1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645
2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
2679
2680
2681
2682
2683
2684
2685
2686
2687
2688
2689
2690
2691
2692
2693
2694
2695
2696
2697
2698
2699
2700
2701
2702
2703
2704
2705
2706
2707
2708
2709
2710
2711
2712
2713
2714
2715
2716
2717
2718
2719
2720
2721
2722
2723
2724
2725
2726
2727
2728
2729
2730
2731
2732
2733
2734
2735
2736
2737
2738
2739
2740
2741
2742
2743
2744
2745
2746
2747
2748
2749
2750
2751
2752
2753
2754
2755
2756
2757
2758
2759
2760
2761
2762
2763
2764
2765
2766
2767
2768
2769
2770
2771
2772
2773
2774
2775
2776
2777
2778
2779
2780
2781
2782
2783
2784
2785
2786
2787
2788
2789
2790
2791
2792
2793
2794
2795
2796
2797
2798
2799
2800
2801
2802
2803
2804
2805
2806
2807
2808
2809
2810
2811
2812
2813
2814
2815
2816
2817
2818
2819
2820
2821
2822
2823
2824
2825
2826
2827
2828
2829
2830
2831
2832
2833
2834
2835
2836
2837
2838
2839
2840
2841
2842
2843
2844
2845
2846
2847
2848
2849
2850
2851
2852
2853
2854
2855
2856
2857
2858
2859
2860
2861
2862
2863
2864
2865
2866
2867
2868
2869
2870
2871
2872
2873
2874
2875
2876
2877
2878
2879
2880
2881
2882
2883
2884
2885
2886
2887
2888
2889
2890
2891
2892
2893
2894
2895
2896
2897
2898
2899
2900
2901
2902
2903
2904
2905
2906
2907
2908
2909
2910
2911
2912
2913
2914
2915
2916
2917
2918
2919
2920
2921
2922
2923
2924
2925
2926
2927
2928
2929
2930
2931
2932
2933
2934
2935
2936
2937
2938
2939
2940
2941
2942
2943
2944
2945
2946
2947
2948
2949
2950
2951
2952
2953
2954
2955
2956
2957
2958
2959
2960
2961
2962
2963
2964
2965
2966
2967
2968
2969
2970
2971
2972
2973
2974
2975
2976
2977
2978
2979
2980
2981
2982
2983
2984
2985
2986
2987
2988
2989
2990
2991
2992
2993
2994
2995
2996
2997
2998
2999
3000
3001
3002
3003
3004
3005
3006
3007
3008
3009
3010
3011
3012
3013
3014
3015
3016
3017
3018
3019
3020
3021
3022
3023
3024
3025
3026
3027
3028
3029
3030
3031
3032
3033
3034
3035
3036
3037
3038
3039
3040
3041
3042
3043
3044
3045
3046
3047
3048
3049
3050
3051
3052
3053
3054
3055
3056
3057
3058
3059
3060
3061
3062
3063
3064
3065
3066
3067
3068
3069
3070
3071
3072
3073
3074
3075
3076
3077
3078
3079
3080
3081
3082
3083
3084
3085
3086
3087
3088
3089
3090
3091
3092
3093
3094
3095
3096
3097
3098
3099
3100
3101
3102
3103
3104
3105
3106
3107
3108
3109
3110
3111
3112
3113
3114
3115
3116
3117
3118
3119
3120
3121
3122
3123
3124
3125
3126
3127
3128
3129
3130
3131
3132
3133
3134
3135
3136
3137
3138
3139
3140
3141
3142
3143
3144
3145
3146
3147
3148
3149
3150
3151
3152
3153
3154
3155
3156
3157
3158
3159
3160
3161
3162
3163
3164
3165
3166
3167
3168
3169
3170
3171
3172
3173
3174
3175
3176
3177
3178
3179
3180
3181
3182
3183
3184
3185
3186
3187
3188
3189
3190
3191
3192
3193
3194
3195
3196
3197
3198
3199
3200
3201
3202
3203
3204
3205
3206
3207
3208
3209
3210
3211
3212
3213
3214
3215
3216
3217
3218
3219
3220
3221
3222
3223
3224
3225
3226
3227
3228
3229
3230
3231
3232
3233
3234
3235
3236
3237
3238
3239
3240
3241
3242
3243
3244
3245
3246
3247
3248
3249
3250
3251
3252
3253
3254
3255
3256
3257
3258
3259
3260
3261
3262
3263
3264
3265
3266
3267
3268
3269
3270
3271
3272
3273
3274
3275
3276
3277
3278
3279
3280
3281
3282
3283
3284
3285
3286
3287
3288
3289
3290
3291
3292
3293
3294
3295
3296
3297
3298
3299
3300
3301
3302
3303
3304
3305
3306
3307
3308
3309
3310
3311
3312
3313
3314
3315
3316
3317
3318
3319
3320
3321
3322
3323
3324
3325
3326
3327
3328
3329
3330
3331
3332
3333
3334
3335
3336
3337
3338
3339
3340
3341
3342
3343
3344
3345
3346
3347
3348
3349
3350
3351
3352
3353
3354
3355
3356
3357
3358
3359
3360
3361
3362
3363
3364
3365
3366
3367
3368
3369
3370
3371
3372
3373
3374
3375
3376
3377
3378
3379
3380
3381
3382
3383
3384
3385
3386
3387
3388
3389
3390
3391
3392
3393
3394
3395
3396
3397
3398
3399
3400
3401
3402
3403
3404
3405
3406
3407
3408
3409
3410
3411
3412
3413
3414
3415
3416
3417
3418
3419
3420
3421
3422
3423
3424
3425
3426
3427
3428
3429
3430
3431
3432
3433
3434
3435
3436
3437
3438
3439
3440
3441
3442
3443
3444
3445
3446
3447
3448
3449
3450
3451
3452
3453
3454
3455
3456
3457
3458
3459
3460
3461
3462
3463
3464
3465
3466
3467
3468
3469
3470
3471
3472
3473
3474
3475
3476
3477
3478
3479
3480
3481
3482
3483
3484
3485
3486
3487
3488
3489
3490
3491
3492
3493
3494
3495
3496
3497
3498
3499
3500
3501
3502
3503
3504
3505
3506
3507
3508
3509
3510
3511
3512
3513
3514
3515
3516
3517
3518
3519
3520
3521
3522
3523
3524
3525
3526
3527
3528
3529
3530
3531
3532
3533
3534
3535
3536
3537
3538
3539
3540
3541
3542
3543
3544
3545
3546
3547
3548
3549
3550
3551
3552
3553
3554
3555
3556
3557
3558
3559
3560
3561
3562
3563
3564
3565
3566
3567
3568
3569
3570
3571
3572
3573
3574
3575
3576
3577
3578
3579
3580
3581
3582
3583
3584
3585
3586
3587
3588
3589
3590
|
<?xml version="1.0" encoding="iso-8859-1"?>
<chapter id="using-ghc">
<title>Using GHC</title>
<indexterm><primary>GHC, using</primary></indexterm>
<indexterm><primary>using GHC</primary></indexterm>
<sect1>
<title>Getting started: compiling programs</title>
<para>
In this chapter you'll find a complete reference to the GHC
command-line syntax, including all 400+ flags. It's a large and
complex system, and there are lots of details, so it can be
quite hard to figure out how to get started. With that in mind,
this introductory section provides a quick introduction to the
basic usage of GHC for compiling a Haskell program, before the
following sections dive into the full syntax.
</para>
<para>
Let's create a Hello World program, and compile and run it.
First, create a file <filename>hello.hs</filename> containing
the Haskell code:
</para>
<programlisting>
main = putStrLn "Hello, World!"
</programlisting>
<para>To compile the program, use GHC like this:</para>
<screen>
$ ghc hello.hs
</screen>
<para>(where <literal>$</literal> represents the prompt: don't
type it). GHC will compile the source
file <filename>hello.hs</filename>, producing
an <firstterm>object
file</firstterm> <filename>hello.o</filename> and
an <firstterm>interface
file</firstterm> <filename>hello.hi</filename>, and then it
will link the object file to the libraries that come with GHC
to produce an executable called <filename>hello</filename> on
Unix/Linux/Mac, or <filename>hello.exe</filename> on
Windows.</para>
<para>
By default GHC will be very quiet about what it is doing, only
printing error messages. If you want to see in more detail
what's going on behind the scenes, add <option>-v</option> to
the command line.
</para>
<para>
Then we can run the program like this:
</para>
<screen>
$ ./hello
Hello World!
</screen>
<para>
If your program contains multiple modules, then you only need to
tell GHC the name of the source file containing
the <filename>Main</filename> module, and GHC will examine
the <literal>import</literal> declarations to find the other
modules that make up the program and find their source files.
This means that, with the exception of
the <literal>Main</literal> module, every source file should be
named after the module name that it contains (with dots replaced
by directory separators). For example, the
module <literal>Data.Person</literal> would be in the
file <filename>Data/Person.hs</filename> on Unix/Linux/Mac,
or <filename>Data\Person.hs</filename> on Windows.
</para>
</sect1>
<sect1>
<title>Options overview</title>
<para>GHC's behaviour is controlled by
<firstterm>options</firstterm>, which for historical reasons are
also sometimes referred to as command-line flags or arguments.
Options can be specified in three ways:</para>
<sect2>
<title>Command-line arguments</title>
<indexterm><primary>structure, command-line</primary></indexterm>
<indexterm><primary>command-line</primary><secondary>arguments</secondary></indexterm>
<indexterm><primary>arguments</primary><secondary>command-line</secondary></indexterm>
<para>An invocation of GHC takes the following form:</para>
<screen>
ghc [argument...]
</screen>
<para>Command-line arguments are either options or file names.</para>
<para>Command-line options begin with <literal>-</literal>.
They may <emphasis>not</emphasis> be grouped:
<option>-vO</option> is different from <option>-v -O</option>.
Options need not precede filenames: e.g., <literal>ghc *.o -o
foo</literal>. All options are processed and then applied to
all files; you cannot, for example, invoke <literal>ghc -c -O1
Foo.hs -O2 Bar.hs</literal> to apply different optimisation
levels to the files <filename>Foo.hs</filename> and
<filename>Bar.hs</filename>.</para>
</sect2>
<sect2 id="source-file-options">
<title>Command line options in source files</title>
<indexterm><primary>source-file options</primary></indexterm>
<para>Sometimes it is useful to make the connection between a
source file and the command-line options it requires quite
tight. For instance, if a Haskell source file deliberately
uses name shadowing, it should be compiled with the
<option>-fno-warn-name-shadowing</option> option. Rather than maintaining
the list of per-file options in a <filename>Makefile</filename>,
it is possible to do this directly in the source file using the
<literal>OPTIONS_GHC</literal> pragma <indexterm><primary>OPTIONS_GHC
pragma</primary></indexterm>:</para>
<programlisting>
{-# OPTIONS_GHC -fno-warn-name-shadowing #-}
module X where
...
</programlisting>
<para><literal>OPTIONS_GHC</literal> is a <emphasis>file-header pragma</emphasis>
(see <xref linkend="pragmas"/>).</para>
<para>Only <emphasis>dynamic</emphasis> flags can be used in an <literal>OPTIONS_GHC</literal> pragma
(see <xref linkend="static-dynamic-flags"/>).</para>
<para>Note that your command shell does not
get to the source file options, they are just included literally
in the array of command-line arguments the compiler
maintains internally, so you'll be desperately disappointed if
you try to glob etc. inside <literal>OPTIONS_GHC</literal>.</para>
<para>NOTE: the contents of OPTIONS_GHC are appended to the
command-line options, so options given in the source file
override those given on the command-line.</para>
<para>It is not recommended to move all the contents of your
Makefiles into your source files, but in some circumstances, the
<literal>OPTIONS_GHC</literal> pragma is the Right Thing. (If you
use <option>-keep-hc-file</option> and have OPTION flags in
your module, the OPTIONS_GHC will get put into the generated .hc
file).</para>
</sect2>
<sect2>
<title>Setting options in GHCi</title>
<para>Options may also be modified from within GHCi, using the
<literal>:set</literal> command. See <xref linkend="ghci-set"/>
for more details.</para>
</sect2>
</sect1>
<sect1 id="static-dynamic-flags">
<title>Static, Dynamic, and Mode options</title>
<indexterm><primary>static</primary><secondary>options</secondary>
</indexterm>
<indexterm><primary>dynamic</primary><secondary>options</secondary>
</indexterm>
<indexterm><primary>mode</primary><secondary>options</secondary>
</indexterm>
<para>Each of GHC's command line options is classified as
<firstterm>static</firstterm>, <firstterm>dynamic</firstterm> or
<firstterm>mode</firstterm>:</para>
<variablelist>
<varlistentry>
<term>Mode flags</term>
<listitem>
<para>For example, <option>--make</option> or <option>-E</option>.
There may only be a single mode flag on the command line. The
available modes are listed in <xref linkend="modes"/>.</para>
</listitem>
</varlistentry>
<varlistentry>
<term>Dynamic Flags</term>
<listitem>
<para>Most non-mode flags fall into this category. A dynamic flag
may be used on the command line, in a
<literal>OPTIONS_GHC</literal> pragma in a source file, or set
using <literal>:set</literal> in GHCi.</para>
</listitem>
</varlistentry>
<varlistentry>
<term>Static Flags</term>
<listitem>
<para>A few flags are "static", which means they can only be used on
the command-line, and remain in force over the entire GHC/GHCi
run.</para>
</listitem>
</varlistentry>
</variablelist>
<para>The flag reference tables (<xref
linkend="flag-reference"/>) lists the status of each flag.</para>
<para>There are a few flags that are static except that they can
also be used with GHCi's <literal>:set</literal> command; these
are listed as “static/<literal>:set</literal>” in the
table.</para>
</sect1>
<sect1 id="file-suffixes">
<title>Meaningful file suffixes</title>
<indexterm><primary>suffixes, file</primary></indexterm>
<indexterm><primary>file suffixes for GHC</primary></indexterm>
<para>File names with “meaningful” suffixes (e.g.,
<filename>.lhs</filename> or <filename>.o</filename>) cause the
“right thing” to happen to those files.</para>
<variablelist>
<varlistentry>
<term><filename>.hs</filename></term>
<listitem>
<para>A Haskell module.</para>
</listitem>
</varlistentry>
<varlistentry>
<term>
<filename>.lhs</filename>
<indexterm><primary><literal>lhs</literal> suffix</primary></indexterm>
</term>
<listitem>
<para>A “literate Haskell” module.</para>
</listitem>
</varlistentry>
<varlistentry>
<term><filename>.hspp</filename></term>
<listitem>
<para>A file created by the preprocessor.</para>
</listitem>
</varlistentry>
<varlistentry>
<term><filename>.hi</filename></term>
<listitem>
<para>A Haskell interface file, probably
compiler-generated.</para>
</listitem>
</varlistentry>
<varlistentry>
<term><filename>.hc</filename></term>
<listitem>
<para>Intermediate C file produced by the Haskell
compiler.</para>
</listitem>
</varlistentry>
<varlistentry>
<term><filename>.c</filename></term>
<listitem>
<para>A C file not produced by the Haskell
compiler.</para>
</listitem>
</varlistentry>
<varlistentry>
<term><filename>.ll</filename></term>
<listitem>
<para>An llvm-intermediate-language source file, usually
produced by the compiler.</para>
</listitem>
</varlistentry>
<varlistentry>
<term><filename>.bc</filename></term>
<listitem>
<para>An llvm-intermediate-language bitcode file, usually
produced by the compiler.</para>
</listitem>
</varlistentry>
<varlistentry>
<term><filename>.s</filename></term>
<listitem>
<para>An assembly-language source file, usually produced by
the compiler.</para>
</listitem>
</varlistentry>
<varlistentry>
<term><filename>.o</filename></term>
<listitem>
<para>An object file, produced by an assembler.</para>
</listitem>
</varlistentry>
</variablelist>
<para>Files with other suffixes (or without suffixes) are passed
straight to the linker.</para>
</sect1>
<sect1 id="modes">
<title>Modes of operation</title>
<indexterm><primary>help options</primary></indexterm>
<para>
GHC's behaviour is firstly controlled by a mode flag. Only one
of these flags may be given, but it does not necessarily need to
be the first option on the command-line.
