1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
|
%
% (c) The GRASP/AQUA Project, Glasgow University, 1992-1998
%
\section[DsExpr]{Matching expressions (Exprs)}
\begin{code}
module DsExpr ( dsExpr, dsLExpr, dsLocalBinds, dsValBinds, dsLit ) where
#include "HsVersions.h"
#if defined(GHCI) && defined(BREAKPOINT)
import Foreign.StablePtr ( newStablePtr, castStablePtrToPtr )
import GHC.Exts ( Ptr(..), Int(..), addr2Int# )
import IOEnv ( ioToIOEnv )
import PrelNames ( breakpointJumpName )
import TysWiredIn ( unitTy )
import TypeRep ( Type(..) )
#endif
import Match ( matchWrapper, matchSinglePat, matchEquations )
import MatchLit ( dsLit, dsOverLit )
import DsBinds ( dsLHsBinds, dsCoercion )
import DsGRHSs ( dsGuarded )
import DsListComp ( dsListComp, dsPArrComp )
import DsUtils ( mkErrorAppDs, mkStringExpr, mkConsExpr, mkNilExpr,
extractMatchResult, cantFailMatchResult, matchCanFail,
mkCoreTupTy, selectSimpleMatchVarL, lookupEvidence, selectMatchVar )
import DsArrows ( dsProcExpr )
import DsMonad
#ifdef GHCI
-- Template Haskell stuff iff bootstrapped
import DsMeta ( dsBracket )
#endif
import HsSyn
import TcHsSyn ( hsPatType, mkVanillaTuplePat )
-- NB: The desugarer, which straddles the source and Core worlds, sometimes
-- needs to see source types (newtypes etc), and sometimes not
-- So WATCH OUT; check each use of split*Ty functions.
-- Sigh. This is a pain.
import TcType ( tcSplitAppTy, tcSplitFunTys, tcTyConAppTyCon,
tcTyConAppArgs, isUnLiftedType, Type, mkAppTy )
import Type ( funArgTy, splitFunTys, isUnboxedTupleType, mkFunTy )
import CoreSyn
import CoreUtils ( exprType, mkIfThenElse, bindNonRec )
import CostCentre ( mkUserCC )
import Id ( Id, idType, idName, idDataCon )
import PrelInfo ( rEC_CON_ERROR_ID, iRREFUT_PAT_ERROR_ID )
import DataCon ( DataCon, dataConWrapId, dataConFieldLabels, dataConInstOrigArgTys )
import DataCon ( isVanillaDataCon )
import TyCon ( FieldLabel, tyConDataCons )
import TysWiredIn ( tupleCon )
import BasicTypes ( RecFlag(..), Boxity(..), ipNameName )
import PrelNames ( toPName,
returnMName, bindMName, thenMName, failMName,
mfixName )
import SrcLoc ( Located(..), unLoc, getLoc, noLoc )
import Util ( zipEqual, zipWithEqual )
import Bag ( bagToList )
import Outputable
import FastString
\end{code}
%************************************************************************
%* *
dsLocalBinds, dsValBinds
%* *
%************************************************************************
\begin{code}
dsLocalBinds :: HsLocalBinds Id -> CoreExpr -> DsM CoreExpr
dsLocalBinds EmptyLocalBinds body = return body
dsLocalBinds (HsValBinds binds) body = dsValBinds binds body
dsLocalBinds (HsIPBinds binds) body = dsIPBinds binds body
-------------------------
dsValBinds :: HsValBinds Id -> CoreExpr -> DsM CoreExpr
dsValBinds (ValBindsOut binds _) body = foldrDs ds_val_bind body binds
-------------------------
dsIPBinds (IPBinds ip_binds dict_binds) body
= do { prs <- dsLHsBinds dict_binds
; let inner = foldr (\(x,r) e -> Let (NonRec x r) e) body prs
; foldrDs ds_ip_bind inner ip_binds }
where
ds_ip_bind (L _ (IPBind n e)) body
= dsLExpr e `thenDs` \ e' ->
returnDs (Let (NonRec (ipNameName n) e') body)
-------------------------
ds_val_bind :: (RecFlag, LHsBinds Id) -> CoreExpr -> DsM CoreExpr
-- Special case for bindings which bind unlifted variables
-- We need to do a case right away, rather than building
-- a tuple and doing selections.
