other module may be relying on its
existence.</para>
<para>GHC can be quite a bit more aggressive with pieces of
code if it knows they are not exported.</para>
</listitem>
</varlistentry>
<varlistentry>
<term>Look at the Core syntax!</term>
<listitem>
<para>(The form in which GHC manipulates your code.) Just
run your compilation with <option>-ddump-simpl</option>
(don't forget the <option>-O</option>).</para>
<para>If profiling has pointed the finger at particular
functions, look at their Core code. <literal>lets</literal>
are bad, <literal>cases</literal> are good, dictionaries
(<literal>d.<Class>.<Unique></literal>) [or
anything overloading-ish] are bad, nested lambdas are
bad, explicit data constructors are good, primitive
operations (e.g., <literal>eqInt#</literal>) are
good,…</para>
</listitem>
</varlistentry>
<varlistentry>
<term>Use strictness annotations:</term>
<listitem>
<para>Putting a strictness annotation ('!') on a constructor
field helps in two ways: it adds strictness to the program,
which gives the strictness analyser more to work with, and
it might help to reduce space leaks.</para>
<para>It can also help in a third way: when used with
<option>-funbox-strict-fields</option> (see <xref
linkend="options-f"/>), a strict field can be unpacked or
unboxed in the constructor, and one or more levels of
indirection may be removed. Unpacking only happens for
single-constructor datatypes (<literal>Int</literal> is a
good candidate, for example).</para>
<para>Using <option>-funbox-strict-fields</option> is only
really a good idea in conjunction with <option>-O</option>,
because otherwise the extra packing and unpacking won't be
optimised away. In fact, it is possible that
<option>-funbox-strict-fields</option> may worsen
performance even <emphasis>with</emphasis>
<option>-O</option>, but this is unlikely (let us know if it
happens to you).</para>
</listitem>
</varlistentry>
<varlistentry>
<term>Use unboxed types (a GHC extension):</term>
<listitem>
<para>When you are <emphasis>really</emphasis> desperate for
speed, and you want to get right down to the “raw
bits.” Please see <xref linkend="glasgow-unboxed"/> for
some information about using unboxed types.</para>
<para>Before resorting to explicit unboxed types, try using
strict constructor fields and
<option>-funbox-strict-fields</option> first (see above).
That way, your code stays portable.</para>
</listitem>
</varlistentry>
<varlistentry>
<term>Use <literal>foreign import</literal> (a GHC extension) to plug into fast libraries:</term>
<listitem>
<para>This may take real work, but… There exist piles
of massively-tuned library code, and the best thing is not
to compete with it, but link with it.</para>
<para><xref linkend="ffi"/> describes the foreign function
interface.</para>
</listitem>
</varlistentry>
<varlistentry>
<term>Don't use <literal>Float</literal>s:</term>
<listitem>
<para>If you're using <literal>Complex</literal>, definitely
use <literal>Complex Double</literal> rather than
<literal>Complex Float</literal> (the former is specialised
heavily, but the latter isn't).</para>
<para><literal>Floats</literal> (probably 32-bits) are
almost always a bad idea, anyway, unless you Really Know
What You Are Doing. Use <literal>Double</literal>s.
There's rarely a speed disadvantage—modern machines
will use the same floating-point unit for both. With
<literal>Double</literal>s, you are much less likely to hang
yourself with numerical errors.</para>
<para>One time when <literal>Float</literal> might be a good
idea is if you have a <emphasis>lot</emphasis> of them, say
a giant array of <literal>Float</literal>s. They take up
half the space in the heap compared to
<literal>Doubles</literal>. However, this isn't true on a
64-bit machine.</para>
</listitem>
</varlistentry>
<varlistentry>
<term>Use unboxed arrays (<literal>UArray</literal>)</term>
<listitem>
<para>GHC supports arrays of unboxed elements, for several
basic arithmetic element types including
<literal>Int</literal> and <literal>Char</literal>: see the
<literal>Data.Array.Unboxed</literal> library for details.
These arrays are likely to be much faster than using
standard Haskell 98 arrays from the
<literal>Data.Array</literal> library.</para>
</listitem>
</varlistentry>
<varlistentry>
<term>Use a bigger heap!</term>
<listitem>
<para>If your program's GC stats
(<option>-S</option><indexterm><primary>-S RTS
option</primary></indexterm> RTS option) indicate that it's
doing lots of garbage-collection (say, more than 20%
of execution time), more memory might help—with the
<option>-M<size></option><indexterm><primary>-M<size>
RTS option</primary></indexterm> or
<option>-A<size></option><indexterm><primary>-A<size>
RTS option</primary></indexterm> RTS options (see <xref
linkend="rts-options-gc"/>).</para>
</listitem>
</varlistentry>
</variablelist>
</sect1>
<sect1 id="smaller">
<title>Smaller: producing a program that is smaller
</title>
<para>
<indexterm><primary>smaller programs, how to produce</primary></indexterm>
</para>
<para>
Decrease the “go-for-it” threshold for unfolding smallish
expressions. Give a
<option>-funfolding-use-threshold0</option><indexterm><primary>-funfolding-use-threshold0
option</primary></indexterm> option for the extreme case. (“Only unfoldings with
zero cost should proceed.”) Warning: except in certain specialised
cases (like Happy parsers) this is likely to actually
<emphasis>increase</emphasis> the size of your program, because unfolding
generally enables extra simplifying optimisations to be performed.
</para>
<para>
Avoid <function>Read</function>.
</para>
<para>
Use <literal>strip</literal> on your executables.
</para>
</sect1>
<sect1 id="thriftier">
<title>Thriftier: producing a program that gobbles less heap space
</title>
<para>
<indexterm><primary>memory, using less heap</primary></indexterm>
<indexterm><primary>space-leaks, avoiding</primary></indexterm>
<indexterm><primary>heap space, using less</primary></indexterm>
</para>
<para>
“I think I have a space leak…” Re-run your program
with <option>+RTS -S</option>, and remove all doubt! (You'll
see the heap usage get bigger and bigger…)
[Hmmm…this might be even easier with the
<option>-G1</option> RTS option; so… <command>./a.out +RTS
-S -G1</command>...]
<indexterm><primary>-G RTS option</primary></indexterm>
<indexterm><primary>-S RTS option</primary></indexterm>
</para>
<para>
Once again, the profiling facilities (<xref linkend="profiling"/>) are
the basic tool for demystifying the space behaviour of your program.
</para>
<para>
Strict functions are good for space usage, as they are for time, as
discussed in the previous section. Strict functions get right down to
business, rather than filling up the heap with closures (the system's
notes to itself about how to evaluate something, should it eventually
be required).
</para>
</sect1>
</chapter>
<!-- Emacs stuff:
;;; Local Variables: ***
;;; sgml-parent-document: ("users_guide.xml" "book" "chapter") ***
;;; End: ***
-->
|