</para>
<para>
If no mode flag is present, then GHC will enter make mode
(<xref linkend="make-mode" />) if there are any Haskell source
files given on the command line, or else it will link the
objects named on the command line to produce an executable.
</para>
<para>The available mode flags are:</para>
<variablelist>
<varlistentry>
<term>
<cmdsynopsis><command>ghc --interactive</command>
</cmdsynopsis>
<indexterm><primary>interactive mode</primary></indexterm>
<indexterm><primary>ghci</primary></indexterm>
</term>
<listitem>
<para>Interactive mode, which is also available as
<command>ghci</command>. Interactive mode is described in
more detail in <xref linkend="ghci"/>.</para>
</listitem>
</varlistentry>
<varlistentry>
<term>
<cmdsynopsis><command>ghc --make</command>
</cmdsynopsis>
<indexterm><primary>make mode</primary></indexterm>
<indexterm><primary><option>--make</option></primary></indexterm>
</term>
<listitem>
<para>In this mode, GHC will build a multi-module Haskell
program automatically, figuring out dependencies for itself.
If you have a straightforward Haskell program, this is
likely to be much easier, and faster, than using
<command>make</command>. Make mode is described in <xref
linkend="make-mode"/>.</para>
<para>
This mode is the default if there are any Haskell
source files mentioned on the command line, and in this case
the <option>--make</option> option can be omitted.
</para>
</listitem>
</varlistentry>
<varlistentry>
<term>
<cmdsynopsis><command>ghc -e</command>
<arg choice='plain'><replaceable>expr</replaceable></arg>
</cmdsynopsis>
<indexterm><primary>eval mode</primary></indexterm>
</term>
<listitem>
<para>Expression-evaluation mode. This is very similar to
interactive mode, except that there is a single expression
to evaluate (<replaceable>expr</replaceable>) which is given
on the command line. See <xref linkend="eval-mode"/> for
more details.</para>
</listitem>
</varlistentry>
<varlistentry>
<term>
<cmdsynopsis>
<command>ghc -E</command>
<command>ghc -C</command>
<command>ghc -S</command>
<command>ghc -c</command>
</cmdsynopsis>
<indexterm><primary><option>-E</option></primary></indexterm>
<indexterm><primary><option>-C</option></primary></indexterm>
<indexterm><primary><option>-S</option></primary></indexterm>
<indexterm><primary><option>-c</option></primary></indexterm>
</term>
<listitem>
<para>This is the traditional batch-compiler mode, in which
GHC can compile source files one at a time, or link objects
together into an executable. See <xref
linkend="options-order"/>.</para>
</listitem>
</varlistentry>
<varlistentry>
<term>
<cmdsynopsis>
<command>ghc -M</command>
</cmdsynopsis>
<indexterm><primary>dependency-generation mode</primary></indexterm>
</term>
<listitem>
<para>Dependency-generation mode. In this mode, GHC can be
used to generate dependency information suitable for use in
a <literal>Makefile</literal>. See <xref
linkend="makefile-dependencies"/>.</para>
</listitem>
</varlistentry>
<varlistentry>
<term>
<cmdsynopsis>
<command>ghc --mk-dll</command>
</cmdsynopsis>
<indexterm><primary>DLL-creation mode</primary></indexterm>
</term>
<listitem>
<para>DLL-creation mode (Windows only). See <xref
linkend="win32-dlls-create"/>.</para>
</listitem>
</varlistentry>
<varlistentry>
<term>
<cmdsynopsis>
<command>ghc --help</command> <command>ghc -?</command>
</cmdsynopsis>
<indexterm><primary><option>--help</option></primary></indexterm>
</term>
<listitem>
<para>Cause GHC to spew a long usage message to standard
output and then exit.</para>
</listitem>
</varlistentry>
<varlistentry>
<term>
<cmdsynopsis>
<command>ghc --show-iface <replaceable>file</replaceable></command>
</cmdsynopsis>
<indexterm><primary><option>--show-iface</option></primary></indexterm>
</term>
<listitem>
<para>Read the interface in
<replaceable>file</replaceable> and dump it as text to
<literal>stdout</literal>. For example <literal>ghc --show-iface M.hi</literal>.</para>
</listitem>
</varlistentry>
<varlistentry>
<term>
<cmdsynopsis>
<command>ghc --supported-extensions</command>
<command>ghc --supported-languages</command>
</cmdsynopsis>
<indexterm><primary><option>--supported-extensions</option></primary><primary><option>--supported-languages</option></primary></indexterm>
</term>
<listitem>
<para>Print the supported language extensions.</para>
</listitem>
</varlistentry>
<varlistentry>
<term>
<cmdsynopsis>
<command>ghc --show-options</command>
</cmdsynopsis>
<indexterm><primary><option>--show-options</option></primary></indexterm>
</term>
<listitem>
<para>Print the supported command line options. This flag can be used for autocompletion in a shell.</para>
</listitem>
</varlistentry>
<varlistentry>
<term>
<cmdsynopsis>
<command>ghc --info</command>
</cmdsynopsis>
<indexterm><primary><option>--info</option></primary></indexterm>
</term>
<listitem>
<para>Print information about the compiler.</para>
</listitem>
</varlistentry>
<varlistentry>
<term>
<cmdsynopsis>
<command>ghc --version</command>
<command>ghc -V</command>
</cmdsynopsis>
<indexterm><primary><option>-V</option></primary></indexterm>
<indexterm><primary><option>--version</option></primary></indexterm>
</term>
<listitem>
<para>Print a one-line string including GHC's version number.</para>
</listitem>
</varlistentry>
<varlistentry>
<term>
<cmdsynopsis>
<command>ghc --numeric-version</command>
</cmdsynopsis>
<indexterm><primary><option>--numeric-version</option></primary></indexterm>
</term>
<listitem>
<para>Print GHC's numeric version number only.</para>
</listitem>
</varlistentry>
<varlistentry>
<term>
<cmdsynopsis>
<command>ghc --print-libdir</command>
</cmdsynopsis>
<indexterm><primary><option>--print-libdir</option></primary></indexterm>
</term>
<listitem>
<para>Print the path to GHC's library directory. This is
the top of the directory tree containing GHC's libraries,
interfaces, and include files (usually something like
<literal>/usr/local/lib/ghc-5.04</literal> on Unix). This
is the value of
<literal>$libdir</literal><indexterm><primary><literal>libdir</literal></primary></indexterm>
in the package configuration file
(see <xref linkend="packages"/>).</para>
</listitem>
</varlistentry>
</variablelist>
<sect2 id="make-mode">
<title>Using <command>ghc</command> <option>--make</option></title>
<indexterm><primary><option>--make</option></primary></indexterm>
<indexterm><primary>separate compilation</primary></indexterm>
<para>In this mode, GHC will build a multi-module Haskell program by following
dependencies from one or more root modules (usually just
<literal>Main</literal>). For example, if your
<literal>Main</literal> module is in a file called
<filename>Main.hs</filename>, you could compile and link the
program like this:</para>
<screen>
ghc --make Main.hs
</screen>
<para>
In fact, GHC enters make mode automatically if there are any
Haskell source files on the command line and no other mode is
specified, so in this case we could just type
</para>
<screen>
ghc Main.hs
</screen>
<para>Any number of source file names or module names may be
specified; GHC will figure out all the modules in the program by
following the imports from these initial modules. It will then
attempt to compile each module which is out of date, and
finally, if there is a <literal>Main</literal> module, the
program will also be linked into an executable.</para>
<para>The main advantages to using <literal>ghc
--make</literal> over traditional
<literal>Makefile</literal>s are:</para>
<itemizedlist>
<listitem>
<para>GHC doesn't have to be restarted for each compilation,
which means it can cache information between compilations.
Compiling a multi-module program with <literal>ghc
--make</literal> can be up to twice as fast as
running <literal>ghc</literal> individually on each source
file.</para>
</listitem>
<listitem>
<para>You don't have to write a <literal>Makefile</literal>.</para>
<indexterm><primary><literal>Makefile</literal>s</primary><secondary>avoiding</secondary></indexterm>
</listitem>
<listitem>
<para>GHC re-calculates the dependencies each time it is
invoked, so the dependencies never get out of sync with the
source.</para>
</listitem>
<listitem>
<para>Using the <literal>-j</literal> flag, you can compile
modules in parallel. Specify <literal>-jN</literal> to
compile <replaceable>N</replaceable> jobs in parallel.</para>
</listitem>
</itemizedlist>
<para>Any of the command-line options described in the rest of
this chapter can be used with
<option>--make</option>, but note that any options
you give on the command line will apply to all the source files
compiled, so if you want any options to apply to a single source
file only, you'll need to use an <literal>OPTIONS_GHC</literal>
pragma (see <xref linkend="source-file-options"/>).</para>
<para>If the program needs to be linked with additional objects
(say, some auxiliary C code), then the object files can be
given on the command line and GHC will include them when linking
the executable.</para>
<para>For backward compatibility with existing make scripts, when
used in combination with <option>-c</option>, the linking phase
is omitted (same as <option>--make</option>
<option>-no-link</option>).</para>
<para>Note that GHC can only follow dependencies if it has the
source file available, so if your program includes a module for
which there is no source file, even if you have an object and an
interface file for the module, then GHC will complain. The
exception to this rule is for package modules, which may or may
not have source files.</para>
<para>The source files for the program don't all need to be in
the same directory; the <option>-i</option> option can be used
to add directories to the search path (see <xref
linkend="search-path"/>).</para>
</sect2>
<sect2 id="eval-mode">
<title>Expression evaluation mode</title>
<para>This mode is very similar to interactive mode, except that
there is a single expression to evaluate which is specified on
the command line as an argument to the <option>-e</option>
option:</para>
<screen>
ghc -e <replaceable>expr</replaceable>
</screen>
<para>Haskell source files may be named on the command line, and
they will be loaded exactly as in interactive mode. The
expression is evaluated in the context of the loaded
modules.</para>
<para>For example, to load and run a Haskell program containing
a module <literal>Main</literal>, we might say</para>
<screen>
ghc -e Main.main Main.hs
</screen>
<para>or we can just use this mode to evaluate expressions in
the context of the <literal>Prelude</literal>:</para>
<screen>
$ ghc -e "interact (unlines.map reverse.lines)"
hello
olleh
</screen>
</sect2>
<sect2 id="options-order">
<title>Batch compiler mode</title>
<para>In <emphasis>batch mode</emphasis>, GHC will compile one or more source files
given on the command line.</para>
<para>The first phase to run is determined by each input-file
suffix, and the last phase is determined by a flag. If no
relevant flag is present, then go all the way through to linking.
This table summarises:</para>
<informaltable>
<tgroup cols="4">
<colspec align="left"/>
<colspec align="left"/>
<colspec align="left"/>
<colspec align="left"/>
<thead>
<row>
<entry>Phase of the compilation system</entry>
<entry>Suffix saying “start here”</entry>
<entry>Flag saying “stop after”</entry>
<entry>(suffix of) output file</entry>
</row>
</thead>
<tbody>
<row>
<entry>literate pre-processor</entry>
<entry><literal>.lhs</literal></entry>
<entry>-</entry>
<entry><literal>.hs</literal></entry>
</row>
<row>
<entry>C pre-processor (opt.) </entry>
<entry><literal>.hs</literal> (with
<option>-cpp</option>)</entry>
<entry><option>-E</option></entry>
<entry><literal>.hspp</literal></entry>
</row>
<row>
<entry>Haskell compiler</entry>
<entry><literal>.hs</literal></entry>
<entry><option>-C</option>, <option>-S</option></entry>
<entry><literal>.hc</literal>, <literal>.s</literal></entry>
</row>
<row>
<entry>C compiler (opt.)</entry>
<entry><literal>.hc</literal> or <literal>.c</literal></entry>
<entry><option>-S</option></entry>
<entry><literal>.s</literal></entry>
</row>
<row>
<entry>assembler</entry>
<entry><literal>.s</literal></entry>
<entry><option>-c</option></entry>
<entry><literal>.o</literal></entry>
</row>
<row>
<entry>linker</entry>
<entry><replaceable>other</replaceable></entry>
<entry>-</entry>
<entry><filename>a.out</filename></entry>
</row>
</tbody>
</tgroup>
</informaltable>
<indexterm><primary><option>-C</option></primary></indexterm>
<indexterm><primary><option>-E</option></primary></indexterm>
<indexterm><primary><option>-S</option></primary></indexterm>
<indexterm><primary><option>-c</option></primary></indexterm>
<para>Thus, a common invocation would be: </para>
<screen>
ghc -c Foo.hs
</screen>
<para>to compile the Haskell source file
<filename>Foo.hs</filename> to an object file
<filename>Foo.o</filename>.</para>
<para>Note: What the Haskell compiler proper produces depends on what
backend code generator is used. See <xref linkend="code-generators"/>
for more details.</para>
<para>Note: C pre-processing is optional, the
<option>-cpp</option><indexterm><primary><option>-cpp</option></primary></indexterm>
flag turns it on. See <xref linkend="c-pre-processor"/> for more
details.</para>
<para>Note: The option <option>-E</option><indexterm><primary>-E
option</primary></indexterm> runs just the pre-processing passes
of the compiler, dumping the result in a file.</para>
<para>Note: The option <option>-C</option> is only available when
GHC is built in unregisterised mode. See <xref linkend="unreg"/>
for more details.</para>
<sect3 id="overriding-suffixes">
<title>Overriding the default behaviour for a file</title>
<para>As described above, the way in which a file is processed by GHC
depends on its suffix. This behaviour can be overridden using the
<option>-x</option> option:</para>
<variablelist>
<varlistentry>
<term><option>-x</option> <replaceable>suffix</replaceable>
<indexterm><primary><option>-x</option></primary>
</indexterm></term>
<listitem>
<para>Causes all files following this option on the command
line to be processed as if they had the suffix
<replaceable>suffix</replaceable>. For example, to compile a
Haskell module in the file <literal>M.my-hs</literal>,
use <literal>ghc -c -x hs M.my-hs</literal>.</para>
</listitem>
</varlistentry>
</variablelist>
</sect3>
</sect2>
</sect1>
<sect1 id="options-help">
<title>Verbosity options</title>
<indexterm><primary>verbosity options</primary></indexterm>
<para>See also the <option>--help</option>, <option>--version</option>, <option>--numeric-version</option>,
and <option>--print-libdir</option> modes in <xref linkend="modes"/>.</para>
<variablelist>
<varlistentry>
<term>
<option>-v</option>
<indexterm><primary><option>-v</option></primary></indexterm>
</term>
<listitem>
<para>The <option>-v</option> option makes GHC
<emphasis>verbose</emphasis>: it reports its version number
and shows (on stderr) exactly how it invokes each phase of
the compilation system. Moreover, it passes the
<option>-v</option> flag to most phases; each reports its
version number (and possibly some other information).</para>
<para>Please, oh please, use the <option>-v</option> option
when reporting bugs! Knowing that you ran the right bits in
the right order is always the first thing we want to
verify.</para>
</listitem>
</varlistentry>
<varlistentry>
<term>
<option>-v</option><replaceable>n</replaceable>
<indexterm><primary><option>-v</option></primary></indexterm>
</term>
<listitem>
<para>To provide more control over the compiler's verbosity,
the <option>-v</option> flag takes an optional numeric
argument. Specifying <option>-v</option> on its own is
equivalent to <option>-v3</option>, and the other levels
have the following meanings:</para>
<variablelist>
<varlistentry>
<term><option>-v0</option></term>
<listitem>
<para>Disable all non-essential messages (this is the
default).</para>
</listitem>
</varlistentry>
<varlistentry>
<term><option>-v1</option></term>
<listitem>
<para>Minimal verbosity: print one line per
compilation (this is the default when
<option>--make</option> or
<option>--interactive</option> is on).</para>
</listitem>
</varlistentry>
<varlistentry>
<term><option>-v2</option></term>
<listitem>
<para>Print the name of each compilation phase as it
is executed. (equivalent to
<option>-dshow-passes</option>).</para>
</listitem>
</varlistentry>
<varlistentry>
<term><option>-v3</option></term>
<listitem>
<para>The same as <option>-v2</option>, except that in
addition the full command line (if appropriate) for
each compilation phase is also printed.</para>
</listitem>
</varlistentry>
<varlistentry>
<term><option>-v4</option></term>
<listitem>
<para>The same as <option>-v3</option> except that the
intermediate program representation after each
compilation phase is also printed (excluding
preprocessed and C/assembly files).</para>
</listitem>
</varlistentry>
</variablelist>
</listitem>
</varlistentry>
<varlistentry>
<term><option>--fprint-explicit-foralls, -fprint-explicit-kinds, -fprint-unicode-syntax</option>
<indexterm><primary><option>-fprint-explicit-foralls</option></primary></indexterm>
<indexterm><primary><option>-fprint-explicit-kinds</option></primary></indexterm>
<indexterm><primary><option>-fprint-unicode-syntax</option></primary></indexterm>
</term>
<listitem>
<para>These three flags control the way in which GHC displays types, in error messages and in GHCi.
