summaryrefslogtreecommitdiff
path: root/docs/users_guide/using.xml
blob: 8cbcd35fca6cb6f6dcf01dbb8865bcaa9dc42ea1 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
<?xml version="1.0" encoding="iso-8859-1"?>
<chapter id="using-ghc">
  <title>Using GHC</title>

  <indexterm><primary>GHC, using</primary></indexterm>
  <indexterm><primary>using GHC</primary></indexterm>

  <sect1>
    <title>Options overview</title>
    
    <para>GHC's behaviour is controlled by
    <firstterm>options</firstterm>, which for historical reasons are
    also sometimes referred to as command-line flags or arguments.
    Options can be specified in three ways:</para>

    <sect2>
      <title>command-line arguments</title>
      
      <indexterm><primary>structure, command-line</primary></indexterm>
      <indexterm><primary>command-line</primary><secondary>arguments</secondary></indexterm>
      <indexterm><primary>arguments</primary><secondary>command-line</secondary></indexterm>
      
      <para>An invocation of GHC takes the following form:</para>

<screen>
ghc [argument...]
</screen>

      <para>command-line arguments are either options or file names.</para>

      <para>command-line options begin with <literal>-</literal>.
      They may <emphasis>not</emphasis> be grouped:
      <option>-vO</option> is different from <option>-v -O</option>.
      Options need not precede filenames: e.g., <literal>ghc *.o -o
      foo</literal>.  All options are processed and then applied to
      all files; you cannot, for example, invoke <literal>ghc -c -O1
      Foo.hs -O2 Bar.hs</literal> to apply different optimisation
      levels to the files <filename>Foo.hs</filename> and
      <filename>Bar.hs</filename>.</para>
    </sect2>

    <sect2 id="source-file-options">
      <title>command line options in source files</title>
    
      <indexterm><primary>source-file options</primary></indexterm>

      <para>Sometimes it is useful to make the connection between a
      source file and the command-line options it requires quite
      tight. For instance, if a Haskell source file uses GHC
      extensions, it will always need to be compiled with the
      <option>-fglasgow-exts</option> option.  Rather than maintaining
      the list of per-file options in a <filename>Makefile</filename>,
      it is possible to do this directly in the source file using the
      <literal>OPTIONS_GHC</literal> pragma <indexterm><primary>OPTIONS_GHC
      pragma</primary></indexterm>:</para>

<programlisting>
{-# OPTIONS_GHC -fglasgow-exts #-}
module X where
...
</programlisting>
      
      <para><literal>OPTIONS_GHC</literal> pragmas are only looked for at
      the top of your source files, upto the first
      (non-literate,non-empty) line not containing
      <literal>OPTIONS_GHC</literal>. Multiple <literal>OPTIONS_GHC</literal>
      pragmas are recognised.  Do not put comments before, or on the same line
	as, the <literal>OPTIONS_GHC</literal> pragma.</para>

      <para>Note that your command shell does not
      get to the source file options, they are just included literally
      in the array of command-line arguments the compiler
      maintains internally, so you'll be desperately disappointed if
      you try to glob etc. inside <literal>OPTIONS_GHC</literal>.</para>

      <para>NOTE: the contents of OPTIONS_GHC are prepended to the
      command-line options, so you <emphasis>do</emphasis> have the
      ability to override OPTIONS_GHC settings via the command
      line.</para>

      <para>It is not recommended to move all the contents of your
      Makefiles into your source files, but in some circumstances, the
      <literal>OPTIONS_GHC</literal> pragma is the Right Thing. (If you
      use <option>-keep-hc-file-too</option> and have OPTION flags in
      your module, the OPTIONS_GHC will get put into the generated .hc
      file).</para>
    </sect2>

    <sect2>
      <title>Setting options in GHCi</title>

      <para>Options may also be modified from within GHCi, using the
      <literal>:set</literal> command.  See <xref linkend="ghci-set"/>
      for more details.</para>
    </sect2>
  </sect1>
    
  <sect1 id="static-dynamic-flags">
    <title>Static, Dynamic, and Mode options</title>
    <indexterm><primary>static</primary><secondary>options</secondary>
    </indexterm>
    <indexterm><primary>dynamic</primary><secondary>options</secondary>
    </indexterm>
    <indexterm><primary>mode</primary><secondary>options</secondary>
    </indexterm>

    <para>Each of GHC's command line options is classified as either
    <firstterm>static</firstterm> or <firstterm>dynamic</firstterm> or
      <firstterm>mode</firstterm>:</para>

    <variablelist>
      <varlistentry>
	<term>Mode flags</term>
	<listitem>
	  <para>For example, <option>--make</option> or <option>-E</option>.
	    There may be only a single mode flag on the command line.  The
	    available modes are listed in <xref linkend="modes"/>.</para>
	</listitem>
      </varlistentry>
      <varlistentry>
	<term>Dynamic Flags</term>
	<listitem>
	  <para>Most non-mode flags fall into this category.  A dynamic flag
	    may be used on the command line, in a
	    <literal>GHC_OPTIONS</literal> pragma in a source file, or set
	    using <literal>:set</literal> in GHCi.</para>
	</listitem>
      </varlistentry>
      <varlistentry>
	<term>Static Flags</term>
	<listitem>
	  <para>A few flags are "static", which means they can only be used on
	    the command-line, and remain in force over the entire GHC/GHCi
	    run.</para>
	</listitem>
      </varlistentry>
    </variablelist>
    
    <para>The flag reference tables (<xref
    linkend="flag-reference"/>) lists the status of each flag.</para>
  </sect1>

  <sect1 id="file-suffixes">
    <title>Meaningful file suffixes</title>

    <indexterm><primary>suffixes, file</primary></indexterm>
    <indexterm><primary>file suffixes for GHC</primary></indexterm>

    <para>File names with &ldquo;meaningful&rdquo; suffixes (e.g.,
    <filename>.lhs</filename> or <filename>.o</filename>) cause the
    &ldquo;right thing&rdquo; to happen to those files.</para>

    <variablelist>

      <varlistentry>
	<term><filename>.hs</filename></term>
	<listitem>
	  <para>A Haskell module.</para>
	</listitem>
      </varlistentry>

      <varlistentry>
	<term>
          <filename>.lhs</filename>
          <indexterm><primary><literal>lhs</literal> suffix</primary></indexterm>
	</term>
	<listitem>
	  <para>A &ldquo;literate Haskell&rdquo; module.</para>
	</listitem>
      </varlistentry>

      <varlistentry>
	<term><filename>.hi</filename></term>
	<listitem>
	  <para>A Haskell interface file, probably
	  compiler-generated.</para>
	</listitem>
      </varlistentry>

      <varlistentry>
	<term><filename>.hc</filename></term>
	<listitem>
	  <para>Intermediate C file produced by the Haskell
	  compiler.</para>
	</listitem>
      </varlistentry>

      <varlistentry>
	<term><filename>.c</filename></term>
	<listitem>
	  <para>A C&nbsp;file not produced by the Haskell
	  compiler.</para>
	</listitem>
      </varlistentry>
      
      <varlistentry>
	<term><filename>.s</filename></term>
	<listitem>
	  <para>An assembly-language source file, usually produced by
          the compiler.</para>
	</listitem>
      </varlistentry>

      <varlistentry>
	<term><filename>.o</filename></term>
	<listitem>
	  <para>An object file, produced by an assembler.</para>
	</listitem>
      </varlistentry>
    </variablelist>

    <para>Files with other suffixes (or without suffixes) are passed
    straight to the linker.</para>

  </sect1>

  <sect1 id="modes">
    <title>Modes of operation</title>

    <para>GHC's behaviour is firstly controlled by a mode flag.  Only
    one of these flags may be given, but it does not necessarily need
    to be the first option on the command-line.  The available modes
    are:</para>

    <variablelist>
      <varlistentry>
	<term>
	  <cmdsynopsis><command>ghc</command>
	    <arg choice='plain'>&ndash;&ndash;interactive</arg>
	  </cmdsynopsis>
          <indexterm><primary>interactive mode</primary></indexterm>
          <indexterm><primary>ghci</primary></indexterm>
	</term>
	<listitem>
	  <para>Interactive mode, which is also available as
	  <command>ghci</command>.  Interactive mode is described in
	  more detail in <xref linkend="ghci"/>.</para>
	</listitem>
      </varlistentry>
      
      <varlistentry>
	<term>
	  <cmdsynopsis><command>ghc</command>
	    <arg choice='plain'>&ndash;&ndash;make</arg>
	  </cmdsynopsis>
          <indexterm><primary>make mode</primary></indexterm>
          <indexterm><primary><option>&ndash;&ndash;make</option></primary></indexterm>
	</term>
	<listitem>
	  <para>In this mode, GHC will build a multi-module Haskell
	  program automatically, figuring out dependencies for itself.
	  If you have a straightforward Haskell program, this is
	  likely to be much easier, and faster, than using
	  <command>make</command>.  Make mode is described in <xref
	  linkend="make-mode"/>.</para>
	</listitem>
      </varlistentry>

