summaryrefslogtreecommitdiff
path: root/ghc/compiler/basicTypes/Literal.lhs
blob: e83ea9db74e006ea9b6e9305f8678d7c648074e9 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
%
% (c) The GRASP/AQUA Project, Glasgow University, 1998
%
\section[Literal]{@Literal@: Machine literals (unboxed, of course)}

\begin{code}
module Literal
	( Literal(..)		-- Exported to ParseIface
	, mkMachInt, mkMachWord
	, mkMachInt64, mkMachWord64, mkStringLit
	, litSize
	, litIsDupable, litIsTrivial
	, literalType
	, hashLiteral

	, inIntRange, inWordRange, tARGET_MAX_INT, inCharRange
	, isZeroLit

	, word2IntLit, int2WordLit
	, narrow8IntLit, narrow16IntLit, narrow32IntLit
	, narrow8WordLit, narrow16WordLit, narrow32WordLit
	, char2IntLit, int2CharLit
	, float2IntLit, int2FloatLit, double2IntLit, int2DoubleLit
	, nullAddrLit, float2DoubleLit, double2FloatLit
	) where

#include "HsVersions.h"

import TysPrim		( charPrimTy, addrPrimTy, floatPrimTy, doublePrimTy,
			  intPrimTy, wordPrimTy, int64PrimTy, word64PrimTy
			)
import Type		( Type )
import Outputable
import FastTypes
import FastString
import Binary

import Ratio 		( numerator )
import FastString	( uniqueOfFS, lengthFS )
import DATA_INT		( Int8,  Int16,  Int32 )
import DATA_WORD	( Word8, Word16, Word32 )
import Char		( ord, chr )
\end{code}



%************************************************************************
%*									*
\subsection{Sizes}
%*									*
%************************************************************************

If we're compiling with GHC (and we're not cross-compiling), then we
know that minBound and maxBound :: Int are the right values for the
target architecture.  Otherwise, we assume -2^31 and 2^31-1
respectively (which will be wrong on a 64-bit machine).

\begin{code}
tARGET_MIN_INT, tARGET_MAX_INT, tARGET_MAX_WORD :: Integer
#if __GLASGOW_HASKELL__
tARGET_MIN_INT  = toInteger (minBound :: Int)
tARGET_MAX_INT  = toInteger (maxBound :: Int)
#else
tARGET_MIN_INT = -2147483648
tARGET_MAX_INT =  2147483647
#endif
tARGET_MAX_WORD = (tARGET_MAX_INT * 2) + 1

tARGET_MAX_CHAR :: Int
tARGET_MAX_CHAR = 0x10ffff
\end{code}
 

%************************************************************************
%*									*
\subsection{Literals}
%*									*
%************************************************************************

So-called @Literals@ are {\em either}:
\begin{itemize}
\item
An unboxed (``machine'') literal (type: @IntPrim@, @FloatPrim@, etc.),
which is presumed to be surrounded by appropriate constructors
(@mKINT@, etc.), so that the overall thing makes sense.
\item
An Integer, Rational, or String literal whose representation we are
{\em uncommitted} about; i.e., the surrounding with constructors,
function applications, etc., etc., has not yet been done.
\end{itemize}

\begin{code}
data Literal
  =	------------------
	-- First the primitive guys
    MachChar	Char             -- Char#        At least 31 bits

  | MachStr	FastString	-- A string-literal: stored and emitted
				-- UTF-8 encoded, we'll arrange to decode it
				-- at runtime.  Also emitted with a '\0'
				-- terminator.

  | MachNullAddr                -- the NULL pointer, the only pointer value
                                -- that can be represented as a Literal.

  | MachInt	Integer		-- Int#		At least WORD_SIZE_IN_BITS bits
  | MachInt64	Integer		-- Int64#	At least 64 bits
  | MachWord	Integer		-- Word#	At least WORD_SIZE_IN_BITS bits
  | MachWord64	Integer		-- Word64#	At least 64 bits

  | MachFloat	Rational
  | MachDouble	Rational

        -- MachLabel is used (only) for the literal derived from a 
	-- "foreign label" declaration.
	-- string argument is the name of a symbol.  This literal
	-- refers to the *address* of the label.
  | MachLabel   FastString		-- always an Addr#
  		(Maybe Int)             -- the size (in bytes) of the arguments
					-- the label expects. Only applicable with
					-- 'stdcall' labels.
					-- Just x => "@<x>" will be appended to label
					--           name when emitting asm.
\end{code}