Using <option>-fprint-explicit-foralls</option> makes GHC print explicit <literal>forall</literal>
quantification at the top level of a type; normally this is suppressed. For example, in GHCi:
<screen>
ghci> let f x = x
ghci> :t f
f :: a -> a
ghci> :set -fprint-explicit-foralls
ghci> :t f
f :: forall a. a -> a
</screen>
However, regardless of the flag setting, the quantifiers are printed under these circumstances:
<itemizedlist>
<listitem><para>For nested <literal>foralls</literal>, e.g.
<screen>
ghci> :t GHC.ST.runST
GHC.ST.runST :: (forall s. GHC.ST.ST s a) -> a
</screen>
</para></listitem>
<listitem><para>If any of the quantified type variables has a kind
that mentions a kind variable, e.g.
<screen>
ghci> :i Data.Type.Equality.sym
Data.Type.Equality.sym ::
forall (k :: BOX) (a :: k) (b :: k).
(a Data.Type.Equality.:~: b) -> b Data.Type.Equality.:~: a
-- Defined in Data.Type.Equality
</screen>
</para></listitem>
</itemizedlist>
</para>
<para>
Using <option>-fprint-explicit-kinds</option> makes GHC print kind arguments
in types, which are normally suppressed. This can be important when you are using kind polymorphism.
For example:
<screen>
ghci> :set -XPolyKinds
ghci> data T a = MkT
ghci> :t MkT
MkT :: forall (k :: BOX) (a :: k). T a
ghci> :set -fprint-explicit-foralls
ghci> :t MkT
MkT :: forall (k :: BOX) (a :: k). T k a
</screen>
</para>
<para>
When <option>-fprint-unicode-syntax</option> is enabled, GHC prints type signatures using
the unicode symbols from the <option>-XUnicodeSyntax</option> extension.
<screen>
ghci> :set -fprint-unicode-syntax
ghci> :t (>>)
(>>) :: ∀ (m :: * → *) a b. Monad m ⇒ m a → m b → m b
</screen>
</para>
</listitem>
</varlistentry>
<varlistentry>
<term><option>-ferror-spans</option>
<indexterm><primary><option>-ferror-spans</option></primary>
</indexterm>
</term>
<listitem>
<para>Causes GHC to emit the full source span of the
syntactic entity relating to an error message. Normally, GHC
emits the source location of the start of the syntactic
entity only.</para>
<para>For example:</para>
<screen>
test.hs:3:6: parse error on input `where'
</screen>
<para>becomes:</para>
<screen>
test296.hs:3:6-10: parse error on input `where'
</screen>
<para>And multi-line spans are possible too:</para>
<screen>
test.hs:(5,4)-(6,7):
Conflicting definitions for `a'
Bound at: test.hs:5:4
test.hs:6:7
In the binding group for: a, b, a
</screen>
<para>Note that line numbers start counting at one, but
column numbers start at zero. This choice was made to
follow existing convention (i.e. this is how Emacs does
it).</para>
</listitem>
</varlistentry>
<varlistentry>
<term><option>-H</option><replaceable>size</replaceable>
<indexterm><primary><option>-H</option></primary></indexterm>
</term>
<listitem>
<para>Set the minimum size of the heap to
<replaceable>size</replaceable>.
This option is equivalent to
<literal>+RTS -H<replaceable>size</replaceable></literal>,
see <xref linkend="rts-options-gc" />.
</para>
</listitem>
</varlistentry>
<varlistentry>
<term><option>-Rghc-timing</option>
<indexterm><primary><option>-Rghc-timing</option></primary></indexterm>
</term>
<listitem>
<para>Prints a one-line summary of timing statistics for the
GHC run. This option is equivalent to
<literal>+RTS -tstderr</literal>, see <xref
linkend="rts-options-gc" />.
</para>
</listitem>
</varlistentry>
</variablelist>
</sect1>
&separate;
<sect1 id="options-sanity">
<title>Warnings and sanity-checking</title>
<indexterm><primary>sanity-checking options</primary></indexterm>
<indexterm><primary>warnings</primary></indexterm>
<para>GHC has a number of options that select which types of
non-fatal error messages, otherwise known as warnings, can be
generated during compilation. By default, you get a standard set
of warnings which are generally likely to indicate bugs in your
program. These are:
<option>-fwarn-overlapping-patterns</option>,
<option>-fwarn-warnings-deprecations</option>,
<option>-fwarn-deprecated-flags</option>,
<option>-fwarn-unrecognised-pragmas</option>,
<option>-fwarn-pointless-pragmas</option>,
<option>-fwarn-duplicate-constraints</option>,
<option>-fwarn-duplicate-exports</option>,
<option>-fwarn-overflowed-literals</option>,
<option>-fwarn-empty-enumerations</option>,
<option>-fwarn-missing-fields</option>,
<option>-fwarn-missing-methods</option>,
<option>-fwarn-wrong-do-bind</option>,
<option>-fwarn-unsupported-calling-conventions</option>,
<option>-fwarn-dodgy-foreign-imports</option>,
<option>-fwarn-inline-rule-shadowing</option>,
<option>-fwarn-unsupported-llvm-version</option>,
<option>-fwarn-context-quantification</option>, and
<option>-fwarn-tabs</option>.
The following flags are simple ways to select standard
“packages” of warnings:
</para>
<variablelist>
<varlistentry>
<term><option>-W</option>:</term>
<listitem>
<indexterm><primary>-W option</primary></indexterm>
<para>Provides the standard warnings plus
<option>-fwarn-unused-binds</option>,
<option>-fwarn-unused-matches</option>,
<option>-fwarn-unused-imports</option>,
<option>-fwarn-incomplete-patterns</option>,
<option>-fwarn-dodgy-exports</option>, and
<option>-fwarn-dodgy-imports</option>.</para>
</listitem>
</varlistentry>
<varlistentry>
<term><option>-Wall</option>:</term>
<listitem>
<indexterm><primary><option>-Wall</option></primary></indexterm>
<para>Turns on all warning options that indicate potentially
suspicious code. The warnings that are
<emphasis>not</emphasis> enabled by <option>-Wall</option>
are
<option>-fwarn-incomplete-uni-patterns</option>,
<option>-fwarn-incomplete-record-updates</option>,
<option>-fwarn-monomorphism-restriction</option>,
<option>-fwarn-auto-orphans</option>,
<option>-fwarn-implicit-prelude</option>,
<option>-fwarn-missing-local-sigs</option>,
<option>-fwarn-missing-exported-sigs</option>,
<option>-fwarn-missing-import-lists</option> and
<option>-fwarn-identities</option>.</para>
</listitem>
</varlistentry>
<varlistentry>
<term><option>-w</option>:</term>
<listitem>
<indexterm><primary><option>-w</option></primary></indexterm>
<para>Turns off all warnings, including the standard ones and
those that <literal>-Wall</literal> doesn't enable.</para>
</listitem>
</varlistentry>
<varlistentry>
<term><option>-Werror</option>:</term>
<listitem>
<indexterm><primary><option>-Werror</option></primary></indexterm>
<para>Makes any warning into a fatal error. Useful so that you don't
miss warnings when doing batch compilation. </para>
</listitem>
</varlistentry>
<varlistentry>
<term><option>-Wwarn</option>:</term>
<listitem>
<indexterm><primary><option>-Wwarn</option></primary></indexterm>
<para>Warnings are treated only as warnings, not as errors. This is
the default, but can be useful to negate a
<option>-Werror</option> flag.</para>
</listitem>
</varlistentry>
</variablelist>
<para>The full set of warning options is described below. To turn
off any warning, simply give the corresponding
<option>-fno-warn-...</option> option on the command line.</para>
<variablelist>
<varlistentry>
<term><option>-fwarn-typed-holes</option>:</term>
<listitem>
<indexterm><primary><option>-fwarn-typed-holes</option></primary>
</indexterm>
<indexterm><primary>warnings</primary></indexterm>
<para>
Determines whether the compiler reports typed holes warnings. Has
no effect unless typed holes errors are deferred until runtime.
See <xref linkend="typed-holes"/> and <xref linkend="defer-type-errors"/>
</para>
<para>This warning is on by default.</para>
</listitem>
</varlistentry>
<varlistentry>
<term><option>-fwarn-type-errors</option>:</term>
<listitem>
<indexterm><primary><option>-fwarn-type-errors</option></primary>
</indexterm>
<indexterm><primary>warnings</primary></indexterm>
<para>Causes a warning to be reported when a type error is deferred
until runtime. See <xref linkend="defer-type-errors"/></para>
<para>This warning is on by default.</para>
</listitem>
</varlistentry>
<varlistentry>
<term><option>-fdefer-type-errors</option>:</term>
<listitem>
<indexterm><primary><option>-fdefer-type-errors</option></primary>
</indexterm>
<indexterm><primary>warnings</primary></indexterm>
<para>Defer as many type errors as possible until runtime.
At compile time you get a warning (instead of an error). At
runtime, if you use a value that depends on a type error, you
get a runtime error; but you can run any type-correct parts of your code
just fine. See <xref linkend="defer-type-errors"/></para>
</listitem>
</varlistentry>
<varlistentry>
<term><option>-fdefer-typed-holes</option>:</term>
<listitem>
<indexterm><primary><option>-fdefer-typed-holes</option></primary>
</indexterm>
<indexterm><primary>warnings</primary></indexterm>
<para>
Defer typed holes errors until runtime. This will turn the errors
produced by <link linked="typed-holes">typed holes</link> into
warnings. Using a value that depends on a typed hole produces a
runtime error, the same as <option>-fdefer-type-errors</option>
(which implies this option). See <xref linkend="typed-holes"/>
and <xref linkend="defer-type-errors"/>.
</para>
<para>
Implied by <option>-fdefer-type-errors</option>. See also
<option>-fwarn-typed-holes</option>.
</para>
</listitem>
</varlistentry>
<varlistentry>
<term><option>-fwarn-partial-type-signatures</option>:</term>
<listitem>
<indexterm><primary><option>-fwarn-partial-type-signatures</option></primary>
</indexterm>
<indexterm><primary>warnings</primary></indexterm>
<para>
Determines whether the compiler reports holes in partial type
signatures as warnings. Has no effect unless
<option>-XPartialTypeSignatures</option> is enabled, which
controls whether errors should be generated for holes in types
or not. See <xref linkend="partial-type-signatures"/>.