      <varlistentry>
	<term>
	  <cmdsynopsis><command>ghc</command>
	    <arg choice='plain'>&ndash;e</arg> <arg choice='plain'><replaceable>expr</replaceable></arg>
          </cmdsynopsis>
          <indexterm><primary>eval mode</primary></indexterm>
	</term>
	<listitem>
	  <para>Expression-evaluation mode.  This is very similar to
	  interactive mode, except that there is a single expression
	  to evaluate (<replaceable>expr</replaceable>) which is given
	  on the command line.  See <xref linkend="eval-mode"/> for
	  more details.</para>
	</listitem>
      </varlistentry>
      
      <varlistentry>
	<term>
          <cmdsynopsis>
	    <command>ghc</command>
	    <group>
	      <arg>-E</arg>
	      <arg>-C</arg>
	      <arg>-S</arg>
	      <arg>-c</arg>
	    </group>
	  </cmdsynopsis>
	  <indexterm><primary><option>-E</option></primary></indexterm>
	  <indexterm><primary><option>-C</option></primary></indexterm>
	  <indexterm><primary><option>-S</option></primary></indexterm>
	  <indexterm><primary><option>-c</option></primary></indexterm>
        </term>
	<listitem>
	  <para>This is the traditional batch-compiler mode, in which
	  GHC can compile source files one at a time, or link objects
	  together into an executable.  This mode also applies if
	  there is no other mode flag specified on the command line,
	  in which case it means that the specified files should be
	  compiled and then linked to form a program. See <xref
	  linkend="options-order"/>.</para>
	</listitem>
      </varlistentry>

      <varlistentry>
	<term>
          <cmdsynopsis>
            <command>ghc</command>
	    <arg choice='plain'>&ndash;M</arg>
          </cmdsynopsis>
          <indexterm><primary>dependency-generation mode</primary></indexterm>
        </term>
	<listitem>
	  <para>Dependency-generation mode.  In this mode, GHC can be
	  used to generate dependency information suitable for use in
	  a <literal>Makefile</literal>.  See <xref
	  linkend="sec-makefile-dependencies"/>.</para>
	</listitem>
      </varlistentry>

      <varlistentry>
	<term>
          <cmdsynopsis>
            <command>ghc</command>
	    <arg choice='plain'>&ndash;&ndash;mk-dll</arg>
          </cmdsynopsis>
	  <indexterm><primary>dependency-generation mode</primary></indexterm>
        </term>
	<listitem>
	  <para>DLL-creation mode (Windows only).  See <xref
	  linkend="win32-dlls-create"/>.</para>
	</listitem>
      </varlistentry>
    </variablelist>

    <sect2 id="make-mode">
      <title>Using <command>ghc</command> <option>&ndash;&ndash;make</option></title>
      <indexterm><primary><option>&ndash;&ndash;make</option></primary></indexterm>
      <indexterm><primary>separate compilation</primary></indexterm>
      
      <para>When given the <option>&ndash;&ndash;make</option> option,
      GHC will build a multi-module Haskell program by following
      dependencies from a single root module (usually
      <literal>Main</literal>).  For example, if your
      <literal>Main</literal> module is in a file called
      <filename>Main.hs</filename>, you could compile and link the
      program like this:</para>

<screen>
ghc &ndash;&ndash;make Main.hs
</screen>

      <para>The command line may contain any number of source file
      names or module names; GHC will figure out all the modules in
      the program by following the imports from these initial modules.
      It will then attempt to compile each module which is out of
      date, and finally if there is a <literal>Main</literal> module,
      the program will also be linked into an executable.</para>

      <para>The main advantages to using <literal>ghc
      &ndash;&ndash;make</literal> over traditional
      <literal>Makefile</literal>s are:</para>

      <itemizedlist>
	<listitem>
	  <para>GHC doesn't have to be restarted for each compilation,
	  which means it can cache information between compilations.
	  Compiling a multi-module program with <literal>ghc
	  &ndash;&ndash;make</literal> can be up to twice as fast as
	  running <literal>ghc</literal> individually on each source
	  file.</para>
	</listitem>
	<listitem>
	  <para>You don't have to write a <literal>Makefile</literal>.</para>
          <indexterm><primary><literal>Makefile</literal>s</primary><secondary>avoiding</secondary></indexterm>
	</listitem>
	<listitem>
	  <para>GHC re-calculates the dependencies each time it is
	  invoked, so the dependencies never get out of sync with the
	  source.</para>
	</listitem>
      </itemizedlist>
      
      <para>Any of the command-line options described in the rest of
      this chapter can be used with
      <option>&ndash;&ndash;make</option>, but note that any options
      you give on the command line will apply to all the source files
      compiled, so if you want any options to apply to a single source
      file only, you'll need to use an <literal>OPTIONS_GHC</literal>
      pragma (see <xref linkend="source-file-options"/>).</para>

      <para>If the program needs to be linked with additional objects
      (say, some auxiliary C code), then the object files can be
      given on the command line and GHC will include them when linking
      the executable.</para>
      
      <para>Note that GHC can only follow dependencies if it has the
      source file available, so if your program includes a module for
      which there is no source file, even if you have an object and an
      interface file for the module, then GHC will complain.  The
      exception to this rule is for package modules, which may or may
      not have source files.</para>

      <para>The source files for the program don't all need to be in
      the same directory; the <option>-i</option> option can be used
      to add directories to the search path (see <xref
      linkend="search-path"/>).</para>
    </sect2>
  
    <sect2 id="eval-mode">
      <title>Expression evaluation mode</title>

      <para>This mode is very similar to interactive mode, except that
      there is a single expression to evaluate which is specified on
      the command line as an argument to the <option>-e</option>
      option:</para>

<screen>
ghc -e <replaceable>expr</replaceable>
</screen>

      <para>Haskell source files may be named on the command line, and
      they will be loaded exactly as in interactive mode.  The
      expression is evaluated in the context of the loaded
      modules.</para>

      <para>For example, to load and run a Haskell program containing
      a module <literal>Main</literal>, we might say</para>

<screen>
ghc -e Main.main Main.hs
</screen>
      
      <para>or we can just use this mode to evaluate expressions in
      the context of the <literal>Prelude</literal>:</para>

<screen>
$ ghc -e "interact (unlines.map reverse.lines)"
hello
olleh
</screen>
    </sect2>

    <sect2 id="options-order">
      <title>Batch compiler mode</title>
      
      <para>In <emphasis>batch mode</emphasis>, GHC will compile one or more source files
      given on the command line.</para>
      
      <para>The first phase to run is determined by each input-file
      suffix, and the last phase is determined by a flag.  If no
      relevant flag is present, then go all the way through linking.
      This table summarises:</para>
      
      <informaltable>
	<tgroup cols="4">
	  <colspec align="left"/>
	  <colspec align="left"/>
	  <colspec align="left"/>
	  <colspec align="left"/>
	  
	  <thead>
	    <row>
	      <entry>Phase of the compilation system</entry>
	      <entry>Suffix saying &ldquo;start here&rdquo;</entry>
	      <entry>Flag saying &ldquo;stop after&rdquo;</entry>
	      <entry>(suffix of) output file</entry>
	    </row>
	  </thead>
	  <tbody>
	    <row>
	      <entry>literate pre-processor</entry>
	      <entry><literal>.lhs</literal></entry>
	      <entry>-</entry>
	      <entry><literal>.hs</literal></entry>
	    </row>
	    
	    <row>
	      <entry>C pre-processor (opt.) </entry>
	      <entry><literal>.hs</literal> (with
	      <option>-cpp</option>)</entry>
	      <entry><option>-E</option></entry>
	      <entry><literal>.hspp</literal></entry>
	    </row>
	    
	    <row>
	      <entry>Haskell compiler</entry>
	      <entry><literal>.hs</literal></entry>
	      <entry><option>-C</option>, <option>-S</option></entry>
	      <entry><literal>.hc</literal>, <literal>.s</literal></entry>
	    </row>
	    
	    <row>
	      <entry>C compiler (opt.)</entry>
	      <entry><literal>.hc</literal> or <literal>.c</literal></entry>
	      <entry><option>-S</option></entry>
	      <entry><literal>.s</literal></entry>
	    </row>
	    
	    <row>
	      <entry>assembler</entry>
	      <entry><literal>.s</literal></entry>
	      <entry><option>-c</option></entry>
	      <entry><literal>.o</literal></entry>
	    </row>
	    
	    <row>
	      <entry>linker</entry>
	      <entry><replaceable>other</replaceable></entry>
	      <entry>-</entry>
	      <entry><filename>a.out</filename></entry>
	    </row>
	  </tbody>
	</tgroup>
      </informaltable>
      