Binary instance

\begin{code}
instance Binary Literal where
    put_ bh (MachChar aa)     = do putByte bh 0; put_ bh aa
    put_ bh (MachStr ab)      = do putByte bh 1; put_ bh ab
    put_ bh (MachNullAddr)    = do putByte bh 2
    put_ bh (MachInt ad)      = do putByte bh 3; put_ bh ad
    put_ bh (MachInt64 ae)    = do putByte bh 4; put_ bh ae
    put_ bh (MachWord af)     = do putByte bh 5; put_ bh af
    put_ bh (MachWord64 ag)   = do putByte bh 6; put_ bh ag
    put_ bh (MachFloat ah)    = do putByte bh 7; put_ bh ah
    put_ bh (MachDouble ai)   = do putByte bh 8; put_ bh ai
    put_ bh (MachLabel aj mb) = do putByte bh 9; put_ bh aj ; put_ bh mb
    get bh = do
	    h <- getByte bh
	    case h of
	      0 -> do
		    aa <- get bh
		    return (MachChar aa)
	      1 -> do
		    ab <- get bh
		    return (MachStr ab)
	      2 -> do
		    return (MachNullAddr)
	      3 -> do
		    ad <- get bh
		    return (MachInt ad)
	      4 -> do
		    ae <- get bh
		    return (MachInt64 ae)
	      5 -> do
		    af <- get bh
		    return (MachWord af)
	      6 -> do
		    ag <- get bh
		    return (MachWord64 ag)
	      7 -> do
		    ah <- get bh
		    return (MachFloat ah)
	      8 -> do
		    ai <- get bh
		    return (MachDouble ai)
	      9 -> do
		    aj <- get bh
		    mb <- get bh
		    return (MachLabel aj mb)
\end{code}

\begin{code}
instance Outputable Literal where
    ppr lit = pprLit lit

instance Show Literal where
    showsPrec p lit = showsPrecSDoc p (ppr lit)

instance Eq Literal where
    a == b = case (a `compare` b) of { EQ -> True;   _ -> False }
    a /= b = case (a `compare` b) of { EQ -> False;  _ -> True  }

instance Ord Literal where
    a <= b = case (a `compare` b) of { LT -> True;  EQ -> True;  GT -> False }
    a <	 b = case (a `compare` b) of { LT -> True;  EQ -> False; GT -> False }
    a >= b = case (a `compare` b) of { LT -> False; EQ -> True;  GT -> True  }
    a >	 b = case (a `compare` b) of { LT -> False; EQ -> False; GT -> True  }
    compare a b = cmpLit a b
\end{code}


	Construction
	~~~~~~~~~~~~
\begin{code}
mkMachInt, mkMachWord, mkMachInt64, mkMachWord64 :: Integer -> Literal

mkMachInt  x   = -- ASSERT2( inIntRange x,  integer x ) 
	 	 -- Not true: you can write out of range Int# literals
		 -- For example, one can write (intToWord# 0xffff0000) to
		 -- get a particular Word bit-pattern, and there's no other
		 -- convenient way to write such literals, which is why we allow it.
		 MachInt x
mkMachWord x   = -- ASSERT2( inWordRange x, integer x ) 
		 MachWord x
mkMachInt64  x = MachInt64 x
mkMachWord64 x = MachWord64 x

mkStringLit :: String -> Literal
mkStringLit s = MachStr (mkFastString s) -- stored UTF-8 encoded

inIntRange, inWordRange :: Integer -> Bool
inIntRange  x = x >= tARGET_MIN_INT && x <= tARGET_MAX_INT
inWordRange x = x >= 0		    && x <= tARGET_MAX_WORD

inCharRange :: Char -> Bool
inCharRange c =  c >= '\0' && c <= chr tARGET_MAX_CHAR

isZeroLit :: Literal -> Bool
isZeroLit (MachInt    0) = True
isZeroLit (MachInt64  0) = True
isZeroLit (MachWord   0) = True
isZeroLit (MachWord64 0) = True
isZeroLit (MachFloat  0) = True
isZeroLit (MachDouble 0) = True
isZeroLit other		 = False
\end{code}

	Coercions
	~~~~~~~~~
\begin{code}
word2IntLit, int2WordLit,
  narrow8IntLit, narrow16IntLit, narrow32IntLit,
  narrow8WordLit, narrow16WordLit, narrow32WordLit,
  char2IntLit, int2CharLit,
  float2IntLit, int2FloatLit, double2IntLit, int2DoubleLit,
  float2DoubleLit, double2FloatLit
  :: Literal -> Literal