</para>
<para>This warning is on by default.</para>
</listitem>
</varlistentry>
<varlistentry>
<term><option>-fhelpful-errors</option>:</term>
<listitem>
<indexterm><primary><option>-fhelpful-errors</option></primary>
</indexterm>
<indexterm><primary>warnings</primary></indexterm>
<para>When a name or package is not found in scope, make
suggestions for the name or package you might have meant instead.</para>
<para>This option is on by default.</para>
</listitem>
</varlistentry>
<varlistentry>
<term><option>-fwarn-unrecognised-pragmas</option>:</term>
<listitem>
<indexterm><primary><option>-fwarn-unrecognised-pragmas</option></primary>
</indexterm>
<indexterm><primary>warnings</primary></indexterm>
<indexterm><primary>pragmas</primary></indexterm>
<para>Causes a warning to be emitted when a
pragma that GHC doesn't recognise is used. As well as pragmas
that GHC itself uses, GHC also recognises pragmas known to be used
by other tools, e.g. <literal>OPTIONS_HUGS</literal> and
<literal>DERIVE</literal>.</para>
<para>This option is on by default.</para>
</listitem>
</varlistentry>
<varlistentry>
<term><option>-fwarn-pointless-pragmas</option>:</term>
<listitem>
<indexterm><primary><option>-fwarn-pointless-pragmas</option></primary>
</indexterm>
<indexterm><primary>warnings</primary></indexterm>
<indexterm><primary>pragmas</primary></indexterm>
<para>Causes a warning to be emitted when GHC detects that a
module contains a pragma that has no effect.</para>
<para>This option is on by default.</para>
</listitem>
</varlistentry>
<varlistentry>
<term><option>-fwarn-warnings-deprecations</option>:</term>
<listitem>
<indexterm><primary><option>-fwarn-warnings-deprecations</option></primary>
</indexterm>
<indexterm><primary>warnings</primary></indexterm>
<indexterm><primary>deprecations</primary></indexterm>
<para>Causes a warning to be emitted when a
module, function or type with a WARNING or DEPRECATED pragma
is used. See <xref linkend="warning-deprecated-pragma"/> for more
details on the pragmas.</para>
<para>This option is on by default.</para>
</listitem>
</varlistentry>
<varlistentry>
<term><option>-fwarn-amp</option>:</term>
<listitem>
<indexterm><primary><option>-fwarn-amp</option></primary>
</indexterm>
<indexterm><primary>amp</primary></indexterm>
<indexterm><primary>applicative-monad proposal</primary></indexterm>
<para>Causes a warning to be emitted when a definition
is in conflict with the AMP (Applicative-Monad proosal),
namely:
1. Instance of Monad without Applicative;
2. Instance of MonadPlus without Alternative;
3. Custom definitions of join/pure/<*></para>
<para>This option is on by default.</para>
</listitem>
</varlistentry>
<varlistentry>
<term><option>-fwarn-deprecated-flags</option>:</term>
<listitem>
<indexterm><primary><option>-fwarn-deprecated-flags</option></primary>
</indexterm>
<indexterm><primary>deprecated-flags</primary></indexterm>
<para>Causes a warning to be emitted when a deprecated
command-line flag is used.</para>
<para>This option is on by default.</para>
</listitem>
</varlistentry>
<varlistentry>
<term><option>-fwarn-unsupported-calling-conventions</option>:</term>
<listitem>
<indexterm><primary><option>-fwarn-unsupported-calling-conventions</option></primary>
</indexterm>
<para>Causes a warning to be emitted for foreign declarations
that use unsupported calling conventions. In particular,
if the <literal>stdcall</literal> calling convention is used
on an architecture other than i386 then it will be treated
as <literal>ccall</literal>.</para>
</listitem>
</varlistentry>
<varlistentry>
<term><option>-fwarn-dodgy-foreign-imports</option>:</term>
<listitem>
<indexterm><primary><option>-fwarn-dodgy-foreign-imports</option></primary>
</indexterm>
<para>Causes a warning to be emitted for foreign imports of
the following form:</para>
<programlisting>
foreign import "f" f :: FunPtr t
</programlisting>
<para>on the grounds that it probably should be</para>
<programlisting>
foreign import "&f" f :: FunPtr t
</programlisting>
<para>The first form declares that `f` is a (pure) C
function that takes no arguments and returns a pointer to a
C function with type `t`, whereas the second form declares
that `f` itself is a C function with type `t`. The first
declaration is usually a mistake, and one that is hard to
debug because it results in a crash, hence this
warning.</para>
</listitem>
</varlistentry>
<varlistentry>
<term><option>-fwarn-dodgy-exports</option>:</term>
<listitem>
<indexterm><primary><option>-fwarn-dodgy-exports</option></primary>
</indexterm>
<para>Causes a warning to be emitted when a datatype
<literal>T</literal> is exported
with all constructors, i.e. <literal>T(..)</literal>, but is it
just a type synonym.</para>
<para>Also causes a warning to be emitted when a module is
re-exported, but that module exports nothing.</para>
</listitem>
</varlistentry>
<varlistentry>
<term><option>-fwarn-dodgy-imports</option>:</term>
<listitem>
<indexterm><primary><option>-fwarn-dodgy-imports</option></primary>
</indexterm>
<para>Causes a warning to be emitted in the following cases:</para>
<itemizedlist>
<listitem>
<para>When a datatype <literal>T</literal> is imported with all
constructors, i.e. <literal>T(..)</literal>, but has been
exported abstractly, i.e. <literal>T</literal>.
</para>
</listitem>
<listitem>
<para>When an <literal>import</literal> statement hides an
entity that is not exported.</para>
</listitem>
</itemizedlist>
</listitem>
</varlistentry>
<varlistentry>
<term><option>-fwarn-overflowed-literals</option>:</term>
<listitem>
<indexterm><primary><option>-fwarn-overflowed-literals</option></primary>
</indexterm>
<para>
Causes a warning to be emitted if a literal will overflow,
e.g. <literal>300 :: Word8</literal>.
</para>
</listitem>
</varlistentry>
<varlistentry>
<term><option>-fwarn-empty-enumerations</option>:</term>
<listitem>
<indexterm><primary><option>-fwarn-empty-enumerations</option></primary>
</indexterm>
<para>
Causes a warning to be emitted if an enumeration is
empty, e.g. <literal>[5 .. 3]</literal>.
</para>
</listitem>
</varlistentry>
<varlistentry>
<term><option>-fwarn-lazy-unlifted-bindings</option>:</term>
<listitem>
<indexterm><primary><option>-fwarn-lazy-unlifted-bindings</option></primary>
</indexterm>
<para>This flag is a no-op, and will be removed in GHC 7.10.</para>
</listitem>
</varlistentry>
<varlistentry>
<term><option>-fwarn-duplicate-constraints</option>:</term>
<listitem>
<indexterm><primary><option>-fwarn-duplicate-constraints</option></primary></indexterm>
<indexterm><primary>duplicate constraints, warning</primary></indexterm>
<para>Have the compiler warn about duplicate constraints in a type signature. For
example
<programlisting>
f :: (Eq a, Show a, Eq a) => a -> a
</programlisting>
The warning will indicate the duplicated <literal>Eq a</literal> constraint.
</para>
<para>This option is now deprecated in favour of <option>-fwarn-redundant-constraints</option>.</para>
</listitem>
</varlistentry>
<varlistentry>
<term><option>-fwarn-redundant-constraints</option>:</term>
<listitem>
<indexterm><primary><option>-fwarn-redundant-constraints</option></primary></indexterm>
<indexterm><primary>redundant constraints, warning</primary></indexterm>
<para>Have the compiler warn about redundant constraints in a type signature.
In particular:
<itemizedlist>
<listitem><para>
A redundant constraint within the type signature itself:
<programlisting>
f :: (Eq a, Ord a) => a -> a
</programlisting>
The warning will indicate the redundant <literal>Eq a</literal> constraint:
it is subsumed by the <literal>Ord a</literal> constraint.
</para></listitem>
<listitem><para>
A constraint in the type signature is not used in the code it covers:
<programlisting>
f :: Eq a => a -> a -> Bool
f x y = True
</programlisting>
The warning will indicate the redundant <literal>Eq a</literal> constraint:
: it is not used by the definition of <literal>f</literal>.)
</para></listitem>
</itemizedlist>
Similar warnings are given for a redundant constraint in an instance declaration.
</para>
<para>This option is on by default. As usual you can suppress it on a per-module basis
with <option>-fno-warn-redundant-constraints</option>. Occasionally you may specifically
want a function to have a more constrained signature than necessary, perhaps to
leave yourself wiggle-room for changing the implementation without changing the
API. In that case, you can suppress the warning on a per-function basis, using a
call in a dead binding. For example:
<programlisting>
f :: Eq a => a -> a -> Bool
f x y = True
where
_ = x == x -- Suppress the redundant-constraint warning for (Eq a)
</programlisting>
Here the call to <literal>(==)</literal> makes GHC think that the <literal>(Eq a)</literal>
constraint is needed, so no warning is issued.
</para>
</listitem>
</varlistentry>
<varlistentry>
<term><option>-fwarn-duplicate-exports</option>:</term>
<listitem>
<indexterm><primary><option>-fwarn-duplicate-exports</option></primary></indexterm>
<indexterm><primary>duplicate exports, warning</primary></indexterm>
<indexterm><primary>export lists, duplicates</primary></indexterm>
<para>Have the compiler warn about duplicate entries in
export lists. This is useful information if you maintain
large export lists, and want to avoid the continued export
of a definition after you've deleted (one) mention of it in
the export list.</para>
<para>This option is on by default.</para>
</listitem>
</varlistentry>
<varlistentry>
<term><option>-fwarn-hi-shadowing</option>:</term>
<listitem>
<indexterm><primary><option>-fwarn-hi-shadowing</option></primary></indexterm>
<indexterm><primary>shadowing</primary>
<secondary>interface files</secondary></indexterm>
<para>Causes the compiler to emit a warning when a module or
interface file in the current directory is shadowing one
with the same module name in a library or other
directory.</para>
</listitem>
</varlistentry>
<varlistentry>
<term><option>-fwarn-identities</option>:</term>
<listitem>
<indexterm><primary><option>-fwarn-identities</option></primary></indexterm>
<para>Causes the compiler to emit a warning when a Prelude numeric
conversion converts a type T to the same type T; such calls
are probably no-ops and can be omitted. The functions checked for
are: <literal>toInteger</literal>,
<literal>toRational</literal>,
<literal>fromIntegral</literal>,
and <literal>realToFrac</literal>.
</para>
</listitem>
</varlistentry>
<varlistentry>
<term><option>-fwarn-implicit-prelude</option>:</term>
<listitem>
<indexterm><primary><option>-fwarn-implicit-prelude</option></primary></indexterm>
<indexterm><primary>implicit prelude, warning</primary></indexterm>
<para>Have the compiler warn if the Prelude is implicitly
imported. This happens unless either the Prelude module is
explicitly imported with an <literal>import ... Prelude ...</literal>
line, or this implicit import is disabled (either by
<option>-XNoImplicitPrelude</option> or a
<literal>LANGUAGE NoImplicitPrelude</literal> pragma).</para>
<para>Note that no warning is given for syntax that implicitly
refers to the Prelude, even if <option>-XNoImplicitPrelude</option>
would change whether it refers to the Prelude.
For example, no warning is given when
<literal>368</literal> means
<literal>Prelude.fromInteger (368::Prelude.Integer)</literal>
(where <literal>Prelude</literal> refers to the actual Prelude module,
regardless of the imports of the module being compiled).</para>
<para>This warning is off by default.</para>
</listitem>
</varlistentry>
<varlistentry>
<term><option>-fwarn-incomplete-patterns</option>,
<option>-fwarn-incomplete-uni-patterns</option>:
</term>
<listitem>
<indexterm><primary><option>-fwarn-incomplete-patterns</option></primary></indexterm>
<indexterm><primary><option>-fwarn-incomplete-uni-patterns</option></primary></indexterm>
<indexterm><primary>incomplete patterns, warning</primary></indexterm>
<indexterm><primary>patterns, incomplete</primary></indexterm>
<para>The option <option>-fwarn-incomplete-patterns</option> warns
about places where
a pattern-match might fail at runtime.
The function
<function>g</function> below will fail when applied to
non-empty lists, so the compiler will emit a warning about
this when <option>-fwarn-incomplete-patterns</option> is
enabled.
<programlisting>
g [] = 2
</programlisting>
This option isn't enabled by default because it can be
a bit noisy, and it doesn't always indicate a bug in the
program. However, it's generally considered good practice
to cover all the cases in your functions, and it is switched
on by <option>-W</option>.</para>
<para>The flag <option>-fwarn-incomplete-uni-patterns</option> is
similar, except that it
applies only to lambda-expressions and pattern bindings, constructs
that only allow a single pattern:
<programlisting>
h = \[] -> 2
Just k = f y
</programlisting>
</para>
</listitem>
</varlistentry>
<varlistentry>
<term><option>-fwarn-incomplete-record-updates</option>:</term>
<listitem>
<indexterm><primary><option>-fwarn-incomplete-record-updates</option></primary></indexterm>
<indexterm><primary>incomplete record updates, warning</primary></indexterm>
<indexterm><primary>record updates, incomplete</primary></indexterm>
<para>The function
<function>f</function> below will fail when applied to
<literal>Bar</literal>, so the compiler will emit a warning about
this when <option>-fwarn-incomplete-record-updates</option> is
enabled.</para>
<programlisting>
data Foo = Foo { x :: Int }
| Bar
f :: Foo -> Foo
f foo = foo { x = 6 }
</programlisting>
<para>This option isn't enabled by default because it can be
very noisy, and it often doesn't indicate a bug in the
program.</para>
</listitem>
</varlistentry>
<varlistentry>
<term>
<option>-fwarn-missing-fields</option>:
<indexterm><primary><option>-fwarn-missing-fields</option></primary></indexterm>
<indexterm><primary>missing fields, warning</primary></indexterm>
<indexterm><primary>fields, missing</primary></indexterm>
</term>
<listitem>
<para>This option is on by default, and warns you whenever
the construction of a labelled field constructor isn't
complete, missing initialisers for one or more fields. While
not an error (the missing fields are initialised with
bottoms), it is often an indication of a programmer error.</para>
</listitem>
</varlistentry>
<varlistentry>
<term>
<option>-fwarn-missing-import-lists</option>:
<indexterm><primary><option>-fwarn-import-lists</option></primary></indexterm>
<indexterm><primary>missing import lists, warning</primary></indexterm>
<indexterm><primary>import lists, missing</primary></indexterm>
</term>
<listitem>
<para>This flag warns if you use an unqualified
<literal>import</literal> declaration
that does not explicitly list the entities brought into scope. For
example
</para>
<programlisting>
module M where
import X( f )
import Y
import qualified Z
p x = f x x
</programlisting>
<para>
The <option>-fwarn-import-lists</option> flag will warn about the import
of <literal>Y</literal> but not <literal>X</literal>
If module <literal>Y</literal> is later changed to export (say) <literal>f</literal>,
then the reference to <literal>f</literal> in <literal>M</literal> will become
ambiguous. No warning is produced for the import of <literal>Z</literal>
because extending <literal>Z</literal>'s exports would be unlikely to produce
ambiguity in <literal>M</literal>.
</para>
</listitem>
</varlistentry>
<varlistentry>
<term><option>-fwarn-missing-methods</option>:</term>
<listitem>
<indexterm><primary><option>-fwarn-missing-methods</option></primary></indexterm>
<indexterm><primary>missing methods, warning</primary></indexterm>
<indexterm><primary>methods, missing</primary></indexterm>
<para>This option is on by default, and warns you whenever
an instance declaration is missing one or more methods, and
the corresponding class declaration has no default
declaration for them.</para>
<para>The warning is suppressed if the method name
begins with an underscore. Here's an example where this is useful:
<programlisting>
class C a where
_simpleFn :: a -> String
complexFn :: a -> a -> String
complexFn x y = ... _simpleFn ...
</programlisting>
The idea is that: (a) users of the class will only call <literal>complexFn</literal>;
never <literal>_simpleFn</literal>; and (b)
instance declarations can define either <literal>complexFn</literal> or <literal>_simpleFn</literal>.
</para>
<para>The MINIMAL pragma can be used to change which combination of methods will be required for instances of a particular class. See <xref linkend="minimal-pragma"/>.</para>
</listitem>
</varlistentry>
<varlistentry>
<term><option>-fwarn-missing-signatures</option>:</term>
<listitem>
<indexterm><primary><option>-fwarn-missing-signatures</option></primary></indexterm>
<indexterm><primary>type signatures, missing</primary></indexterm>
<para>If you would like GHC to check that every top-level
function/value has a type signature, use the
<option>-fwarn-missing-signatures</option> option. As part of
the warning GHC also reports the inferred type. The
option is off by default.</para>
</listitem>
</varlistentry>
<varlistentry>
<term><option>-fwarn-missing-exported-sigs</option>:</term>
<listitem>
<indexterm><primary><option>-fwarn-missing-exported-sigs</option></primary></indexterm>
<indexterm><primary>type signatures, missing</primary></indexterm>
<para>If you would like GHC to check that every exported top-level
function/value has a type signature, but not check unexported values, use the
<option>-fwarn-missing-exported-sigs</option> option. This option
takes precedence over <option>-fwarn-missing-signatures</option>.