      <indexterm><primary><option>-C</option></primary></indexterm>
      <indexterm><primary><option>-E</option></primary></indexterm>
      <indexterm><primary><option>-S</option></primary></indexterm>
      <indexterm><primary><option>-c</option></primary></indexterm>
      
      <para>Thus, a common invocation would be: </para>

<screen>
ghc -c Foo.hs</screen>
      
      <para>to compile the Haskell source file
      <filename>Foo.hs</filename> to an object file
      <filename>Foo.o</filename>.</para>

      <para>Note: What the Haskell compiler proper produces depends on
      whether a native-code generator<indexterm><primary>native-code
      generator</primary></indexterm> is used (producing assembly
      language) or not (producing C).  See <xref
      linkend="options-codegen"/> for more details.</para>

      <para>Note: C pre-processing is optional, the
      <option>-cpp</option><indexterm><primary><option>-cpp</option></primary></indexterm>
      flag turns it on.  See <xref linkend="c-pre-processor"/> for more
      details.</para>
      
      <para>Note: The option <option>-E</option><indexterm><primary>-E
      option</primary></indexterm> runs just the pre-processing passes
      of the compiler, dumping the result in a file.  Note that this
      differs from the previous behaviour of dumping the file to
      standard output.</para>

      <sect3 id="overriding-suffixes">
	<title>Overriding the default behaviour for a file</title>

	<para>As described above, the way in which a file is processed by GHC
	  depends on its suffix.  This behaviour can be overriden using the
	  <option>-x</option> option:</para>

	<variablelist>
	  <varlistentry>
	    <term><option>-x</option> <replaceable>suffix</replaceable>
	    	      <indexterm><primary><option>-x</option></primary>
	      </indexterm></term>
	      <listitem>
		<para>Causes all files following this option on the command
		  line to be processed as if they had the suffix
		  <replaceable>suffix</replaceable>.  For example, to compile a
		  Haskell module in the file <literal>M.my-hs</literal>,
		  use <literal>ghc -c -x hs M.my-hs</literal>.</para>
	      </listitem>
	  </varlistentry>
	</variablelist>
      </sect3>

    </sect2>
  </sect1>

  <sect1 id="options-help">
    <title>Help and verbosity options</title>

    <indexterm><primary>help options</primary></indexterm>
    <indexterm><primary>verbosity options</primary></indexterm>

    <variablelist>
      <varlistentry>
	<term>
          <option>&ndash;&ndash;help</option>
          <indexterm><primary><option>&ndash;&ndash;help</option></primary></indexterm>
        </term>
	<term>
          <option>-?</option>
          <indexterm><primary><option>-?</option></primary></indexterm>
        </term>
	<listitem>
	  <para>Cause GHC to spew a long usage message to standard
          output and then exit.</para>
	</listitem>
      </varlistentry>

      <varlistentry>
	<term>
          <option>-v</option>
          <indexterm><primary><option>-v</option></primary></indexterm>
        </term>
	<listitem>
	  <para>The <option>-v</option> option makes GHC
          <emphasis>verbose</emphasis>: it reports its version number
          and shows (on stderr) exactly how it invokes each phase of
          the compilation system.  Moreover, it passes the
          <option>-v</option> flag to most phases; each reports its
          version number (and possibly some other information).</para>

	  <para>Please, oh please, use the <option>-v</option> option
          when reporting bugs!  Knowing that you ran the right bits in
          the right order is always the first thing we want to
          verify.</para>
	</listitem>
      </varlistentry>
	
      <varlistentry>
	<term>
          <option>-v</option><replaceable>n</replaceable>
          <indexterm><primary><option>-v</option></primary></indexterm>
        </term>
	<listitem>
	  <para>To provide more control over the compiler's verbosity,
	  the <option>-v</option> flag takes an optional numeric
	  argument.  Specifying <option>-v</option> on its own is
	  equivalent to <option>-v3</option>, and the other levels
	  have the following meanings:</para>
	  
	  <variablelist>
	    <varlistentry>
	      <term><option>-v0</option></term>
	      <listitem>
		<para>Disable all non-essential messages (this is the
		default).</para>
	      </listitem>
	    </varlistentry>

	    <varlistentry>
	      <term><option>-v1</option></term>
	      <listitem>
		<para>Minimal verbosity: print one line per
		compilation (this is the default when
		<option>&ndash;&ndash;make</option> or
		<option>&ndash;&ndash;interactive</option> is on).</para>
	      </listitem>
	    </varlistentry>

	    <varlistentry>
	      <term><option>-v2</option></term>
	      <listitem>
		<para>Print the name of each compilation phase as it
		is executed. (equivalent to
		<option>-dshow-passes</option>).</para>
	      </listitem>
	    </varlistentry>

	    <varlistentry>
	      <term><option>-v3</option></term>
	      <listitem>
		<para>The same as <option>-v2</option>, except that in
                addition the full command line (if appropriate) for
                each compilation phase is also printed.</para>
	      </listitem>
	    </varlistentry>

	    <varlistentry>
	      <term><option>-v4</option></term>
	      <listitem>
		<para>The same as <option>-v3</option> except that the
		intermediate program representation after each
		compilation phase is also printed (excluding
		preprocessed and C/assembly files).</para>
	      </listitem>
	    </varlistentry>
	  </variablelist>
	</listitem>
      </varlistentry>
      
      <varlistentry>
	<term>
          <option>-V</option>
          <indexterm><primary><option>-V</option></primary></indexterm>
        </term>
	<term>
          <option>&ndash;&ndash;version</option>
          <indexterm><primary><option>&ndash;&ndash;version</option></primary></indexterm>
        </term>
	<listitem>
	  <para>Print a one-line string including GHC's version number.</para>
	</listitem>
      </varlistentry>

      <varlistentry>
	<term>
          <option>&ndash;&ndash;numeric-version</option>
          <indexterm><primary><option>&ndash;&ndash;numeric-version</option></primary></indexterm>
        </term>
	<listitem>
	  <para>Print GHC's numeric version number only.</para>
	</listitem>
      </varlistentry>

      <varlistentry>
	<term>
          <option>&ndash;&ndash;print-libdir</option>
          <indexterm><primary><option>&ndash;&ndash;print-libdir</option></primary></indexterm>
        </term>
	<listitem>
	  <para>Print the path to GHC's library directory.  This is
	  the top of the directory tree containing GHC's libraries,
	  interfaces, and include files (usually something like
	  <literal>/usr/local/lib/ghc-5.04</literal> on Unix).  This
	  is the value of
	  <literal>$libdir</literal><indexterm><primary><literal>libdir</literal></primary>
	  </indexterm>in the package configuration file (see <xref
	  linkend="packages"/>).</para>
	</listitem>
      </varlistentry>

      <varlistentry>
	<term><option>-ferror-spans</option>
          <indexterm><primary><option>-ferror-spans</option></primary>
	  </indexterm>
        </term>
	<listitem>
	  <para>Causes GHC to emit the full source span of the
	  syntactic entity relating to an error message.  Normally, GHC
	  emits the source location of the start of the syntactic
	  entity only.</para>

	  <para>For example:</para>

<screen>test.hs:3:6: parse error on input `where'</screen>

	  <para>becomes:</para>

<screen>test296.hs:3:6-10: parse error on input `where'</screen>

	  <para>And multi-line spans are possible too:</para>

<screen>test.hs:(5,4)-(6,7):
    Conflicting definitions for `a'
    Bound at: test.hs:5:4
              test.hs:6:7
    In the binding group for: a, b, a</screen>

	  <para>Note that line numbers start counting at one, but
	  column numbers start at zero.  This choice was made to
	  follow existing convention (i.e. this is how Emacs does
	  it).</para>
	</listitem>
      </varlistentry>

      <varlistentry>
        <term><option>-Rghc-timing</option>
        <indexterm><primary><option>-Rghc-timing</option></primary></indexterm>
        </term>
        <listitem>
          <para>Prints a one-line summary of timing statistics for the
          GHC run.  This option is equivalent to
          <literal>+RTS&nbsp;-tstderr</literal>, see <xref
          linkend="rts-options-gc" />.
          </para>
        </listitem>
      </varlistentry>
    </variablelist>
  </sect1>

  &separate;

  <sect1 id="options-sanity">
    <title>Warnings and sanity-checking</title>

    <indexterm><primary>sanity-checking options</primary></indexterm>
    <indexterm><primary>warnings</primary></indexterm>


    <para>GHC has a number of options that select which types of
    non-fatal error messages, otherwise known as warnings, can be
    generated during compilation.  By default, you get a standard set
    of warnings which are generally likely to indicate bugs in your
    program.  These are:
    <option>-fwarn-overlapping-patterns</option>,
    <option>-fwarn-deprecations</option>,
    <option>-fwarn-duplicate-exports</option>,
    <option>-fwarn-missing-fields</option>, and
    <option>-fwarn-missing-methods</option>.  The following flags are
    simple ways to select standard &ldquo;packages&rdquo; of warnings:
    </para>