word2IntLit (MachWord w) 
  | w > tARGET_MAX_INT = MachInt (w - tARGET_MAX_WORD - 1)
  | otherwise	       = MachInt w

int2WordLit (MachInt i)
  | i < 0     = MachWord (1 + tARGET_MAX_WORD + i)	-- (-1)  --->  tARGET_MAX_WORD
  | otherwise = MachWord i

narrow8IntLit    (MachInt  i) = MachInt  (toInteger (fromInteger i :: Int8))
narrow16IntLit   (MachInt  i) = MachInt  (toInteger (fromInteger i :: Int16))
narrow32IntLit   (MachInt  i) = MachInt  (toInteger (fromInteger i :: Int32))
narrow8WordLit   (MachWord w) = MachWord (toInteger (fromInteger w :: Word8))
narrow16WordLit  (MachWord w) = MachWord (toInteger (fromInteger w :: Word16))
narrow32WordLit  (MachWord w) = MachWord (toInteger (fromInteger w :: Word32))

char2IntLit (MachChar c) = MachInt  (toInteger (ord c))
int2CharLit (MachInt  i) = MachChar (chr (fromInteger i))

float2IntLit (MachFloat f) = MachInt   (truncate    f)
int2FloatLit (MachInt   i) = MachFloat (fromInteger i)

double2IntLit (MachDouble f) = MachInt    (truncate    f)
int2DoubleLit (MachInt   i) = MachDouble (fromInteger i)

float2DoubleLit (MachFloat  f) = MachDouble f
double2FloatLit (MachDouble d) = MachFloat  d

nullAddrLit :: Literal
nullAddrLit = MachNullAddr
\end{code}

	Predicates
	~~~~~~~~~~
\begin{code}
litIsTrivial :: Literal -> Bool
-- True if there is absolutely no penalty to duplicating the literal
--	c.f. CoreUtils.exprIsTrivial
-- False principally of strings
litIsTrivial (MachStr _) = False
litIsTrivial other	 = True

litIsDupable :: Literal -> Bool
-- True if code space does not go bad if we duplicate this literal
--	c.f. CoreUtils.exprIsDupable
-- Currently we treat it just like litIsTrivial
litIsDupable (MachStr _) = False
litIsDupable other	 = True

litSize :: Literal -> Int
-- Used by CoreUnfold.sizeExpr
litSize (MachStr str) = 1 + ((lengthFS str + 3) `div` 4)
	-- Every literal has size at least 1, otherwise
	-- 	f "x" 
	-- might be too small
	-- [Sept03: make literal strings a bit bigger to avoid fruitless 
	--  duplication of little strings]
litSize _other	      = 1
\end{code}

	Types
	~~~~~
\begin{code}
literalType :: Literal -> Type
literalType MachNullAddr    = addrPrimTy
literalType (MachChar _)    = charPrimTy
literalType (MachStr  _)    = addrPrimTy
literalType (MachInt  _)    = intPrimTy
literalType (MachWord  _)   = wordPrimTy
literalType (MachInt64  _)  = int64PrimTy
literalType (MachWord64  _) = word64PrimTy
literalType (MachFloat _)   = floatPrimTy
literalType (MachDouble _)  = doublePrimTy
literalType (MachLabel _ _) = addrPrimTy
\end{code}