As part of the warning GHC also reports the inferred type. The
option is off by default.</para>
</listitem>
</varlistentry>
<varlistentry>
<term><option>-fwarn-missing-local-sigs</option>:</term>
<listitem>
<indexterm><primary><option>-fwarn-missing-local-sigs</option></primary></indexterm>
<indexterm><primary>type signatures, missing</primary></indexterm>
<para>If you use the
<option>-fwarn-missing-local-sigs</option> flag GHC will warn
you about any polymorphic local bindings. As part of
the warning GHC also reports the inferred type. The
option is off by default.</para>
</listitem>
</varlistentry>
<varlistentry>
<term><option>-fwarn-name-shadowing</option>:</term>
<listitem>
<indexterm><primary><option>-fwarn-name-shadowing</option></primary></indexterm>
<indexterm><primary>shadowing, warning</primary></indexterm>
<para>This option causes a warning to be emitted whenever an
inner-scope value has the same name as an outer-scope value,
i.e. the inner value shadows the outer one. This can catch
typographical errors that turn into hard-to-find bugs, e.g.,
in the inadvertent capture of what would be a recursive call in
<literal>f = ... let f = id in ... f ...</literal>.</para>
<para>The warning is suppressed for names beginning with an underscore. For example
<programlisting>
f x = do { _ignore <- this; _ignore <- that; return (the other) }
</programlisting>
</para>
</listitem>
</varlistentry>
<varlistentry>
<term><option>-fwarn-orphans, -fwarn-auto-orphans</option>:</term>
<listitem>
<indexterm><primary><option>-fwarn-orphans</option></primary></indexterm>
<indexterm><primary><option>-fwarn-auto-orphans</option></primary></indexterm>
<indexterm><primary>orphan instances, warning</primary></indexterm>
<indexterm><primary>orphan rules, warning</primary></indexterm>
<para>These flags cause a warning to be emitted whenever the
module contains an "orphan" instance declaration or rewrite rule.
An instance declaration is an orphan if it appears in a module in
which neither the class nor the type being instanced are declared
in the same module. A rule is an orphan if it is a rule for a
function declared in another module. A module containing any
orphans is called an orphan module.</para>
<para>The trouble with orphans is that GHC must pro-actively read the interface
files for all orphan modules, just in case their instances or rules
play a role, whether or not the module's interface would otherwise
be of any use. See <xref linkend="orphan-modules"/> for details.
</para>
<para>The flag <option>-fwarn-orphans</option> warns about user-written
orphan rules or instances. The flag <option>-fwarn-auto-orphans</option>
warns about automatically-generated orphan rules, notably as a result of
specialising functions, for type classes (<literal>Specialise</literal>)
or argument values (<literal>-fspec-constr</literal>).</para>
</listitem>
</varlistentry>
<varlistentry>
<term>
<option>-fwarn-overlapping-patterns</option>:
<indexterm><primary><option>-fwarn-overlapping-patterns</option></primary></indexterm>
<indexterm><primary>overlapping patterns, warning</primary></indexterm>
<indexterm><primary>patterns, overlapping</primary></indexterm>
</term>
<listitem>
<para>By default, the compiler will warn you if a set of
patterns are overlapping, e.g.,</para>
<programlisting>
f :: String -> Int
f [] = 0
f (_:xs) = 1
f "2" = 2
</programlisting>
<para>where the last pattern match in <function>f</function>
won't ever be reached, as the second pattern overlaps
it. More often than not, redundant patterns is a programmer
mistake/error, so this option is enabled by default.</para>
</listitem>
</varlistentry>
<varlistentry>
<term><option>-fwarn-tabs</option>:</term>
<listitem>
<indexterm><primary><option>-fwarn-tabs</option></primary></indexterm>
<indexterm><primary>tabs, warning</primary></indexterm>
<para>Have the compiler warn if there are tabs in your source
file.</para>
</listitem>
</varlistentry>
<varlistentry>
<term><option>-fwarn-type-defaults</option>:</term>
<listitem>
<indexterm><primary><option>-fwarn-type-defaults</option></primary></indexterm>
<indexterm><primary>defaulting mechanism, warning</primary></indexterm>
<para>Have the compiler warn/inform you where in your source
the Haskell defaulting mechanism for numeric types kicks
in. This is useful information when converting code from a
context that assumed one default into one with another,
e.g., the ‘default default’ for Haskell 1.4 caused the
otherwise unconstrained value <constant>1</constant> to be
given the type <literal>Int</literal>, whereas Haskell 98
and later
defaults it to <literal>Integer</literal>. This may lead to
differences in performance and behaviour, hence the
usefulness of being non-silent about this.</para>
<para>This warning is off by default.</para>
</listitem>
</varlistentry>
<varlistentry>
<term><option>-fwarn-monomorphism-restriction</option>:</term>
<listitem>
<indexterm><primary><option>-fwarn-monomorphism-restriction</option></primary></indexterm>
<indexterm><primary>monomorphism restriction, warning</primary></indexterm>
<para>Have the compiler warn/inform you where in your source
the Haskell Monomorphism Restriction is applied. If applied silently
the MR can give rise to unexpected behaviour, so it can be helpful
to have an explicit warning that it is being applied.</para>
<para>This warning is off by default.</para>
</listitem>
</varlistentry>
<varlistentry>
<term><option>-fwarn-unticked-promoted-constructors</option>:</term>
<listitem>
<indexterm><primary><option>-fwarn-unticked-promoted-constructors</option></primary></indexterm>
<indexterm><primary>promoted constructor, warning</primary></indexterm>
<para>Warn if a promoted data constructor is used without a tick preceding it's name.
</para>
<para>For example:
</para>
<programlisting>
data Nat = Succ Nat | Zero
data Vec n s where
Nil :: Vec Zero a
Cons :: a -> Vec n a -> Vec (Succ n) a
</programlisting>
<para> Will raise two warnings because <function>Zero</function>
and <function>Succ</function> are not written as <function>'Zero</function> and
<function>'Succ</function>.
</para>
<para>This warning is is enabled by default in <literal>-Wall</literal> mode.</para>
</listitem>
</varlistentry>
<varlistentry>
<term><option>-fwarn-unused-binds</option>:</term>
<listitem>
<indexterm><primary><option>-fwarn-unused-binds</option></primary></indexterm>
<indexterm><primary>unused binds, warning</primary></indexterm>
<indexterm><primary>binds, unused</primary></indexterm>
<para>Report any function definitions (and local bindings) which are unused. An alias for
<itemizedlist>
<listitem><option>-fwarn-unused-top-binds</option></listitem>
<listitem><option>-fwarn-unused-local-binds</option></listitem>
<listitem><option>-fwarn-unused-pattern-binds</option></listitem>
</itemizedlist>
</para>
</listitem>
</varlistentry>
<varlistentry>
<term><option>-fwarn-unused-top-binds</option>:</term>
<listitem>
<indexterm><primary><option>-fwarn-unused-top-binds</option></primary></indexterm>
<indexterm><primary>unused binds, warning</primary></indexterm>
<indexterm><primary>binds, unused</primary></indexterm>
<para>Report any function definitions which are unused.</para>
<para>More precisely, warn if a binding brings into scope a variable that is not used,
except if the variable's name starts with an underscore. The "starts-with-underscore"
condition provides a way to selectively disable the warning.
</para>
<para>
A variable is regarded as "used" if
<itemizedlist>
<listitem><para>It is exported, or</para></listitem>
<listitem><para>It appears in the right hand side of a binding that binds at
least one used variable that is used</para></listitem>
</itemizedlist>
For example
<programlisting>
module A (f) where
f = let (p,q) = rhs1 in t p -- No warning: q is unused, but is locally bound
t = rhs3 -- No warning: f is used, and hence so is t
g = h x -- Warning: g unused
h = rhs2 -- Warning: h is only used in the right-hand side of another unused binding
_w = True -- No warning: _w starts with an underscore
</programlisting>
</para>
</listitem>
</varlistentry>
<varlistentry>
<term><option>-fwarn-unused-local-binds</option>:</term>
<listitem>
<indexterm><primary><option>-fwarn-unused-local-binds</option></primary></indexterm>
<indexterm><primary>unused binds, warning</primary></indexterm>
<indexterm><primary>binds, unused</primary></indexterm>
<para>Report any local definitions which are unused. For example
<programlisting>
module A (f) where
f = let (p,q) = rhs1 in t p -- Warning: q is unused
g = h x -- No warning: g is unused, but is a top-level binding
</programlisting>
</para>
</listitem>
</varlistentry>
<varlistentry>
<term><option>-fwarn-unused-pattern-binds</option>:</term>
<listitem>
<indexterm><primary><option>-fwarn-unused-pattern-binds</option></primary></indexterm>
<indexterm><primary>unused binds, warning</primary></indexterm>
<indexterm><primary>binds, unused</primary></indexterm>
<para>
Warn if a pattern binding binds no variables at all, unless it is a lone, possibly-banged, wild-card pattern.
For example:
<programlisting>
Just _ = rhs3 -- Warning: unused pattern binding
(_, _) = rhs4 -- Warning: unused pattern binding
_ = rhs3 -- No warning: lone wild-card pattern
!_ = rhs4 -- No warning: banged wild-card pattern; behaves like seq
</programlisting>
The motivation for allowing lone wild-card patterns is they
are not very different from <literal>_v = rhs3</literal>,
which elicits no warning; and they can be useful to add a type
constraint, e.g. <literal>_ = x::Int</literal>. A lone
banged wild-card pattern is useful as an alternative
(to <literal>seq</literal>) way to force evaluation.
</para>
</listitem>
</varlistentry>
<varlistentry>
<term><option>-fwarn-unused-imports</option>:</term>
<listitem>
<indexterm><primary><option>-fwarn-unused-imports</option></primary></indexterm>
<indexterm><primary>unused imports, warning</primary></indexterm>
<indexterm><primary>imports, unused</primary></indexterm>
<para>Report any modules that are explicitly imported but
never used. However, the form <literal>import M()</literal> is
never reported as an unused import, because it is a useful idiom
for importing instance declarations, which are anonymous in Haskell.</para>
</listitem>
</varlistentry>
<varlistentry>
<term><option>-fwarn-unused-matches</option>:</term>
<listitem>
<indexterm><primary><option>-fwarn-unused-matches</option></primary></indexterm>
<indexterm><primary>unused matches, warning</primary></indexterm>
<indexterm><primary>matches, unused</primary></indexterm>
<para>Report all unused variables which arise from pattern
matches, including patterns consisting of a single variable.
For instance <literal>f x y = []</literal> would report
<varname>x</varname> and <varname>y</varname> as unused. The
warning is suppressed if the variable name begins with an underscore, thus:
<programlisting>
f _x = True
</programlisting>
</para>
</listitem>
</varlistentry>
<varlistentry>
<term><option>-fwarn-unused-do-bind</option>:</term>
<listitem>
<indexterm><primary><option>-fwarn-unused-do-bind</option></primary></indexterm>
<indexterm><primary>unused do binding, warning</primary></indexterm>
<indexterm><primary>do binding, unused</primary></indexterm>
<para>Report expressions occurring in <literal>do</literal> and <literal>mdo</literal> blocks
that appear to silently throw information away.
For instance <literal>do { mapM popInt xs ; return 10 }</literal> would report
the first statement in the <literal>do</literal> block as suspicious,
as it has the type <literal>StackM [Int]</literal> and not <literal>StackM ()</literal>, but that
<literal>[Int]</literal> value is not bound to anything. The warning is suppressed by
explicitly mentioning in the source code that your program is throwing something away:
<programlisting>
do { _ <- mapM popInt xs ; return 10 }
</programlisting>
Of course, in this particular situation you can do even better:
<programlisting>
do { mapM_ popInt xs ; return 10 }
</programlisting>
</para>
</listitem>
</varlistentry>
<varlistentry>
<term><option>-fwarn-context-quantification</option>:</term>
<listitem>
<indexterm><primary><option>-fwarn-context-quantification</option></primary></indexterm>
<indexterm><primary>implicit context quantification, warning</primary></indexterm>
<indexterm><primary>context, implicit quantification</primary></indexterm>
<para>Report if a variable is quantified only due to its presence
in a context (see <xref linkend="universal-quantification"/>). For example,
<programlisting>
type T a = Monad m => a -> f a
</programlisting>
It is recommended to write this polymorphic type as
<programlisting>
type T a = forall m. Monad m => a -> f a
</programlisting>
instead.
</para>
</listitem>
</varlistentry>
<varlistentry>
<term><option>-fwarn-wrong-do-bind</option>:</term>
<listitem>
<indexterm><primary><option>-fwarn-wrong-do-bind</option></primary></indexterm>
<indexterm><primary>apparently erroneous do binding, warning</primary></indexterm>
<indexterm><primary>do binding, apparently erroneous</primary></indexterm>
<para>Report expressions occurring in <literal>do</literal> and <literal>mdo</literal> blocks
that appear to lack a binding.
For instance <literal>do { return (popInt 10) ; return 10 }</literal> would report
the first statement in the <literal>do</literal> block as suspicious,
as it has the type <literal>StackM (StackM Int)</literal> (which consists of two nested applications
of the same monad constructor), but which is not then "unpacked" by binding the result.
The warning is suppressed by explicitly mentioning in the source code that your program is throwing something away:
<programlisting>
do { _ <- return (popInt 10) ; return 10 }
</programlisting>
For almost all sensible programs this will indicate a bug, and you probably intended to write:
<programlisting>
do { popInt 10 ; return 10 }
</programlisting>
</para>
</listitem>
</varlistentry>
<varlistentry>
<term><option>-fwarn-inline-rule-shadowing</option>:</term>
<listitem>
<indexterm><primary><option>-fwarn-inline-rule-shadowing</option></primary></indexterm>
<para>Warn if a rewrite RULE might fail to fire because the function might be
inlined before the rule has a chance to fire. See <xref linkend="rules-inline"/>.
</para>
</listitem>
</varlistentry>
</variablelist>
<para>If you're feeling really paranoid, the
<option>-dcore-lint</option>
option<indexterm><primary><option>-dcore-lint</option></primary></indexterm>
is a good choice. It turns on heavyweight intra-pass
sanity-checking within GHC. (It checks GHC's sanity, not
yours.)</para>
</sect1>
&packages;
<sect1 id="options-optimise">
<title>Optimisation (code improvement)</title>
<indexterm><primary>optimisation</primary></indexterm>
<indexterm><primary>improvement, code</primary></indexterm>
<para>The <option>-O*</option> options specify convenient
“packages” of optimisation flags; the
<option>-f*</option> options described later on specify
<emphasis>individual</emphasis> optimisations to be turned on/off;
the <option>-m*</option> options specify
<emphasis>machine-specific</emphasis> optimisations to be turned
on/off.</para>
<para>Most of these options are boolean and have options to turn them both
“on” and “off” (beginning with the prefix
<option>no-</option>). For instance, while <option>-fspecialise</option>
enables specialisation, <option>-fno-specialise</option> disables it. When
multiple flags for the same option appear in the command-line they are
evaluated from left to right. For instance <option>-fno-specialise
-fspecialise</option> will enable specialisation.
</para>
<para>It is important to note that the <option>-O*</option> flags are roughly
equivalent to combinations of <option>-f*</option> flags. For this reason,
the effect of the <option>-O*</option> and <option>-f*</option> flags is
dependent upon the order in which they occur on the command line.
</para>
<para>For instance, take the example of <option>-fno-specialise
-O1</option>. Despite the <option>-fno-specialise</option> appearing in the
command line, specialisation will still be enabled. This is the case
as <option>-O1</option> implies <option>-fspecialise</option>, overriding
the previous flag. By contrast, <option>-O1 -fno-specialise</option> will
compile without specialisation, as one would expect.