    <variablelist>

      <varlistentry>
	<term><option>-W</option>:</term>
	<listitem>
	  <indexterm><primary>-W option</primary></indexterm>
	  <para>Provides the standard warnings plus
	  <option>-fwarn-incomplete-patterns</option>,
	  <option>-fwarn-unused-matches</option>,
	  <option>-fwarn-unused-imports</option>,
	  <option>-fwarn-misc</option>, and
	  <option>-fwarn-unused-binds</option>.</para>
	</listitem>
      </varlistentry>

      <varlistentry>
	<term><option>-w</option>:</term>
	<listitem>
	  <indexterm><primary><option>-w</option></primary></indexterm>
	  <para>Turns off all warnings, including the standard ones.</para>
	</listitem>
      </varlistentry>

      <varlistentry>
	<term><option>-Wall</option>:</term>
	<listitem>
	  <indexterm><primary><option>-Wall</option></primary></indexterm>
	  <para>Turns on all warning options.</para>
	</listitem>
      </varlistentry>

      <varlistentry>
	<term><option>-Werror</option>:</term>
	<listitem>
	  <indexterm><primary><option>-Werror</option></primary></indexterm>
	  <para>Makes any warning into a fatal error. Useful so that you don't 
	    miss warnings when doing batch compilation. </para>
	</listitem>
      </varlistentry>

    </variablelist>

    <para>The full set of warning options is described below.  To turn
    off any warning, simply give the corresponding
    <option>-fno-warn-...</option> option on the command line.</para>

    <variablelist>

      <varlistentry>
	<term><option>-fwarn-deprecations</option>:</term>
	<listitem>
	  <indexterm><primary><option>-fwarn-deprecations</option></primary>
	  </indexterm>
	  <indexterm><primary>deprecations</primary></indexterm>
	  <para>Causes a warning to be emitted when a deprecated
	  function or type is used.  Entities can be marked as
	  deprecated using a pragma, see <xref
	  linkend="deprecated-pragma"/>.</para>
	</listitem>
      </varlistentry>

      <varlistentry>
	<term><option>-fwarn-duplicate-exports</option>:</term>
	<listitem>
	  <indexterm><primary><option>-fwarn-duplicate-exports</option></primary></indexterm>
	  <indexterm><primary>duplicate exports, warning</primary></indexterm>
	  <indexterm><primary>export lists, duplicates</primary></indexterm>

	  <para>Have the compiler warn about duplicate entries in
          export lists. This is useful information if you maintain
          large export lists, and want to avoid the continued export
          of a definition after you've deleted (one) mention of it in
          the export list.</para>

	  <para>This option is on by default.</para>
	</listitem>
      </varlistentry>

      <varlistentry>
	<term><option>-fwarn-hi-shadowing</option>:</term>
	<listitem>
	  <indexterm><primary><option>-fwarn-hi-shadowing</option></primary></indexterm>
	  <indexterm><primary>shadowing</primary>
	    <secondary>interface files</secondary></indexterm>

	  <para>Causes the compiler to emit a warning when a module or
	  interface file in the current directory is shadowing one
	  with the same module name in a library or other
	  directory.</para>
	</listitem>
      </varlistentry>

      <varlistentry>
	<term><option>-fwarn-incomplete-patterns</option>:</term>
	<listitem>
	  <indexterm><primary><option>-fwarn-incomplete-patterns</option></primary></indexterm>
	  <indexterm><primary>incomplete patterns, warning</primary></indexterm>
	  <indexterm><primary>patterns, incomplete</primary></indexterm>

	  <para>Similarly for incomplete patterns, the function
          <function>g</function> below will fail when applied to
          non-empty lists, so the compiler will emit a warning about
          this when <option>-fwarn-incomplete-patterns</option> is
          enabled.</para>

<programlisting>
g [] = 2
</programlisting>

	  <para>This option isn't enabled be default because it can be
          a bit noisy, and it doesn't always indicate a bug in the
          program.  However, it's generally considered good practice
          to cover all the cases in your functions.</para>
	</listitem>
      </varlistentry>

      <varlistentry>
	<term><option>-fwarn-incomplete-record-updates</option>:</term>
	<listitem>
	  <indexterm><primary><option>-fwarn-incomplete-record-updates</option></primary></indexterm>
	  <indexterm><primary>incomplete record updates, warning</primary></indexterm>
	  <indexterm><primary>record updates, incomplete</primary></indexterm>

	  <para>The function
          <function>f</function> below will fail when applied to
          <literal>Bar</literal>, so the compiler will emit a warning about
          this when <option>-fwarn-incomplete-record-updates</option> is
          enabled.</para>

<programlisting>
data Foo = Foo { x :: Int }
         | Bar

f :: Foo -> Foo
f foo = foo { x = 6 }
</programlisting>

	  <para>This option isn't enabled be default because it can be
          very noisy, and it often doesn't indicate a bug in the
          program.</para>
	</listitem>
      </varlistentry>

      <varlistentry>
	<term>
          <option>-fwarn-misc</option>:
          <indexterm><primary><option>-fwarn-misc</option></primary></indexterm>
        </term>
	<listitem>
	  <para>Turns on warnings for various harmless but untidy
	  things.  This currently includes: importing a type with
	  <literal>(..)</literal> when the export is abstract, and
	  listing duplicate class assertions in a qualified type.</para>
	</listitem>
      </varlistentry>

      <varlistentry>
	<term>
          <option>-fwarn-missing-fields</option>:
	  <indexterm><primary><option>-fwarn-missing-fields</option></primary></indexterm>
	  <indexterm><primary>missing fields, warning</primary></indexterm>
	  <indexterm><primary>fields, missing</primary></indexterm>
        </term>
	<listitem>

	  <para>This option is on by default, and warns you whenever
          the construction of a labelled field constructor isn't
          complete, missing initializers for one or more fields. While
          not an error (the missing fields are initialised with
          bottoms), it is often an indication of a programmer error.</para>
	</listitem>
      </varlistentry>

      <varlistentry>
	<term><option>-fwarn-missing-methods</option>:</term>
	<listitem>
	  <indexterm><primary><option>-fwarn-missing-methods</option></primary></indexterm>
	  <indexterm><primary>missing methods, warning</primary></indexterm>
	  <indexterm><primary>methods, missing</primary></indexterm>

	  <para>This option is on by default, and warns you whenever
          an instance declaration is missing one or more methods, and
          the corresponding class declaration has no default
          declaration for them.</para>
	  <para>The warning is suppressed if the method name
	  begins with an underscore.  Here's an example where this is useful:
	    <programlisting>
	      class C a where
	        _simpleFn :: a -> String
	        complexFn :: a -> a -> String
	        complexFn x y = ... _simpleFn ...
	      </programlisting>
	    The idea is that: (a) users of the class will only call <literal>complexFn</literal>; 
	    never <literal>_simpleFn</literal>; and (b)
	    instance declarations can define either <literal>complexFn</literal> or <literal>_simpleFn</literal>.
	    </para>
	</listitem>
      </varlistentry>

      <varlistentry>
	<term><option>-fwarn-missing-signatures</option>:</term>
	<listitem>
	  <indexterm><primary><option>-fwarn-missing-signatures</option></primary></indexterm>
	  <indexterm><primary>type signatures, missing</primary></indexterm>

	  <para>If you would like GHC to check that every top-level
          function/value has a type signature, use the
          <option>-fwarn-missing-signatures</option> option.  This
          option is off by default.</para>
	</listitem>
      </varlistentry>

      <varlistentry>
	<term><option>-fwarn-name-shadowing</option>:</term>
	<listitem>
	  <indexterm><primary><option>-fwarn-name-shadowing</option></primary></indexterm>
	  <indexterm><primary>shadowing, warning</primary></indexterm>
	  
	  <para>This option causes a warning to be emitted whenever an
          inner-scope value has the same name as an outer-scope value,
          i.e. the inner value shadows the outer one.  This can catch
          typographical errors that turn into hard-to-find bugs, e.g.,
          in the inadvertent cyclic definition <literal>let x = ... x
          ... in</literal>.</para>

	  <para>Consequently, this option does
          <emphasis>will</emphasis> complain about cyclic recursive
          definitions.</para>
	</listitem>
      </varlistentry>

      <varlistentry>
	<term><option>-fwarn-orphans</option>:</term>
	<listitem>
	  <indexterm><primary><option>-fwarn-orphans</option></primary></indexterm>
	  <indexterm><primary>orphan instances, warning</primary></indexterm>
	  <indexterm><primary>orphan rules, warning</primary></indexterm>
	  