	Comparison
	~~~~~~~~~~
\begin{code}
cmpLit (MachChar      a)   (MachChar	   b)   = a `compare` b
cmpLit (MachStr       a)   (MachStr	   b)   = a `compare` b
cmpLit (MachNullAddr)      (MachNullAddr)       = EQ
cmpLit (MachInt       a)   (MachInt	   b)   = a `compare` b
cmpLit (MachWord      a)   (MachWord	   b)   = a `compare` b
cmpLit (MachInt64     a)   (MachInt64	   b)   = a `compare` b
cmpLit (MachWord64    a)   (MachWord64	   b)   = a `compare` b
cmpLit (MachFloat     a)   (MachFloat	   b)   = a `compare` b
cmpLit (MachDouble    a)   (MachDouble	   b)   = a `compare` b
cmpLit (MachLabel     a _) (MachLabel      b _) = a `compare` b
cmpLit lit1		   lit2		        | litTag lit1 <# litTag lit2 = LT
					        | otherwise  		     = GT

litTag (MachChar      _)   = _ILIT(1)
litTag (MachStr       _)   = _ILIT(2)
litTag (MachNullAddr)      = _ILIT(3)
litTag (MachInt       _)   = _ILIT(4)
litTag (MachWord      _)   = _ILIT(5)
litTag (MachInt64     _)   = _ILIT(6)
litTag (MachWord64    _)   = _ILIT(7)
litTag (MachFloat     _)   = _ILIT(8)
litTag (MachDouble    _)   = _ILIT(9)
litTag (MachLabel   _ _)   = _ILIT(10)
\end{code}

	Printing
	~~~~~~~~
* MachX (i.e. unboxed) things are printed unadornded (e.g. 3, 'a', "foo")
  exceptions: MachFloat gets an initial keyword prefix.

\begin{code}
pprLit (MachChar ch)  	= pprHsChar ch
pprLit (MachStr s)    	= pprHsString s
pprLit (MachInt i)    	= pprIntVal i
pprLit (MachInt64 i)  	= ptext SLIT("__int64") <+> integer i
pprLit (MachWord w)   	= ptext SLIT("__word") <+> integer w
pprLit (MachWord64 w) 	= ptext SLIT("__word64") <+> integer w
pprLit (MachFloat f)  	= ptext SLIT("__float") <+> rational f
pprLit (MachDouble d) 	= rational d
pprLit (MachNullAddr) 	= ptext SLIT("__NULL")
pprLit (MachLabel l mb) = ptext SLIT("__label") <+> 
			     case mb of
			       Nothing -> pprHsString l
			       Just x  -> doubleQuotes (text (unpackFS l ++ '@':show x))

pprIntVal :: Integer -> SDoc
-- Print negative integers with parens to be sure it's unambiguous
pprIntVal i | i < 0     = parens (integer i)
	    | otherwise = integer i
\end{code}


%************************************************************************
%*									*
\subsection{Hashing}
%*									*
%************************************************************************

Hash values should be zero or a positive integer.  No negatives please.
(They mess up the UniqFM for some reason.)

\begin{code}
hashLiteral :: Literal -> Int
hashLiteral (MachChar c)    	= ord c + 1000	-- Keep it out of range of common ints
hashLiteral (MachStr s)     	= hashFS s
hashLiteral (MachNullAddr)    	= 0
hashLiteral (MachInt i)   	= hashInteger i
hashLiteral (MachInt64 i) 	= hashInteger i
hashLiteral (MachWord i)   	= hashInteger i
hashLiteral (MachWord64 i) 	= hashInteger i
hashLiteral (MachFloat r)   	= hashRational r
hashLiteral (MachDouble r)  	= hashRational r
hashLiteral (MachLabel s _)     = hashFS s

hashRational :: Rational -> Int
hashRational r = hashInteger (numerator r)

hashInteger :: Integer -> Int
hashInteger i = 1 + abs (fromInteger (i `rem` 10000))
		-- The 1+ is to avoid zero, which is a Bad Number
		-- since we use * to combine hash values

hashFS :: FastString -> Int
hashFS s = iBox (uniqueOfFS s)
\end{code}