</para>
<sect2 id="optimise-pkgs">
<title><option>-O*</option>: convenient “packages” of optimisation flags.</title>
<para>There are <emphasis>many</emphasis> options that affect
the quality of code produced by GHC. Most people only have a
general goal, something like “Compile quickly” or
“Make my program run like greased lightning.” The
following “packages” of optimisations (or lack
thereof) should suffice.</para>
<para>Note that higher optimisation levels cause more
cross-module optimisation to be performed, which can have an
impact on how much of your program needs to be recompiled when
you change something. This is one reason to stick to
no-optimisation when developing code.</para>
<variablelist>
<varlistentry>
<term>
No <option>-O*</option>-type option specified:
<indexterm><primary>-O* not specified</primary></indexterm>
</term>
<listitem>
<para>This is taken to mean: “Please compile
quickly; I'm not over-bothered about compiled-code
quality.” So, for example: <command>ghc -c
Foo.hs</command></para>
</listitem>
</varlistentry>
<varlistentry>
<term>
<option>-O0</option>:
<indexterm><primary><option>-O0</option></primary></indexterm>
</term>
<listitem>
<para>Means “turn off all optimisation”,
reverting to the same settings as if no
<option>-O</option> options had been specified. Saying
<option>-O0</option> can be useful if
eg. <command>make</command> has inserted a
<option>-O</option> on the command line already.</para>
</listitem>
</varlistentry>
<varlistentry>
<term>
<option>-O</option> or <option>-O1</option>:
<indexterm><primary>-O option</primary></indexterm>
<indexterm><primary>-O1 option</primary></indexterm>
<indexterm><primary>optimise</primary><secondary>normally</secondary></indexterm>
</term>
<listitem>
<para>Means: “Generate good-quality code without
taking too long about it.” Thus, for example:
<command>ghc -c -O Main.lhs</command></para>
</listitem>
</varlistentry>
<varlistentry>
<term>
<option>-O2</option>:
<indexterm><primary>-O2 option</primary></indexterm>
<indexterm><primary>optimise</primary><secondary>aggressively</secondary></indexterm>
</term>
<listitem>
<para>Means: “Apply every non-dangerous
optimisation, even if it means significantly longer
compile times.”</para>
<para>The avoided “dangerous” optimisations
are those that can make runtime or space
<emphasis>worse</emphasis> if you're unlucky. They are
normally turned on or off individually.</para>
<para>At the moment, <option>-O2</option> is
<emphasis>unlikely</emphasis> to produce better code than
<option>-O</option>.</para>
</listitem>
</varlistentry>
<varlistentry>
<term>
<option>-Odph</option>:
<indexterm><primary>-Odph</primary></indexterm>
<indexterm><primary>optimise</primary><secondary>DPH</secondary></indexterm>
</term>
<listitem>
<para>Enables all <option>-O2</option> optimisation, sets
<option>-fmax-simplifier-iterations=20</option>
and <option>-fsimplifier-phases=3</option>. Designed for use with
<link linkend="dph">Data Parallel Haskell (DPH)</link>.</para>
</listitem>
</varlistentry>
</variablelist>
<para>We don't use a <option>-O*</option> flag for day-to-day
work. We use <option>-O</option> to get respectable speed;
e.g., when we want to measure something. When we want to go for
broke, we tend to use <option>-O2</option> (and we go for
lots of coffee breaks).</para>
<para>The easiest way to see what <option>-O</option> (etc.)
“really mean” is to run with <option>-v</option>,
then stand back in amazement.</para>
</sect2>
<sect2 id="options-f">
<title><option>-f*</option>: platform-independent flags</title>
<indexterm><primary>-f* options (GHC)</primary></indexterm>
<indexterm><primary>-fno-* options (GHC)</primary></indexterm>
<para>These flags turn on and off individual optimisations.
Flags marked as <emphasis>Enabled by default</emphasis> are
enabled by <option>-O</option>, and as such you shouldn't
need to set any of them explicitly. A flag <option>-fwombat</option>
can be negated by saying <option>-fno-wombat</option>.
See <xref linkend="options-f-compact"/> for a compact list.
</para>
<variablelist>
<varlistentry>
<term>
<option>-fcase-merge</option>
<indexterm><primary><option></option></primary></indexterm>
</term>
<listitem>
<para><emphasis>On by default.</emphasis>
Merge immediately-nested case expressions that scrutinse the same variable. Example
<programlisting>
case x of
Red -> e1
_ -> case x of
Blue -> e2
Green -> e3
==>
case x of
Red -> e1
Blue -> e2
Green -> e2
</programlisting>
</para>
</listitem>
</varlistentry>
<varlistentry>
<term>
<option>-fcall-arity</option>
<indexterm><primary><option>-fcall-arity</option></primary></indexterm>
</term>
<listitem>
<para><emphasis>On by default.</emphasis>.
</para>
</listitem>
</varlistentry>
<varlistentry>
<term>
<option>-fcmm-elim-common-blocks</option>
<indexterm><primary><option>-felim-common-blocks</option></primary></indexterm>
</term>
<listitem>
<para><emphasis>On by default.</emphasis>. Enables the common block
elimination optimisation in the code generator. This optimisation
attempts to find identical Cmm blocks and eliminate the duplicates.
</para>
</listitem>
</varlistentry>
<varlistentry>
<term>
<option>-fcmm-sink</option>
<indexterm><primary><option>-fcmm-sink</option></primary></indexterm>
</term>
<listitem>
<para><emphasis>On by default.</emphasis>. Enables the sinking pass
in the code generator. This optimisation
attempts to find identical Cmm blocks and eliminate the duplicates
attempts to move variable bindings closer to their usage sites. It
also inlines simple expressions like literals or registers.
</para>
</listitem>
</varlistentry>
<varlistentry>
<term>
<option>-fcpr-off</option>
<indexterm><primary><option>-fcpr-Off</option></primary></indexterm>
</term>
<listitem>
<para>Switch off CPR analysis in the demand analyser.
</para>
</listitem>
</varlistentry>
<varlistentry>
<term>
<option>-fcse</option>
<indexterm><primary><option>-fcse</option></primary></indexterm>
</term>
<listitem>
<para><emphasis>On by default.</emphasis>. Enables the common-sub-expression
elimination optimisation.
Switching this off can be useful if you have some <literal>unsafePerformIO</literal>
expressions that you don't want commoned-up.</para>
</listitem>
</varlistentry>
<varlistentry>
<term>
<option>-fdicts-cheap</option>
<indexterm><primary><option></option></primary></indexterm>
</term>
<listitem>
<para>A very experimental flag that makes dictionary-valued
expressions seem cheap to the optimiser.
</para>
</listitem>
</varlistentry>
<varlistentry>
<term>
<option>-fdicts-strict</option>
<indexterm><primary><option></option></primary></indexterm>
</term>
<listitem>
<para>Make dictionaries strict.
</para>
</listitem>
</varlistentry>
<varlistentry>
<term>
<option>-fdmd-tx-dict-sel</option>
<indexterm><primary><option>-fdmd-tx-dict-sel</option></primary></indexterm>
</term>
<listitem>
<para><emphasis>On by default for <option>-O0</option>, <option>-O</option>,
<option>-O2</option>.</emphasis>
</para>
<para>Use a special demand transformer for dictionary selectors.
</para>
</listitem>
</varlistentry>
<varlistentry>
<term>
<option>-fdo-eta-reduction</option>
<indexterm><primary><option></option></primary></indexterm>
</term>
<listitem>
<para><emphasis>On by default.</emphasis>
Eta-reduce lambda expressions, if doing so gets rid of a whole
group of lambdas.
</para>
</listitem>
</varlistentry>
<varlistentry>
<term>
<option>-fdo-lambda-eta-expansion</option>
<indexterm><primary><option></option></primary></indexterm>
</term>
<listitem>
<para><emphasis>On by default.</emphasis>
Eta-expand let-bindings to increase their arity.
</para>
</listitem>
</varlistentry>
<varlistentry>
<term>
<option>-feager-blackholing</option>
<indexterm><primary><option></option></primary></indexterm>
</term>
<listitem>
<para>Usually GHC black-holes a thunk only when it switches
threads. This flag makes it do so as soon as the thunk is
entered. See <ulink url="http://research.microsoft.com/en-us/um/people/simonpj/papers/parallel/">
Haskell on a shared-memory multiprocessor</ulink>.
</para>
</listitem>
</varlistentry>
<varlistentry>
<term>
<option>-fexcess-precision</option>
<indexterm><primary><option>-fexcess-precision</option></primary></indexterm>
</term>
<listitem>
<para>When this option is given, intermediate floating
point values can have a <emphasis>greater</emphasis>
precision/range than the final type. Generally this is a
good thing, but some programs may rely on the exact
precision/range of
<literal>Float</literal>/<literal>Double</literal> values
and should not use this option for their compilation.</para>
<para>
Note that the 32-bit x86 native code generator only
supports excess-precision mode, so neither
<option>-fexcess-precision</option> nor
<option>-fno-excess-precision</option> has any effect.
This is a known bug, see <xref linkend="bugs-ghc" />.
</para>
</listitem>
</varlistentry>
<varlistentry>
<term>
<option>-fexpose-all-unfoldings</option>
<indexterm><primary><option></option></primary></indexterm>
</term>
<listitem>
<para>An experimental flag to expose all unfoldings, even for very
large or recursive functions. This allows for all functions to be
inlined while usually GHC would avoid inlining larger functions.
</para>
</listitem>
</varlistentry>
<varlistentry>
<term>
<option>-ffloat-in</option>
<indexterm><primary><option></option></primary></indexterm>
</term>
<listitem>
<para><emphasis>On by default.</emphasis>
Float let-bindings inwards, nearer their binding site. See
<ulink url="http://research.microsoft.com/en-us/um/people/simonpj/papers/float.ps.gz">
Let-floating: moving bindings to give faster programs (ICFP'96)</ulink>.
</para>
<para>This optimisation moves let bindings closer to their use
site. The benefit here is that this may avoid unnecessary
allocation if the branch the let is now on is never executed. It
also enables other optimisation passes to work more effectively
as they have more information locally.
</para>
<para>This optimisation isn't always beneficial though (so GHC
applies some heuristics to decide when to apply it). The details
get complicated but a simple example is that it is often beneficial
to move let bindings outwards so that multiple let bindings can be
grouped into a larger single let binding, effectively batching
their allocation and helping the garbage collector and allocator.
</para>
</listitem>
</varlistentry>
<varlistentry>
<term>
<option>-ffull-laziness</option>
<indexterm><primary><option>-ffull-laziness</option></primary></indexterm>
</term>
<listitem>
<para><emphasis>On by default.</emphasis>
Run the full laziness optimisation (also known as let-floating),
which floats let-bindings outside enclosing lambdas, in the hope
they will be thereby be computed less often. See
<ulink url="http://research.microsoft.com/en-us/um/people/simonpj/papers/float.ps.gz">Let-floating:
moving bindings to give faster programs (ICFP'96)</ulink>.
Full laziness increases sharing, which can lead to increased memory
residency.
</para>
<para>NOTE: GHC doesn't implement complete full-laziness.
When optimisation in on, and <option>-fno-full-laziness</option>
is not given, some transformations that increase sharing are
performed, such as extracting repeated computations from a loop.
These are the same transformations that a fully lazy
implementation would do, the difference is that GHC doesn't
consistently apply full-laziness, so don't rely on it.
</para>
</listitem>
</varlistentry>
<varlistentry>
<term>
<option>-ffun-to-thunk</option>
<indexterm><primary><option>-ffun-to-thunk</option></primary></indexterm>
</term>
<listitem>
<para>Worker-wrapper removes unused arguments, but usually we do
not remove them all, lest it turn a function closure into a thunk,
thereby perhaps creating a space leak and/or disrupting inlining.
This flag allows worker/wrapper to remove <emphasis>all</emphasis>
value lambdas. Off by default.
</para>
</listitem>
</varlistentry>
<varlistentry>
<term>
<option>-fignore-asserts</option>
<indexterm><primary><option>-fignore-asserts</option></primary></indexterm>
</term>
<listitem>
<para><emphasis>On by default.</emphasis>.
Causes GHC to ignore uses of the function
<literal>Exception.assert</literal> in source code (in
other words, rewriting <literal>Exception.assert p
e</literal> to <literal>e</literal> (see <xref
linkend="assertions"/>).
</para>
</listitem>
</varlistentry>
<varlistentry>
<term>
<option>-fignore-interface-pragmas</option>
<indexterm><primary><option>-fignore-interface-pragmas</option></primary></indexterm>
</term>
<listitem>
<para>Tells GHC to ignore all inessential information when reading interface files.
That is, even if <filename>M.hi</filename> contains unfolding or strictness information
for a function, GHC will ignore that information.</para>
</listitem>
</varlistentry>
<varlistentry>
<term>
<option>-flate-dmd-anal</option>
<indexterm><primary><option>-flate-dmd-anal</option></primary></indexterm>
</term>
<listitem>
<para>Run demand analysis
again, at the end of the simplification pipeline. We found some opportunities
for discovering strictness that were not visible earlier; and optimisations like
<literal>-fspec-constr</literal> can create functions with unused arguments which
are eliminated by late demand analysis. Improvements are modest, but so is the
cost. See notes on the <ulink url="http://ghc.haskell.org/trac/ghc/wiki/LateDmd">Trac wiki page</ulink>.
</para>
</listitem>
</varlistentry>
<varlistentry>
<term>
<option>-fliberate-case</option>
<indexterm><primary><option>-fliberate-case</option></primary></indexterm>
</term>
<listitem>
<para><emphasis>Off by default, but enabled by -O2.</emphasis>
Turn on the liberate-case transformation. This unrolls recursive
function once in its own RHS, to avoid repeated case analysis of
free variables. It's a bit like the call-pattern specialiser
(<option>-fspec-constr</option>) but for free variables rather than
arguments.
</para>
</listitem>
</varlistentry>
<varlistentry>
<term>
<option>-fliberate-case-threshold=<replaceable>n</replaceable></option>
<indexterm><primary><option>-fliberate-case-threshold</option></primary></indexterm>
</term>
<listitem>
<para>Set the size threshold for the liberate-case transformation. Default: 2000
</para>
</listitem>
</varlistentry>
<varlistentry>
<term>
<option>-floopification</option>
<indexterm><primary><option>-floopification</option></primary></indexterm>
</term>
<listitem>
<para><emphasis>On by default.</emphasis>
</para>
<para>When this optimisation is enabled the code generator will turn
all self-recursive saturated tail calls into local jumps rather
than function calls.
</para>
</listitem>
</varlistentry>
<varlistentry>
<term>
<option>-fmax-inline-alloc-size=<replaceable>n</replaceable></option>
<indexterm><primary><option>-fmax-inline-alloc-size</option></primary></indexterm>
</term>
<listitem>
<para>Set the maximum size of inline array allocations to n bytes
(default: 128). GHC will allocate non-pinned arrays of statically
known size in the current nursery block if they're no bigger
than n bytes, ignoring GC overheap. This value should be quite
a bit smaller than the block size (typically: 4096).
</para>
</listitem>
</varlistentry>
<varlistentry>
<term>
<option>-fmax-inline-memcpy-insn=<replaceable>n</replaceable></option>
<indexterm><primary><option>-fmax-inline-memcpy-insn</option></primary></indexterm>
</term>
<listitem>
<para>Inline <literal>memcpy</literal> calls if they would generate
no more than n pseudo instructions (default: 32).
</para>
</listitem>
</varlistentry>
<varlistentry>
<term>
<option>-fmax-inline-memset-insns=<replaceable>n</replaceable></option>
<indexterm><primary><option>-fmax-inline-memset-insns</option></primary></indexterm>
</term>
<listitem>
<para>Inline <literal>memset</literal> calls if they would generate
no more than n pseudo instructions (default: 32).