	  <para>This option causes a warning to be emitted whenever the 
	    module contains an "orphan" instance declaration or rewrite rule.
	    An instance declartion is an orphan if it appears in a module in
	    which neither the class nor the type being instanced are declared
	    in the same module.  A rule is an orphan if it is a rule for a
	    function declared in another module.  A module containing any
	  orphans is called an orphan module.</para>
	  <para>The trouble with orphans is that GHC must pro-actively read the interface
	    files for all orphan modules, just in case their instances or rules
	    play a role, whether or not the module's interface would otherwise 
	    be of any use.  Other things being equal, avoid orphan modules.</para>
	</listitem>
      </varlistentry>

      <varlistentry>
	<term>
          <option>-fwarn-overlapping-patterns</option>:
          <indexterm><primary><option>-fwarn-overlapping-patterns</option></primary></indexterm>
          <indexterm><primary>overlapping patterns, warning</primary></indexterm>
          <indexterm><primary>patterns, overlapping</primary></indexterm>
        </term>
	<listitem>
	  <para>By default, the compiler will warn you if a set of
          patterns are overlapping, i.e.,</para>

<programlisting>
f :: String -&#62; Int
f []     = 0
f (_:xs) = 1
f "2"    = 2
</programlisting>

	  <para>where the last pattern match in <function>f</function>
          won't ever be reached, as the second pattern overlaps
          it. More often than not, redundant patterns is a programmer
          mistake/error, so this option is enabled by default.</para>
	</listitem>
      </varlistentry>

      <varlistentry>
	<term><option>-fwarn-simple-patterns</option>:</term>
	<listitem>
	  <indexterm><primary><option>-fwarn-simple-patterns</option></primary>
	  </indexterm>
	  <para>Causes the compiler to warn about lambda-bound
	  patterns that can fail, eg. <literal>\(x:xs)->...</literal>.
	  Normally, these aren't treated as incomplete patterns by
	  <option>-fwarn-incomplete-patterns</option>.</para>
	  <para>``Lambda-bound patterns'' includes all places where there is a single pattern,
	    including list comprehensions and do-notation.  In these cases, a pattern-match 
	    failure is quite legitimate, and triggers filtering (list comprehensions) or
	    the monad <literal>fail</literal> operation (monads). For example:
	    <programlisting>
	      f :: [Maybe a] -> [a]
	      f xs = [y | Just y &lt;- xs]
	      </programlisting>
	    Switching on <option>-fwarn-simple-patterns</option> will elicit warnings about
	    these probably-innocent cases, which is why the flag is off by default. </para>
	  <para> The <literal>deriving( Read )</literal> mechanism produces monadic code with
	    pattern matches, so you will also get misleading warnings about the compiler-generated
	    code.  (This is arguably a Bad Thing, but it's awkward to fix.)</para>

	</listitem>
      </varlistentry>

      <varlistentry>
	<term><option>-fwarn-type-defaults</option>:</term>
	<listitem>
	  <indexterm><primary><option>-fwarn-type-defaults</option></primary></indexterm>
	  <indexterm><primary>defaulting mechanism, warning</primary></indexterm>
	  <para>Have the compiler warn/inform you where in your source
          the Haskell defaulting mechanism for numeric types kicks
          in. This is useful information when converting code from a
          context that assumed one default into one with another,
          e.g., the `default default' for Haskell 1.4 caused the
          otherwise unconstrained value <constant>1</constant> to be
          given the type <literal>Int</literal>, whereas Haskell 98
          defaults it to <literal>Integer</literal>.  This may lead to
          differences in performance and behaviour, hence the
          usefulness of being non-silent about this.</para>

	  <para>This warning is off by default.</para>
	</listitem>
      </varlistentry>

      <varlistentry>
	<term><option>-fwarn-unused-binds</option>:</term>
	<listitem>
	  <indexterm><primary><option>-fwarn-unused-binds</option></primary></indexterm>
	  <indexterm><primary>unused binds, warning</primary></indexterm>
	  <indexterm><primary>binds, unused</primary></indexterm>
	  <para>Report any function definitions (and local bindings)
          which are unused.  For top-level functions, the warning is
          only given if the binding is not exported.</para>
	  <para>A definition is regarded as "used" if (a) it is exported, or (b) it is
	    mentioned in the right hand side of another definition that is used, or (c) the 
	    function it defines begins with an underscore.  The last case provides a 
	    way to suppress unused-binding warnings selectively.  </para>
	  <para> Notice that a variable
	    is reported as unused even if it appears in the right-hand side of another
	    unused binding. </para>
	</listitem>
      </varlistentry>

      <varlistentry>
	<term><option>-fwarn-unused-imports</option>:</term>
	<listitem>
	  <indexterm><primary><option>-fwarn-unused-imports</option></primary></indexterm>
	  <indexterm><primary>unused imports, warning</primary></indexterm>
	  <indexterm><primary>imports, unused</primary></indexterm>

	  <para>Report any modules that are explicitly imported but
	  never used.  However, the form <literal>import M()</literal> is
	  never reported as an unused import, because it is a useful idiom
	  for importing instance declarations, which are anonymous in Haskell.</para>
	</listitem>
      </varlistentry>

      <varlistentry>
	<term><option>-fwarn-unused-matches</option>:</term>
	<listitem>
	  <indexterm><primary><option>-fwarn-unused-matches</option></primary></indexterm>
	  <indexterm><primary>unused matches, warning</primary></indexterm>
	  <indexterm><primary>matches, unused</primary></indexterm>

	  <para>Report all unused variables which arise from pattern
          matches, including patterns consisting of a single variable.
          For instance <literal>f x y = []</literal> would report
          <varname>x</varname> and <varname>y</varname> as unused.  The
          warning is suppressed if the variable name begins with an underscore, thus:
	    <programlisting>
	       f _x = True
	    </programlisting>
          </para>
	</listitem>
      </varlistentry>

    </variablelist>

    <para>If you're feeling really paranoid, the
    <option>-dcore-lint</option>
    option<indexterm><primary><option>-dcore-lint</option></primary></indexterm>
    is a good choice.  It turns on heavyweight intra-pass
    sanity-checking within GHC.  (It checks GHC's sanity, not
    yours.)</para>

  </sect1>

  &packages;

  <sect1 id="options-optimise">
    <title>Optimisation (code improvement)</title>

    <indexterm><primary>optimisation</primary></indexterm>
    <indexterm><primary>improvement, code</primary></indexterm>

    <para>The <option>-O*</option> options specify convenient
    &ldquo;packages&rdquo; of optimisation flags; the
    <option>-f*</option> options described later on specify
    <emphasis>individual</emphasis> optimisations to be turned on/off;
    the <option>-m*</option> options specify
    <emphasis>machine-specific</emphasis> optimisations to be turned
    on/off.</para>

    <sect2 id="optimise-pkgs">
      <title><option>-O*</option>: convenient &ldquo;packages&rdquo; of optimisation flags.</title>

      <para>There are <emphasis>many</emphasis> options that affect
      the quality of code produced by GHC.  Most people only have a
      general goal, something like &ldquo;Compile quickly&rdquo; or
      &ldquo;Make my program run like greased lightning.&rdquo; The
      following &ldquo;packages&rdquo; of optimisations (or lack
      thereof) should suffice.</para>

      <para>Note that higher optimisation levels cause more
      cross-module optimisation to be performed, which can have an
      impact on how much of your program needs to be recompiled when
      you change something.  This is one reaosn to stick to
      no-optimisation when developing code.</para>

      <variablelist>

	<varlistentry>
	  <term>
            No <option>-O*</option>-type option specified:
            <indexterm><primary>-O* not specified</primary></indexterm>
          </term>
	  <listitem>
	    <para>This is taken to mean: &ldquo;Please compile
            quickly; I'm not over-bothered about compiled-code
            quality.&rdquo; So, for example: <command>ghc -c
            Foo.hs</command></para>
	  </listitem>
	</varlistentry>

	<varlistentry>
	  <term>
            <option>-O0</option>:
            <indexterm><primary><option>-O0</option></primary></indexterm>
          </term>
	  <listitem>
	    <para>Means &ldquo;turn off all optimisation&rdquo;,
	    reverting to the same settings as if no
	    <option>-O</option> options had been specified.  Saying
	    <option>-O0</option> can be useful if
	    eg. <command>make</command> has inserted a
	    <option>-O</option> on the command line already.</para>
	  </listitem>
	</varlistentry>

	<varlistentry>
	  <term>
            <option>-O</option> or <option>-O1</option>:
            <indexterm><primary>-O option</primary></indexterm>
            <indexterm><primary>-O1 option</primary></indexterm>
            <indexterm><primary>optimise</primary><secondary>normally</secondary></indexterm>
          </term>
	  <listitem>
	    <para>Means: &ldquo;Generate good-quality code without
            taking too long about it.&rdquo; Thus, for example:
            <command>ghc -c -O Main.lhs</command></para>