</para>
</listitem>
</varlistentry>
<varlistentry>
<term>
<option>-fmax-relevant-binds=<replaceable>n</replaceable></option>
<indexterm><primary><option>-fmax-relevant-bindings</option></primary></indexterm>
</term>
<listitem>
<para>The type checker sometimes displays a fragment of the type environment
in error messages, but only up to some maximum number, set by this flag.
The default is 6. Turning it off with <option>-fno-max-relevant-bindings</option>
gives an unlimited number. Syntactically top-level bindings are also
usually excluded (since they may be numerous), but
<option>-fno-max-relevant-bindings</option> includes them too.
</para>
</listitem>
</varlistentry>
<varlistentry>
<term>
<option>-fmax-simplifier-iterations=<replaceable>n</replaceable></option>
<indexterm><primary><option>-fmax-simplifier-iterations</option></primary></indexterm>
</term>
<listitem>
<para>Sets the maximal number of iterations for the simplifier. Defult: 4.
</para>
</listitem>
</varlistentry>
<varlistentry>
<term>
<option>-fmax-worker-args=<replaceable>n</replaceable></option>
<indexterm><primary><option>-fmax-worker-args</option></primary></indexterm>
</term>
<listitem>
<para>If a worker has that many arguments, none will be unpacked anymore (default: 10)
</para>
</listitem>
</varlistentry>
<varlistentry>
<term>
<option>-fno-opt-coercion</option>
<indexterm><primary><option>-fno-opt-coercion</option></primary></indexterm>
</term>
<listitem>
<para>Turn off the coercion optimiser.
</para>
</listitem>
</varlistentry>
<varlistentry>
<term>
<option>-fno-pre-inlining</option>
<indexterm><primary><option>-fno-pre-inlining</option></primary></indexterm>
</term>
<listitem>
<para>Turn off pre-inlining.
</para>
</listitem>
</varlistentry>
<varlistentry>
<term>
<option>-fno-state-hack</option>
<indexterm><primary><option>-fno-state-hack</option></primary></indexterm>
</term>
<listitem>
<para>Turn off the "state hack" whereby any lambda with a
<literal>State#</literal> token as argument is considered to be
single-entry, hence it is considered OK to inline things inside
it. This can improve performance of IO and ST monad code, but it
runs the risk of reducing sharing.
</para>
</listitem>
</varlistentry>
<varlistentry>
<term>
<option>-fomit-interface-pragmas</option>
<indexterm><primary><option>-fomit-interface-pragmas</option></primary></indexterm>
</term>
<listitem>
<para>Tells GHC to omit all inessential information from the
interface file generated for the module being compiled (say M).
This means that a module importing M will see only the
<emphasis>types</emphasis> of the functions that M exports, but
not their unfoldings, strictness info, etc. Hence, for example,
no function exported by M will be inlined into an importing module.
The benefit is that modules that import M will need to be
recompiled less often (only when M's exports change their type, not
when they change their implementation).</para>
</listitem>
</varlistentry>
<varlistentry>
<term>
<option>-fomit-yields</option>
<indexterm><primary><option>-fomit-yields</option></primary></indexterm>
</term>
<listitem>
<para><emphasis>On by default.</emphasis> Tells GHC to omit
heap checks when no allocation is being performed. While this improves
binary sizes by about 5%, it also means that threads run in
tight non-allocating loops will not get preempted in a timely
fashion. If it is important to always be able to interrupt such
threads, you should turn this optimization off. Consider also
recompiling all libraries with this optimization turned off, if you
need to guarantee interruptibility.
</para>
</listitem>
</varlistentry>
<varlistentry>
<term>
<option>-fpedantic-bottoms</option>
<indexterm><primary><option>-fpedantic-bottoms</option></primary></indexterm>
</term>
<listitem>
<para>Make GHC be more precise about its treatment of bottom (but see also
<option>-fno-state-hack</option>). In particular, stop GHC
eta-expanding through a case expression, which is good for
performance, but bad if you are using <literal>seq</literal> on
partial applications.
</para>
</listitem>
</varlistentry>
<varlistentry>
<term>
<option>-fregs-graph</option>
<indexterm><primary><option>-fregs-graph</option></primary></indexterm>
</term>
<listitem>
<para><emphasis>Off by default due to a performance regression bug.
Only applies in combination with the native code generator.</emphasis>
Use the graph colouring register allocator for register allocation
in the native code generator. By default, GHC uses a simpler,
faster linear register allocator. The downside being that the
linear register allocator usually generates worse code.
</para>
</listitem>
</varlistentry>
<varlistentry>
<term>
<option>-fregs-iterative</option>
<indexterm><primary><option>-fregs-iterative</option></primary></indexterm>
</term>
<listitem>
<para><emphasis>Off by default, only applies in combination with
the native code generator.</emphasis>
Use the iterative coalescing graph colouring register allocator for
register allocation in the native code generator. This is the same
register allocator as the <option>-fregs-graph</option> one but also
enables iterative coalescing during register allocation.
</para>
</listitem>
</varlistentry>
<varlistentry>
<term>
<option>-fsimplifier-phases=<replaceable>n</replaceable></option>
<indexterm><primary><option>-fsimplifier-phases</option></primary></indexterm>
</term>
<listitem>
<para>Set the number of phases for the simplifier (default 2). Ignored with -O0.
</para>
</listitem>
</varlistentry>
<varlistentry>
<term>
<option>-fsimpl-tick-factor=<replaceable>n</replaceable></option>
<indexterm><primary><option>-fsimpl-tick-factor</option></primary></indexterm>
</term>
<listitem>
<para>GHC's optimiser can diverge if you write rewrite rules (
<xref linkend="rewrite-rules"/>) that don't terminate, or (less
satisfactorily) if you code up recursion through data types
(<xref linkend="bugs-ghc"/>). To avoid making the compiler fall
into an infinite loop, the optimiser carries a "tick count" and
stops inlining and applying rewrite rules when this count is
exceeded. The limit is set as a multiple of the program size, so
bigger programs get more ticks. The
<option>-fsimpl-tick-factor</option> flag lets you change the
multiplier. The default is 100; numbers larger than 100 give more
ticks, and numbers smaller than 100 give fewer.
</para>
<para>If the tick-count expires, GHC summarises what simplifier
steps it has done; you can use
<option>-fddump-simpl-stats</option> to generate a much more
detailed list. Usually that identifies the loop quite
accurately, because some numbers are very large.
</para>
</listitem>
</varlistentry>
<varlistentry>
<term>
<option>-fspec-constr</option>
<indexterm><primary><option>-fspec-constr</option></primary></indexterm>
</term>
<listitem>
<para><emphasis>Off by default, but enabled by -O2.</emphasis>
Turn on call-pattern specialisation; see
<ulink url="http://research.microsoft.com/en-us/um/people/simonpj/papers/spec-constr/index.htm">
Call-pattern specialisation for Haskell programs</ulink>.
</para>
<para>This optimisation specializes recursive functions according to
their argument "shapes". This is best explained by example so
consider:
<programlisting>
last :: [a] -> a
last [] = error "last"
last (x : []) = x
last (x : xs) = last xs
</programlisting>
In this code, once we pass the initial check for an empty list we
know that in the recursive case this pattern match is redundant. As
such <option>-fspec-constr</option> will transform the above code
to:
<programlisting>
last :: [a] -> a
last [] = error "last"
last (x : xs) = last' x xs
where
last' x [] = x
last' x (y : ys) = last' y ys
</programlisting>
</para>
<para>As well avoid unnecessary pattern matching it also helps avoid
unnecessary allocation. This applies when a argument is strict in
the recursive call to itself but not on the initial entry. As
strict recursive branch of the function is created similar to the
above example.
</para>
<para>It is also possible for library writers to instruct
GHC to perform call-pattern specialisation extremely
aggressively. This is necessary for some highly optimized
libraries, where we may want to specialize regardless of
the number of specialisations, or the size of the code. As
an example, consider a simplified use-case from the
<literal>vector</literal> library:</para>
<programlisting>
import GHC.Types (SPEC(..))
foldl :: (a -> b -> a) -> a -> Stream b -> a
{-# INLINE foldl #-}
foldl f z (Stream step s _) = foldl_loop SPEC z s
where
foldl_loop !sPEC z s = case step s of
Yield x s' -> foldl_loop sPEC (f z x) s'
Skip -> foldl_loop sPEC z s'
Done -> z
</programlisting>
<para>Here, after GHC inlines the body of
<literal>foldl</literal> to a call site, it will perform
call-pattern specialisation very aggressively on
<literal>foldl_loop</literal> due to the use of
<literal>SPEC</literal> in the argument of the loop
body. <literal>SPEC</literal> from
<literal>GHC.Types</literal> is specifically recognised by
the compiler.</para>
<para>(NB: it is extremely important you use
<literal>seq</literal> or a bang pattern on the
<literal>SPEC</literal> argument!)</para>
<para>In particular, after inlining this will
expose <literal>f</literal> to the loop body directly,
allowing heavy specialisation over the recursive
cases.</para>
</listitem>
</varlistentry>
<varlistentry>
<term>
<option>-fspec-constr-count=<replaceable>n</replaceable></option>
<indexterm><primary><option>-fspec-constr-count</option></primary></indexterm>
</term>
<listitem>
<para>Set the maximum number of specialisations
that will be created for any one function by the SpecConstr
transformation (default: 3).
</para>
</listitem>
</varlistentry>
<varlistentry>
<term>
<option>-fspec-constr-threshold=<replaceable>n</replaceable></option>
<indexterm><primary><option>-fspec-constr-threshold</option></primary></indexterm>
</term>
<listitem>
<para>Set the size threshold for the SpecConstr transformation (default: 2000).
</para>
</listitem>
</varlistentry>
<varlistentry>
<term>
<option>-fspecialise</option>
<indexterm><primary><option>-fspecialise</option></primary></indexterm>
</term>
<listitem>
<para><emphasis>On by default.</emphasis>
Specialise each type-class-overloaded function defined in this
module for the types at which it is called in this module. If
<literal>-fcross-module-specialise</literal> is set imported
functions that have an INLINABLE pragma
(<xref linkend="inlinable-pragma"/>) will be specialised as well.
</para>
</listitem>
</varlistentry>
<varlistentry>
<term>
<option>-fcross-module-specialise</option>
<indexterm><primary><option>-fcross-module-specialise</option></primary></indexterm>
</term>
<listitem>
<para><emphasis>On by default.</emphasis>
Specialise <literal>INLINABLE</literal> (<xreg linked="inlinable-pragma"/>)
type-class-overloaded functions imported from other modules for the
types at which they are called in this module. Note that specialisation must
be enabled (by <literal>-fspecialise</literal>) for this to have any effect.
</para>
</listitem>
</varlistentry>
<varlistentry>
<term>
<option>-fstatic-argument-transformation</option>
<indexterm><primary><option>-fstatic-argument-transformation</option></primary></indexterm>
</term>
<listitem>
<para>Turn on the static argument transformation, which turns a
recursive function into a non-recursive one with a local
recursive loop. See Chapter 7 of
<ulink url="http://research.microsoft.com/en-us/um/people/simonpj/papers/santos-thesis.ps.gz">
Andre Santos's PhD thesis</ulink>
</para>
</listitem>
</varlistentry>
<varlistentry>
<term>
<option>-fstrictness</option>
<indexterm><primary><option></option></primary></indexterm>
</term>
<listitem>
<para> <emphasis>On by default.</emphasis>.
Switch on the strictness analyser. There is a very old paper about GHC's
strictness analyser, <ulink url="http://research.microsoft.com/en-us/um/people/simonpj/papers/simple-strictnes-analyser.ps.gz">
Measuring the effectiveness of a simple strictness analyser</ulink>,
but the current one is quite a bit different.
</para>
<para>The strictness analyser figures out when arguments and
variables in a function can be treated 'strictly' (that is they
are always evaluated in the function at some point). This allow
GHC to apply certain optimisations such as unboxing that
otherwise don't apply as they change the semantics of the program
when applied to lazy arguments.
</para>
</listitem>
</varlistentry>
<varlistentry>
<term>
<option>-fstrictness-before=<replaceable>n</replaceable></option>
<indexterm><primary><option>-fstrictness-before</option></primary></indexterm>
</term>
<listitem>
<para>Run an additional strictness analysis before simplifier phase n.
</para>
</listitem>
</varlistentry>
<varlistentry>
<term>
<option>-funbox-small-strict-fields</option>:
<indexterm><primary><option>-funbox-small-strict-fields</option></primary></indexterm>
<indexterm><primary>strict constructor fields</primary></indexterm>
<indexterm><primary>constructor fields, strict</primary></indexterm>
</term>
<listitem>
<para><emphasis>On by default.</emphasis>. This option
causes all constructor fields which are marked strict
(i.e. “!”) and which representation is smaller
or equal to the size of a pointer to be unpacked, if
possible. It is equivalent to adding an
<literal>UNPACK</literal> pragma (see <xref
linkend="unpack-pragma"/>) to every strict constructor
field that fulfils the size restriction.
</para>
<para>For example, the constructor fields in the following
data types
<programlisting>
data A = A !Int
data B = B !A
newtype C = C B
data D = D !C
</programlisting>
would all be represented by a single
<literal>Int#</literal> (see <xref linkend="primitives"/>)
value with
<option>-funbox-small-strict-fields</option> enabled.
</para>
<para>This option is less of a sledgehammer than
<option>-funbox-strict-fields</option>: it should rarely make things
worse. If you use <option>-funbox-small-strict-fields</option>
to turn on unboxing by default you can disable it for certain
constructor fields using the <literal>NOUNPACK</literal> pragma (see
<xref linkend="nounpack-pragma"/>).</para>
<para>
Note that for consistency <literal>Double</literal>,
<literal>Word64</literal>, and <literal>Int64</literal> constructor
fields are unpacked on 32-bit platforms, even though they are
technically larger than a pointer on those platforms.
</para>
</listitem>
</varlistentry>
<varlistentry>
<term>
<option>-funbox-strict-fields</option>:
<indexterm><primary><option>-funbox-strict-fields</option></primary></indexterm>
<indexterm><primary>strict constructor fields</primary></indexterm>
<indexterm><primary>constructor fields, strict</primary></indexterm>
</term>
<listitem>
<para>This option causes all constructor fields which are marked
strict (i.e. “!”) to be unpacked if possible. It is
equivalent to adding an <literal>UNPACK</literal> pragma to every
strict constructor field (see <xref linkend="unpack-pragma"/>).
</para>
<para>This option is a bit of a sledgehammer: it might sometimes
make things worse. Selectively unboxing fields by using
<literal>UNPACK</literal> pragmas might be better. An alternative
is to use <option>-funbox-strict-fields</option> to turn on
unboxing by default but disable it for certain constructor
fields using the <literal>NOUNPACK</literal> pragma (see
<xref linkend="nounpack-pragma"/>).</para>
</listitem>
</varlistentry>
<varlistentry>
<term>
<option>-funfolding-creation-threshold=<replaceable>n</replaceable></option>:
<indexterm><primary><option>-funfolding-creation-threshold</option></primary></indexterm>
<indexterm><primary>inlining, controlling</primary></indexterm>
<indexterm><primary>unfolding, controlling</primary></indexterm>
</term>
<listitem>
<para>(Default: 750) Governs the maximum size that GHC will allow a
function unfolding to be. (An unfolding has a “size”
that reflects the cost in terms of “code bloat” of
expanding (aka inlining) that unfolding at a call site. A bigger
function would be assigned a bigger cost.)