	    <para><option>-O</option> currently also implies
	    <option>-fvia-C</option>.  This may change in the
	    future.</para>
	  </listitem>
	</varlistentry>

	<varlistentry>
	  <term>
            <option>-O2</option>:
            <indexterm><primary>-O2 option</primary></indexterm>
            <indexterm><primary>optimise</primary><secondary>aggressively</secondary></indexterm>
          </term>
	  <listitem>
	    <para>Means: &ldquo;Apply every non-dangerous
            optimisation, even if it means significantly longer
            compile times.&rdquo;</para>

	    <para>The avoided &ldquo;dangerous&rdquo; optimisations
            are those that can make runtime or space
            <emphasis>worse</emphasis> if you're unlucky.  They are
            normally turned on or off individually.</para>

	    <para>At the moment, <option>-O2</option> is
            <emphasis>unlikely</emphasis> to produce better code than
            <option>-O</option>.</para>
	  </listitem>
	</varlistentry>

	<varlistentry>
	  <term>
            <option>-Ofile &lt;file&gt;</option>:
            <indexterm><primary>-Ofile &lt;file&gt; option</primary></indexterm>
            <indexterm><primary>optimising, customised</primary></indexterm>
          </term>
	  <listitem>
	    <para>(NOTE: not supported since GHC 4.x.  Please ask if
	    you're interested in this.)</para>
	    
	    <para>For those who need <emphasis>absolute</emphasis>
            control over <emphasis>exactly</emphasis> what options are
            used (e.g., compiler writers, sometimes :-), a list of
            options can be put in a file and then slurped in with
            <option>-Ofile</option>.</para>

	    <para>In that file, comments are of the
            <literal>&num;</literal>-to-end-of-line variety; blank
            lines and most whitespace is ignored.</para>

	    <para>Please ask if you are baffled and would like an
	    example of <option>-Ofile</option>!</para>
	  </listitem>
	</varlistentry>
      </variablelist>

      <para>We don't use a <option>-O*</option> flag for day-to-day
      work.  We use <option>-O</option> to get respectable speed;
      e.g., when we want to measure something.  When we want to go for
      broke, we tend to use <option>-O2 -fvia-C</option> (and we go for
      lots of coffee breaks).</para>

      <para>The easiest way to see what <option>-O</option> (etc.)
      &ldquo;really mean&rdquo; is to run with <option>-v</option>,
      then stand back in amazement.</para>
    </sect2>

    <sect2 id="options-f">
      <title><option>-f*</option>: platform-independent flags</title>

      <indexterm><primary>-f* options (GHC)</primary></indexterm>
      <indexterm><primary>-fno-* options (GHC)</primary></indexterm>

      <para>These flags turn on and off individual optimisations.
      They are normally set via the <option>-O</option> options
      described above, and as such, you shouldn't need to set any of
      them explicitly (indeed, doing so could lead to unexpected
      results).  However, there are one or two that may be of
      interest:</para>

      <variablelist>
	<varlistentry>
	  <term><option>-fexcess-precision</option>:</term>
	  <listitem>
	    <indexterm><primary><option>-fexcess-precision</option></primary></indexterm>
	    <para>When this option is given, intermediate floating
	    point values can have a <emphasis>greater</emphasis>
	    precision/range than the final type.  Generally this is a
	    good thing, but some programs may rely on the exact
	    precision/range of
	    <literal>Float</literal>/<literal>Double</literal> values
	    and should not use this option for their compilation.</para>
	  </listitem>
	</varlistentry>

	<varlistentry>
	  <term><option>-fignore-asserts</option>:</term>
	  <listitem>
	    <indexterm><primary><option>-fignore-asserts</option></primary></indexterm>
	    <para>Causes GHC to ignore uses of the function
	    <literal>Exception.assert</literal> in source code (in
	    other words, rewriting <literal>Exception.assert p
	    e</literal> to <literal>e</literal> (see <xref
	    linkend="sec-assertions"/>).  This flag is turned on by
	    <option>-O</option>.
	    </para>
	  </listitem>
	</varlistentry>

	<varlistentry>
	  <term>
            <option>-fno-cse</option>
            <indexterm><primary><option>-fno-cse</option></primary></indexterm>
          </term>
	  <listitem>
	    <para>Turns off the common-sub-expression elimination optimisation.
	      Can be useful if you have some <literal>unsafePerformIO</literal>
	    expressions that you don't want commoned-up.</para>
	  </listitem>
	</varlistentry>

	<varlistentry>
	  <term>
            <option>-fno-strictness</option>
            <indexterm><primary><option>-fno-strictness</option></primary></indexterm>
          </term>
	  <listitem>
	    <para>Turns off the strictness analyser; sometimes it eats
	    too many cycles.</para>
	  </listitem>
	</varlistentry>

	<varlistentry>
	  <term>
            <option>-fno-full-laziness</option>
            <indexterm><primary><option>-fno-full-laziness</option></primary></indexterm>
          </term>
	  <listitem>
	    <para>Turns off the full laziness optimisation (also known as
	      let-floating).  Full laziness increases sharing, which can lead
	      to increased memory residency.</para>
	  </listitem>
	</varlistentry>

	<varlistentry>
	  <term>
            <option>-fno-state-hack</option>
            <indexterm><primary><option>-fno-state-hack</option></primary></indexterm>
          </term>
	  <listitem>
	    <para>Turn off the "state hack" whereby any lambda with a
	      <literal>State#</literal> token as argument is considered to be
	      single-entry, hence it is considered OK to inline things inside
	      it.  This can improve performance of IO and ST monad code, but it
	    runs the risk of reducing sharing.</para> 
	  </listitem>
	</varlistentry>

	<varlistentry>
	  <term>
            <option>-funbox-strict-fields</option>:
	    <indexterm><primary><option>-funbox-strict-fields</option></primary></indexterm>
	    <indexterm><primary>strict constructor fields</primary></indexterm>
	    <indexterm><primary>constructor fields, strict</primary></indexterm>
          </term>
	  <listitem>
	    <para>This option causes all constructor fields which are
            marked strict (i.e. &ldquo;!&rdquo;) to be unboxed or
            unpacked if possible.  It is equivalent to adding an
            <literal>UNPACK</literal> pragma to every strict
            constructor field (see <xref
            linkend="unpack-pragma"/>).</para>

	    <para>This option is a bit of a sledgehammer: it might
	    sometimes make things worse.  Selectively unboxing fields
	    by using <literal>UNPACK</literal> pragmas might be
	    better.</para>
	  </listitem>
	</varlistentry>

	<varlistentry>
	  <term>
            <option>-funfolding-update-in-place&lt;n&gt;</option>
            <indexterm><primary><option>-funfolding-update-in-place</option></primary></indexterm>
          </term>
	  <listitem>
	    <para>Switches on an experimental "optimisation".
            Switching it on makes the compiler a little keener to
            inline a function that returns a constructor, if the
            context is that of a thunk.
<programlisting>
   x = plusInt a b
</programlisting>
            If we inlined plusInt we might get an opportunity to use
            update-in-place for the thunk 'x'.</para>
	  </listitem>
	</varlistentry>

	<varlistentry>
	  <term>
            <option>-funfolding-creation-threshold&lt;n&gt;</option>:
	    <indexterm><primary><option>-funfolding-creation-threshold</option></primary></indexterm>
	    <indexterm><primary>inlining, controlling</primary></indexterm>
	    <indexterm><primary>unfolding, controlling</primary></indexterm>
          </term>
	  <listitem>
	    <para>(Default: 45) Governs the maximum size that GHC will 
            allow a function unfolding to be.   (An unfolding has a
            &ldquo;size&rdquo; that reflects the cost in terms of
            &ldquo;code bloat&rdquo; of expanding that unfolding at
            at a call site. A bigger function would be assigned a
            bigger cost.) </para>

	    <para> Consequences: (a) nothing larger than this will be
	    inlined (unless it has an INLINE pragma); (b) nothing
	    larger than this will be spewed into an interface
	    file. </para>


            <para> Increasing this figure is more likely to result in longer
            compile times than faster code.  The next option is more
            useful:</para>
	  </listitem>
	</varlistentry>

	<varlistentry>
	  <term><option>-funfolding-use-threshold&lt;n&gt;</option>:</term>
	  <listitem>
	    <indexterm><primary><option>-funfolding-use-threshold</option></primary></indexterm>
	    <indexterm><primary>inlining, controlling</primary></indexterm>
	    <indexterm><primary>unfolding, controlling</primary></indexterm>

	    <para>(Default: 8) This is the magic cut-off figure for
            unfolding: below this size, a function definition will be
            unfolded at the call-site, any bigger and it won't.  The
            size computed for a function depends on two things: the
            actual size of the expression minus any discounts that
            apply (see <option>-funfolding-con-discount</option>).</para>
	  </listitem>
	</varlistentry>
      </variablelist>

    </sect2>
    
  </sect1>
  
  &phases;  
  
  <sect1 id="sec-using-concurrent">
    <title>Using Concurrent Haskell</title>
    <indexterm><primary>Concurrent Haskell</primary><secondary>using</secondary></indexterm>

    <para>GHC supports Concurrent Haskell by default, without requiring a
      special option or libraries compiled in a certain way.  To get access to
      the support libraries for Concurrent Haskell, just import
      <ulink
	url="../libraries/base/Control-Concurrent.html"><literal>Control.Concurrent</literal></ulink>.  More information on Concurrent Haskell is provided in the documentation for that module.</para>

    <para>The following RTS option(s) affect the behaviour of Concurrent
      Haskell programs:<indexterm><primary>RTS options, concurrent</primary></indexterm></para>

    <variablelist>
      <varlistentry>
	<term><option>-C<replaceable>s</replaceable></option></term>
	<listitem>
	  <para><indexterm><primary><option>-C<replaceable>s</replaceable></option></primary><secondary>RTS option</secondary></indexterm>
	    Sets the context switch interval to <replaceable>s</replaceable>
	    seconds.  A context switch will occur at the next heap block
	    allocation after the timer expires (a heap block allocation occurs
	    every 4k of allocation).  With <option>-C0</option> or
	    <option>-C</option>, context switches will occur as often as
	    possible (at every heap block allocation).  By default, context
	    switches occur every 20ms.  Note that GHC's internal timer ticks
	    every 20ms, and the context switch timer is always a multiple of
	    this timer, so 20ms is the maximum granularity available for timed
	    context switches.</para>
	</listitem>
      </varlistentry>
    </variablelist>
  </sect1>

<sect1 id="sec-using-parallel">
<title>Using parallel Haskell</title>

<para>
<indexterm><primary>Parallel Haskell</primary><secondary>using</secondary></indexterm>
&lsqb;NOTE: GHC does not support Parallel Haskell by default, you need to
      obtain a special version of GHC from the <ulink
	url="http://www.cee.hw.ac.uk/~dsg/gph/">GPH</ulink> site.  Also,
you won't be able to execute parallel Haskell programs unless PVM3
(parallel Virtual Machine, version 3) is installed at your site.&rsqb;
</para>

<para>
To compile a Haskell program for parallel execution under PVM, use the
<option>-parallel</option> option,<indexterm><primary>-parallel
option</primary></indexterm> both when compiling <emphasis>and
linking</emphasis>.  You will probably want to <literal>import
Control.Parallel</literal> into your Haskell modules.
</para>

<para>
To run your parallel program, once PVM is going, just invoke it
&ldquo;as normal&rdquo;.  The main extra RTS option is
<option>-qp&lt;n&gt;</option>, to say how many PVM
&ldquo;processors&rdquo; your program to run on.  (For more details of
all relevant RTS options, please see <xref
linkend="parallel-rts-opts"/>.)
</para>

<para>
In truth, running parallel Haskell programs and getting information
out of them (e.g., parallelism profiles) is a battle with the vagaries of
PVM, detailed in the following sections.
</para>

<sect2 id="pvm-dummies">
<title>Dummy's guide to using PVM</title>

<para>
<indexterm><primary>PVM, how to use</primary></indexterm>
<indexterm><primary>parallel Haskell&mdash;PVM use</primary></indexterm>
Before you can run a parallel program under PVM, you must set the
required environment variables (PVM's idea, not ours); something like,
probably in your <filename>.cshrc</filename> or equivalent:

<programlisting>
setenv PVM_ROOT /wherever/you/put/it
setenv PVM_ARCH `$PVM_ROOT/lib/pvmgetarch`
setenv PVM_DPATH $PVM_ROOT/lib/pvmd
</programlisting>

</para>

<para>
Creating and/or controlling your &ldquo;parallel machine&rdquo; is a purely-PVM
business; nothing specific to parallel Haskell. The following paragraphs
describe how to configure your parallel machine interactively.
</para>

<para>
If you use parallel Haskell regularly on the same machine configuration it
is a good idea to maintain a file with all machine names and to make the
environment variable PVM_HOST_FILE point to this file. Then you can avoid
the interactive operations described below by just saying
</para>

<programlisting>
pvm $PVM_HOST_FILE
</programlisting>

<para>
You use the <command>pvm</command><indexterm><primary>pvm command</primary></indexterm> command to start PVM on your
machine.  You can then do various things to control/monitor your
&ldquo;parallel machine;&rdquo; the most useful being:
</para>

<para>
<informaltable>
<tgroup cols="2">
<colspec align="left"/>
<tbody>

<row>
<entry><keycombo><keycap>Control</keycap><keycap>D</keycap></keycombo></entry>
<entry>exit <command>pvm</command>, leaving it running</entry>
</row>

<row>
<entry><command>halt</command></entry>
<entry>kill off this &ldquo;parallel machine&rdquo; &amp; exit</entry>
</row>

<row>
<entry><command>add &lt;host&gt;</command></entry>
<entry>add <command>&lt;host&gt;</command> as a processor</entry>
</row>

<row>
<entry><command>delete &lt;host&gt;</command></entry>
<entry>delete <command>&lt;host&gt;</command></entry>
</row>

<row>
<entry><command>reset</command></entry>
<entry>kill what's going, but leave PVM up</entry>
</row>

<row>
<entry><command>conf</command></entry>
<entry>list the current configuration</entry>
</row>

<row>
<entry><command>ps</command></entry>
<entry>report processes' status</entry>
</row>

<row>
<entry><command>pstat &lt;pid&gt;</command></entry>
<entry>status of a particular process</entry>
</row>

</tbody>
</tgroup>
</informaltable>
</para>

<para>
The PVM documentation can tell you much, much more about <command>pvm</command>!
</para>

</sect2>

<sect2 id="par-profiles">
<title>parallelism profiles</title>

<para>
<indexterm><primary>parallelism profiles</primary></indexterm>
<indexterm><primary>profiles, parallelism</primary></indexterm>
<indexterm><primary>visualisation tools</primary></indexterm>
</para>

<para>
With parallel Haskell programs, we usually don't care about the
results&mdash;only with &ldquo;how parallel&rdquo; it was!  We want pretty pictures.
</para>

<para>
parallelism profiles (&agrave; la <command>hbcpp</command>) can be generated with the
<option>-qP</option><indexterm><primary>-qP RTS option</primary></indexterm> RTS option.  The
per-processor profiling info is dumped into files named
<filename>&lt;full-path&gt;&lt;program&gt;.gr</filename>.  These are then munged into a PostScript picture,
which you can then display.  For example, to run your program
<filename>a.out</filename> on 8 processors, then view the parallelism profile, do:
</para>

<para>

<screen>
<prompt>&dollar;</prompt> ./a.out +RTS -qP -qp8
<prompt>&dollar;</prompt> grs2gr *.???.gr &#62; temp.gr # combine the 8 .gr files into one
<prompt>&dollar;</prompt> gr2ps -O temp.gr              # cvt to .ps; output in temp.ps
<prompt>&dollar;</prompt> ghostview -seascape temp.ps   # look at it!
</screen>

</para>

<para>
The scripts for processing the parallelism profiles are distributed
in <filename>ghc/utils/parallel/</filename>.
</para>

</sect2>

<sect2>
<title>Other useful info about running parallel programs</title>

<para>
The &ldquo;garbage-collection statistics&rdquo; RTS options can be useful for
seeing what parallel programs are doing.  If you do either
<option>+RTS -Sstderr</option><indexterm><primary>-Sstderr RTS option</primary></indexterm> or <option>+RTS -sstderr</option>, then
you'll get mutator, garbage-collection, etc., times on standard
error. The standard error of all PE's other than the `main thread'
appears in <filename>/tmp/pvml.nnn</filename>, courtesy of PVM.
</para>

<para>
Whether doing <option>+RTS -Sstderr</option> or not, a handy way to watch
what's happening overall is: <command>tail -f /tmp/pvml.nnn</command>.
</para>

</sect2>

<sect2 id="parallel-rts-opts">
<title>RTS options for Parallel Haskell
</title>

<para>
<indexterm><primary>RTS options, parallel</primary></indexterm>
<indexterm><primary>parallel Haskell&mdash;RTS options</primary></indexterm>
</para>

<para>
Besides the usual runtime system (RTS) options
(<xref linkend="runtime-control"/>), there are a few options particularly
for parallel execution.
</para>