</para>
<para>Consequences: (a) nothing larger than this will be inlined
(unless it has an INLINE pragma); (b) nothing larger than this
will be spewed into an interface file.
</para>
<para>Increasing this figure is more likely to result in longer
compile times than faster code. The
<option>-funfolding-use-threshold</option> is more useful.
</para>
</listitem>
</varlistentry>
<varlistentry>
<term>
<option>-funfolding-dict-discount=<replaceable>n</replaceable></option>:
<indexterm><primary><option>-funfolding-dict-discount</option></primary></indexterm>
<indexterm><primary>inlining, controlling</primary></indexterm>
<indexterm><primary>unfolding, controlling</primary></indexterm>
</term>
<listitem>
<para>Default: 30
</para>
</listitem>
</varlistentry>
<varlistentry>
<term>
<option>-funfolding-fun-discount=<replaceable>n</replaceable></option>:
<indexterm><primary><option>-funfolding-fun-discount</option></primary></indexterm>
<indexterm><primary>inlining, controlling</primary></indexterm>
<indexterm><primary>unfolding, controlling</primary></indexterm>
</term>
<listitem>
<para>Default: 60
</para>
</listitem>
</varlistentry>
<varlistentry>
<term>
<option>-funfolding-keeness-factor=<replaceable>n</replaceable></option>:
<indexterm><primary><option>-funfolding-keeness-factor</option></primary></indexterm>
<indexterm><primary>inlining, controlling</primary></indexterm>
<indexterm><primary>unfolding, controlling</primary></indexterm>
</term>
<listitem>
<para>Default: 1.5
</para>
</listitem>
</varlistentry>
<varlistentry>
<term>
<option>-funfolding-use-threshold=<replaceable>n</replaceable></option>
<indexterm><primary><option>-funfolding-use-threshold</option></primary></indexterm>
<indexterm><primary>inlining, controlling</primary></indexterm>
<indexterm><primary>unfolding, controlling</primary></indexterm>
</term>
<listitem>
<para>(Default: 60) This is the magic cut-off figure for unfolding
(aka inlining): below this size, a function definition will be
unfolded at the call-site, any bigger and it won't. The size
computed for a function depends on two things: the actual size of
the expression minus any discounts that apply depending on the
context into which the expression is to be inlined.
</para>
<para>The difference between this and
<option>-funfolding-creation-threshold</option> is that this one
determines if a function definition will be inlined <emphasis>at
a call site</emphasis>. The other option determines if a
function definition will be kept around at all for potential
inlining.
</para>
</listitem>
</varlistentry>
<varlistentry>
<term>
<option>-fvectorisation-avoidance</option>
<indexterm><primary><option></option></primary></indexterm>
</term>
<listitem>
<para>Part of <link linkend="dph">Data Parallel Haskell
(DPH)</link>.</para>
<para><emphasis>On by default.</emphasis> Enable the
<emphasis>vectorisation</emphasis> avoidance optimisation. This
optimisation only works when used in combination with the
<option>-fvectorise</option> transformation.</para>
<para>While vectorisation of code using DPH is often a big win, it
can also produce worse results for some kinds of code. This
optimisation modifies the vectorisation transformation to try to
determine if a function would be better of unvectorised and if
so, do just that.</para>
</listitem>
</varlistentry>
<varlistentry>
<term>
<option>-fvectorise</option>
<indexterm><primary><option></option></primary></indexterm>
</term>
<listitem>
<para>Part of <link linkend="dph">Data Parallel Haskell
(DPH)</link>.</para>
<para><emphasis>Off by default.</emphasis> Enable the
<emphasis>vectorisation</emphasis> optimisation transformation. This
optimisation transforms the nested data parallelism code of programs
using DPH into flat data parallelism. Flat data parallel programs
should have better load balancing, enable SIMD parallelism and
friendlier cache behaviour.</para>
</listitem>
</varlistentry>
</variablelist>
</sect2>
</sect1>
&code-gens;
&phases;
&shared_libs;
<sect1 id="using-concurrent">
<title>Using Concurrent Haskell</title>
<indexterm><primary>Concurrent Haskell</primary><secondary>using</secondary></indexterm>
<para>GHC supports Concurrent Haskell by default, without requiring a
special option or libraries compiled in a certain way. To get access to
the support libraries for Concurrent Haskell, just import
<ulink
url="&libraryBaseLocation;/Control-Concurrent.html"><literal>Control.Concurrent</literal></ulink>. More information on Concurrent Haskell is provided in the documentation for that module.</para>
<para>
Optionally, the program may be linked with
the <option>-threaded</option> option (see
<xref linkend="options-linker" />. This provides two benefits:
<itemizedlist>
<listitem>
<para>It enables the <option>-N</option><indexterm><primary><option>-N<replaceable>x</replaceable></option></primary><secondary>RTS option</secondary></indexterm> RTS option to be
used, which allows threads to run in
parallel<indexterm><primary>parallelism</primary></indexterm>
on a
multiprocessor<indexterm><primary>multiprocessor</primary></indexterm><indexterm><primary>SMP</primary></indexterm>
or
multicore<indexterm><primary>multicore</primary></indexterm>
machine. See <xref linkend="using-smp" />.</para>
</listitem>
<listitem>
<para>If a thread makes a foreign call (and the call is
not marked <literal>unsafe</literal>), then other
Haskell threads in the program will continue to run
while the foreign call is in progress.
Additionally, <literal>foreign export</literal>ed
Haskell functions may be called from multiple OS
threads simultaneously. See
<xref linkend="ffi-threads" />.</para>
</listitem>
</itemizedlist>
</para>
<para>The following RTS option(s) affect the behaviour of Concurrent
Haskell programs:<indexterm><primary>RTS options, concurrent</primary></indexterm></para>
<variablelist>
<varlistentry>
<term><option>-C<replaceable>s</replaceable></option></term>
<listitem>
<para><indexterm><primary><option>-C<replaceable>s</replaceable></option></primary><secondary>RTS option</secondary></indexterm>
Sets the context switch interval to <replaceable>s</replaceable>
seconds. A context switch will occur at the next heap block
allocation after the timer expires (a heap block allocation occurs
every 4k of allocation). With <option>-C0</option> or
<option>-C</option>, context switches will occur as often as
possible (at every heap block allocation). By default, context
switches occur every 20ms.</para>
</listitem>
</varlistentry>
</variablelist>
</sect1>
<sect1 id="using-smp">
<title>Using SMP parallelism</title>
<indexterm><primary>parallelism</primary>
</indexterm>
<indexterm><primary>SMP</primary>
</indexterm>
<para>GHC supports running Haskell programs in parallel on an SMP
(symmetric multiprocessor).</para>
<para>There's a fine distinction between
<emphasis>concurrency</emphasis> and <emphasis>parallelism</emphasis>:
parallelism is all about making your program run
<emphasis>faster</emphasis> by making use of multiple processors
simultaneously. Concurrency, on the other hand, is a means of
abstraction: it is a convenient way to structure a program that must
respond to multiple asynchronous events.</para>
<para>However, the two terms are certainly related. By making use of
multiple CPUs it is possible to run concurrent threads in parallel,
and this is exactly what GHC's SMP parallelism support does. But it
is also possible to obtain performance improvements with parallelism
on programs that do not use concurrency. This section describes how to
use GHC to compile and run parallel programs, in <xref
linkend="lang-parallel" /> we describe the language features that affect
parallelism.</para>
<sect2 id="parallel-compile-options">
<title>Compile-time options for SMP parallelism</title>
<para>In order to make use of multiple CPUs, your program must be
linked with the <option>-threaded</option> option (see <xref
linkend="options-linker" />). Additionally, the following
compiler options affect parallelism:</para>
<variablelist>
<varlistentry>
<term><option>-feager-blackholing</option></term>
<indexterm><primary><option>-feager-blackholing</option></primary></indexterm>
<listitem>
<para>
Blackholing is the act of marking a thunk (lazy
computuation) as being under evaluation. It is useful for
three reasons: firstly it lets us detect certain kinds of
infinite loop (the <literal>NonTermination</literal>
exception), secondly it avoids certain kinds of space
leak, and thirdly it avoids repeating a computation in a
parallel program, because we can tell when a computation
is already in progress.</para>
<para>
The option <option>-feager-blackholing</option> causes
each thunk to be blackholed as soon as evaluation begins.
The default is "lazy blackholing", whereby thunks are only
marked as being under evaluation when a thread is paused
for some reason. Lazy blackholing is typically more
efficient (by 1-2% or so), because most thunks don't
need to be blackholed. However, eager blackholing can
avoid more repeated computation in a parallel program, and
this often turns out to be important for parallelism.
</para>
<para>
We recommend compiling any code that is intended to be run
in parallel with the <option>-feager-blackholing</option>
flag.
</para>
</listitem>
</varlistentry>
</variablelist>
</sect2>
<sect2 id="parallel-options">
<title>RTS options for SMP parallelism</title>
<para>There are two ways to run a program on multiple
processors:
call <literal>Control.Concurrent.setNumCapabilities</literal> from your
program, or use the RTS <option>-N</option> option.</para>
<variablelist>
<varlistentry>
<term><option>-N<optional><replaceable>x</replaceable></optional></option></term>
<listitem>
<para><indexterm><primary><option>-N<replaceable>x</replaceable></option></primary><secondary>RTS option</secondary></indexterm>
Use <replaceable>x</replaceable> simultaneous threads when
running the program.</para>
<para>The runtime manages a set of virtual processors,
which we call <emphasis>capabilities</emphasis>, the
number of which is determined by the <option>-N</option>
option. Each capability can run one Haskell thread at a
time, so the number of capabilities is equal to the
number of Haskell threads that can run physically in
parallel. A capability is animated by one or more OS
threads; the runtime manages a pool of OS threads for
each capability, so that if a Haskell thread makes a
foreign call (see <xref linkend="ffi-threads" />)
another OS thread can take over that capability.
</para>
<para>Normally <replaceable>x</replaceable> should be
chosen to match the number of CPU cores on the
machine<footnote><para>Whether hyperthreading cores
should be counted or not is an open question; please
feel free to experiment and let us know what results you
find.</para></footnote>. For example, on a dual-core
machine we would probably use <literal>+RTS -N2
-RTS</literal>.</para>
<para>Omitting <replaceable>x</replaceable>,
i.e. <literal>+RTS -N -RTS</literal>, lets the runtime
choose the value of <replaceable>x</replaceable> itself
based on how many processors are in your machine.</para>
<para>Be careful when using all the processors in your
machine: if some of your processors are in use by other
programs, this can actually harm performance rather than
improve it.</para>
<para>Setting <option>-N</option> also has the effect of
enabling the parallel garbage collector (see
<xref linkend="rts-options-gc" />).</para>
<para>The current value of the <option>-N</option> option
is available to the Haskell program via
<literal>Control.Concurrent.getNumCapabilities</literal>,
and it may be changed while the program is running by
calling
<literal>Control.Concurrent.setNumCapabilities</literal>.</para>
</listitem>
</varlistentry>
</variablelist>
<para>The following options affect the way the runtime schedules
threads on CPUs:</para>
<variablelist>
<varlistentry>
<term><option>-qa</option></term>
<indexterm><primary><option>-qa</option></primary><secondary>RTS
option</secondary></indexterm>
<listitem>
<para>Use the OS's affinity facilities to try to pin OS
threads to CPU cores.</para>
<para>When this option is enabled, the OS threads for a
capability <emphasis>i</emphasis> are bound to the CPU
core <emphasis>i</emphasis> using the API provided by the
OS for setting thread affinity. e.g. on Linux
GHC uses <literal>sched_setaffinity()</literal>.</para>
<para>Depending on your workload and the other activity on
the machine, this may or may not result in a performance
improvement. We recommend trying it out and measuring the
difference.</para>
</listitem>
</varlistentry>
<varlistentry>
<term><option>-qm</option></term>
<indexterm><primary><option>-qm</option></primary><secondary>RTS
option</secondary></indexterm>
<listitem>
<para>Disable automatic migration for load balancing.
Normally the runtime will automatically try to schedule
threads across the available CPUs to make use of idle
CPUs; this option disables that behaviour. Note that
migration only applies to threads; sparks created
by <literal>par</literal> are load-balanced separately
by work-stealing.</para>
<para>
This option is probably only of use for concurrent
programs that explicitly schedule threads onto CPUs
with <literal>Control.Concurrent.forkOn</literal>.
</para>
</listitem>
</varlistentry>
</variablelist>
</sect2>
<sect2>
<title>Hints for using SMP parallelism</title>
<para>Add the <literal>-s</literal> RTS option when
running the program to see timing stats, which will help to tell you
whether your program got faster by using more CPUs or not. If the user
time is greater than
the elapsed time, then the program used more than one CPU. You should
also run the program without <literal>-N</literal> for
comparison.</para>
<para>The output of <literal>+RTS -s</literal> tells you how
many “sparks” were created and executed during the
run of the program (see <xref linkend="rts-options-gc" />), which
will give you an idea how well your <literal>par</literal>
annotations are working.</para>
<para>GHC's parallelism support has improved in 6.12.1 as a
result of much experimentation and tuning in the runtime
system. We'd still be interested to hear how well it works
for you, and we're also interested in collecting parallel
programs to add to our benchmarking suite.</para>
</sect2>
</sect1>
<sect1 id="options-platform">
<title>Platform-specific Flags</title>
<indexterm><primary>-m* options</primary></indexterm>
<indexterm><primary>platform-specific options</primary></indexterm>
<indexterm><primary>machine-specific options</primary></indexterm>
<para>Some flags only make sense for particular target
platforms.</para>
<variablelist>
<varlistentry>
<term><option>-msse2</option>:</term>
<listitem>
<para>
(x86 only, added in GHC 7.0.1) Use the SSE2 registers and
instruction set to implement floating point operations when using
the <link linkend="native-code-gen">native code generator</link>.
This gives a substantial performance improvement for floating
point, but the resulting compiled code
will only run on processors that support SSE2 (Intel Pentium 4 and
later, or AMD Athlon 64 and later). The
<link linkend="llvm-code-gen">LLVM backend</link> will also use SSE2
if your processor supports it but detects this automatically so no
flag is required.
</para>
<para>
SSE2 is unconditionally used on x86-64 platforms.
</para>
</listitem>
</varlistentry>
<varlistentry>
<term><option>-msse4.2</option>:</term>
<listitem>
<para>
(x86 only, added in GHC 7.4.1) Use the SSE4.2 instruction set to
implement some floating point and bit operations when using the
<link linkend="native-code-gen">native code generator</link>. The
resulting compiled code will only run on processors that
support SSE4.2 (Intel Core i7 and later). The
<link linkend="llvm-code-gen">LLVM backend</link> will also use
SSE4.2 if your processor supports it but detects this automatically
so no flag is required.
</para>
</listitem>
</varlistentry>
</variablelist>
</sect1>
&runtime;
&debug;
&flags;
</chapter>
<!-- Emacs stuff:
;;; Local Variables: ***
;;; sgml-parent-document: ("users_guide.xml" "book" "chapter") ***
;;; ispell-local-dictionary: "british" ***
;;; End: ***
-->
|