<para>
<variablelist>

<varlistentry>
<term><option>-qp&lt;N&gt;</option>:</term>
<listitem>
<para>
<indexterm><primary>-qp&lt;N&gt; RTS option</primary></indexterm>
(paraLLEL ONLY) Use <literal>&lt;N&gt;</literal> PVM processors to run this program;
the default is 2.
</para>
</listitem>
</varlistentry>
<varlistentry>
<term><option>-C[&lt;s&gt;]</option>:</term>
<listitem>
<para>
<indexterm><primary>-C&lt;s&gt; RTS option</primary></indexterm> Sets
the context switch interval to <literal>&lt;s&gt;</literal> seconds.
A context switch will occur at the next heap block allocation after
the timer expires (a heap block allocation occurs every 4k of
allocation).  With <option>-C0</option> or <option>-C</option>,
context switches will occur as often as possible (at every heap block
allocation).  By default, context switches occur every 20ms.  Note that GHC's internal timer ticks every 20ms, and
the context switch timer is always a multiple of this timer, so 20ms
is the maximum granularity available for timed context switches.
</para>
</listitem>
</varlistentry>
<varlistentry>
<term><option>-q[v]</option>:</term>
<listitem>
<para>
<indexterm><primary>-q RTS option</primary></indexterm>
(paraLLEL ONLY) Produce a quasi-parallel profile of thread activity,
in the file <filename>&lt;program&gt;.qp</filename>.  In the style of <command>hbcpp</command>, this profile
records the movement of threads between the green (runnable) and red
(blocked) queues.  If you specify the verbose suboption (<option>-qv</option>), the
green queue is split into green (for the currently running thread
only) and amber (for other runnable threads).  We do not recommend
that you use the verbose suboption if you are planning to use the
<command>hbcpp</command> profiling tools or if you are context switching at every heap
check (with <option>-C</option>).
-->
</para>
</listitem>
</varlistentry>
<varlistentry>
<term><option>-qt&lt;num&gt;</option>:</term>
<listitem>
<para>
<indexterm><primary>-qt&lt;num&gt; RTS option</primary></indexterm>
(paraLLEL ONLY) Limit the thread pool size, i.e. the number of 
threads per processor to <literal>&lt;num&gt;</literal>.  The default is
32.  Each thread requires slightly over 1K <emphasis>words</emphasis> in
the heap for thread state and stack objects.  (For 32-bit machines, this
translates to 4K bytes, and for 64-bit machines, 8K bytes.)
</para>
</listitem>
</varlistentry>
<!-- no more -HWL
<varlistentry>
<term><option>-d</option>:</term>
<listitem>
<para>
<indexterm><primary>-d RTS option (parallel)</primary></indexterm>
(paraLLEL ONLY) Turn on debugging.  It pops up one xterm (or GDB, or
something&hellip;) per PVM processor.  We use the standard <command>debugger</command>
script that comes with PVM3, but we sometimes meddle with the
<command>debugger2</command> script.  We include ours in the GHC distribution,
in <filename>ghc/utils/pvm/</filename>.
</para>
</listitem>
</varlistentry>
-->
<varlistentry>
<term><option>-qe&lt;num&gt;</option>:</term>
<listitem>
<para>
<indexterm><primary>-qe&lt;num&gt; RTS option
(parallel)</primary></indexterm> (paraLLEL ONLY) Limit the spark pool size
i.e. the number of pending sparks per processor to
<literal>&lt;num&gt;</literal>. The default is 100. A larger number may be
appropriate if your program generates large amounts of parallelism
initially.
</para>
</listitem>
</varlistentry>
<varlistentry>
<term><option>-qQ&lt;num&gt;</option>:</term>
<listitem>
<para>
<indexterm><primary>-qQ&lt;num&gt; RTS option (parallel)</primary></indexterm>
(paraLLEL ONLY) Set the size of packets transmitted between processors
to <literal>&lt;num&gt;</literal>. The default is 1024 words. A larger number may be
appropriate if your machine has a high communication cost relative to
computation speed.
</para>
</listitem>
</varlistentry>
<varlistentry>
<term><option>-qh&lt;num&gt;</option>:</term>
<listitem>
<para>
<indexterm><primary>-qh&lt;num&gt; RTS option (parallel)</primary></indexterm>
(paraLLEL ONLY) Select a packing scheme. Set the number of non-root thunks to pack in one packet to
&lt;num&gt;-1 (0 means infinity). By default GUM uses full-subgraph
packing, i.e. the entire subgraph with the requested closure as root is
transmitted (provided it fits into one packet). Choosing a smaller value
reduces the amount of pre-fetching of work done in GUM. This can be
advantageous for improving data locality but it can also worsen the balance
of the load in the system. 
</para>
</listitem>
</varlistentry>
<varlistentry>
<term><option>-qg&lt;num&gt;</option>:</term>
<listitem>
<para>
<indexterm><primary>-qg&lt;num&gt; RTS option
(parallel)</primary></indexterm> (paraLLEL ONLY) Select a globalisation
scheme. This option affects the
generation of global addresses when transferring data. Global addresses are
globally unique identifiers required to maintain sharing in the distributed
graph structure. Currently this is a binary option. With &lt;num&gt;=0 full globalisation is used
(default). This means a global address is generated for every closure that
is transmitted. With &lt;num&gt;=1 a thunk-only globalisation scheme is
used, which generated global address only for thunks. The latter case may
lose sharing of data but has a reduced overhead in packing graph structures
and maintaining internal tables of global addresses.
</para>
</listitem>
</varlistentry>
</variablelist>
</para>

</sect2>

</sect1>

  <sect1 id="options-platform">
    <title>Platform-specific Flags</title>

    <indexterm><primary>-m* options</primary></indexterm>
    <indexterm><primary>platform-specific options</primary></indexterm>
    <indexterm><primary>machine-specific options</primary></indexterm>

    <para>Some flags only make sense for particular target
    platforms.</para>

    <variablelist>

      <varlistentry>
	<term><option>-mv8</option>:</term>
	<listitem>
	  <para>(SPARC machines)<indexterm><primary>-mv8 option (SPARC
          only)</primary></indexterm> Means to pass the like-named
          option to GCC; it says to use the Version 8 SPARC
          instructions, notably integer multiply and divide.  The
          similar <option>-m*</option> GCC options for SPARC also
          work, actually.</para>
	</listitem>
      </varlistentry>

      <varlistentry>
	<term><option>-monly-[32]-regs</option>:</term>
	<listitem>
	  <para>(iX86 machines)<indexterm><primary>-monly-N-regs
          option (iX86 only)</primary></indexterm> GHC tries to
          &ldquo;steal&rdquo; four registers from GCC, for performance
          reasons; it almost always works.  However, when GCC is
          compiling some modules with four stolen registers, it will
          crash, probably saying:

<screen>
Foo.hc:533: fixed or forbidden register was spilled.
This may be due to a compiler bug or to impossible asm
statements or clauses.
</screen>

          Just give some registers back with
          <option>-monly-N-regs</option>.  Try `3' first, then `2'.
          If `2' doesn't work, please report the bug to us.</para>
	</listitem>
      </varlistentry>
    </variablelist>

  </sect1>

&runtime;

<sect1 id="ext-core">
  <title>Generating and compiling External Core Files</title>

  <indexterm><primary>intermediate code generation</primary></indexterm>

  <para>GHC can dump its optimized intermediate code (said to be in &ldquo;Core&rdquo; format) 
  to a file as a side-effect of compilation. Core files, which are given the suffix
  <filename>.hcr</filename>, can be read and processed by non-GHC back-end
  tools.  The Core format is formally described in <ulink url="http://www.haskell.org/ghc/docs/papers/core.ps.gz">
  <citetitle>An External Representation for the GHC Core Language</citetitle></ulink>, 
  and sample tools (in Haskell)
  for manipulating Core files are available in the GHC source distribution 
  directory <literal>/fptools/ghc/utils/ext-core</literal>.  
  Note that the format of <literal>.hcr</literal> 
  files is <emphasis>different</emphasis> (though similar) to the Core output format generated 
  for debugging purposes (<xref linkend="options-debugging"/>).</para>

  <para>The Core format natively supports notes which you can add to
  your source code using the <literal>CORE</literal> pragma (see <xref
  linkend="pragmas"/>).</para>

    <variablelist>

  	<varlistentry>
	  <term>
            <option>-fext-core</option>
            <indexterm><primary><option>-fext-core</option></primary></indexterm>
          </term>
	  <listitem>
	    <para>Generate <literal>.hcr</literal> files.</para>
	  </listitem>
	</varlistentry>

    </variablelist>

<para>GHC can also read in External Core files as source; just give the <literal>.hcr</literal> file on
the command line, instead of the <literal>.hs</literal> or <literal>.lhs</literal> Haskell source.
A current infelicity is that you need to give the <literal>-fglasgow-exts</literal> flag too, because
ordinary Haskell 98, when translated to External Core, uses things like rank-2 types.</para>
</sect1>

&debug;
&flags;

</chapter>

<!-- Emacs stuff:
     ;;; Local Variables: ***
     ;;; mode: xml ***
     ;;; sgml-parent-document: ("users_guide.xml" "book" "chapter") ***
     ;;; End: ***
 -->