-- Silently ignore INLINE and SPECIALISE pragmas...
ds_val_bind (NonRecursive, hsbinds) body
| [L _ (AbsBinds [] [] exports binds)] <- bagToList hsbinds,
(L loc bind : null_binds) <- bagToList binds,
isBangHsBind bind
|| isUnboxedTupleBind bind
|| or [isUnLiftedType (idType g) | (_, g, _, _) <- exports]
= let
body_w_exports = foldr bind_export body exports
bind_export (tvs, g, l, _) body = ASSERT( null tvs )
bindNonRec g (Var l) body
in
ASSERT (null null_binds)
-- Non-recursive, non-overloaded bindings only come in ones
-- ToDo: in some bizarre case it's conceivable that there
-- could be dict binds in the 'binds'. (See the notes
-- below. Then pattern-match would fail. Urk.)
putSrcSpanDs loc $
case bind of
FunBind { fun_id = L _ fun, fun_matches = matches, fun_co_fn = co_fn }
-> matchWrapper (FunRhs (idName fun)) matches `thenDs` \ (args, rhs) ->
ASSERT( null args ) -- Functions aren't lifted
ASSERT( isIdCoercion co_fn )
returnDs (bindNonRec fun rhs body_w_exports)
PatBind {pat_lhs = pat, pat_rhs = grhss, pat_rhs_ty = ty }
-> -- let C x# y# = rhs in body
-- ==> case rhs of C x# y# -> body
putSrcSpanDs loc $
do { rhs <- dsGuarded grhss ty
; let upat = unLoc pat
eqn = EqnInfo { eqn_wrap = idWrapper, eqn_pats = [upat],
eqn_rhs = cantFailMatchResult body_w_exports }
; var <- selectMatchVar upat ty
; result <- matchEquations PatBindRhs [var] [eqn] (exprType body)
; return (scrungleMatch var rhs result) }
other -> pprPanic "dsLet: unlifted" (pprLHsBinds hsbinds $$ ppr body)
-- Ordinary case for bindings; none should be unlifted
ds_val_bind (is_rec, binds) body
= do { prs <- dsLHsBinds binds
; ASSERT( not (any (isUnLiftedType . idType . fst) prs) )
case prs of
[] -> return body
other -> return (Let (Rec prs) body) }
-- Use a Rec regardless of is_rec.
-- Why? Because it allows the binds to be all
-- mixed up, which is what happens in one rare case
-- Namely, for an AbsBind with no tyvars and no dicts,
-- but which does have dictionary bindings.
-- See notes with TcSimplify.inferLoop [NO TYVARS]
-- It turned out that wrapping a Rec here was the easiest solution
--
-- NB The previous case dealt with unlifted bindings, so we
-- only have to deal with lifted ones now; so Rec is ok
isUnboxedTupleBind :: HsBind Id -> Bool
isUnboxedTupleBind (PatBind { pat_rhs_ty = ty }) = isUnboxedTupleType ty
isUnboxedTupleBind other = False
scrungleMatch :: Id -> CoreExpr -> CoreExpr -> CoreExpr
-- Returns something like (let var = scrut in body)
-- but if var is an unboxed-tuple type, it inlines it in a fragile way
-- Special case to handle unboxed tuple patterns; they can't appear nested
-- The idea is that
-- case e of (# p1, p2 #) -> rhs
-- should desugar to
-- case e of (# x1, x2 #) -> ... match p1, p2 ...
-- NOT
-- let x = e in case x of ....
--
-- But there may be a big
-- let fail = ... in case e of ...
-- wrapping the whole case, which complicates matters slightly
-- It all seems a bit fragile. Test is dsrun013.
scrungleMatch var scrut body
| isUnboxedTupleType (idType var) = scrungle body
| otherwise = bindNonRec var scrut body
where
scrungle (Case (Var x) bndr ty alts)
| x == var = Case scrut bndr ty alts
scrungle (Let binds body) = Let binds (scrungle body)
scrungle other = panic ("scrungleMatch: tuple pattern:\n" ++ showSDoc (ppr other))
\end{code}
%************************************************************************
%* *
\subsection[DsExpr-vars-and-cons]{Variables, constructors, literals}
%* *
%************************************************************************
\begin{code}
dsLExpr :: LHsExpr Id -> DsM CoreExpr
dsLExpr (L loc e) = putSrcSpanDs loc $ dsExpr e
dsExpr :: HsExpr Id -> DsM CoreExpr
dsExpr (HsPar e) = dsLExpr e
dsExpr (ExprWithTySigOut e _) = dsLExpr e
dsExpr (HsVar var) = returnDs (Var var)
dsExpr (HsIPVar ip) = returnDs (Var (ipNameName ip))
dsExpr (HsLit lit) = dsLit lit
dsExpr (HsOverLit lit) = dsOverLit lit
dsExpr (NegApp expr neg_expr)
= do { core_expr <- dsLExpr expr
; core_neg <- dsExpr neg_expr
; return (core_neg `App` core_expr) }
dsExpr expr@(HsLam a_Match)
= matchWrapper LambdaExpr a_Match `thenDs` \ (binders, matching_code) ->
returnDs (mkLams binders matching_code)
#if defined(GHCI) && defined(BREAKPOINT)
dsExpr (HsApp (L _ (HsApp realFun@(L _ (HsCoerce _ fun)) (L loc arg))) _)
| HsVar funId <- fun
, idName funId == breakpointJumpName
, ids <- filter (not.hasTyVar.idType) (extractIds arg)
= do dsWarn (text "Extracted ids:" <+> ppr ids <+> ppr (map idType ids))
stablePtr <- ioToIOEnv $ newStablePtr ids
-- Yes, I know... I'm gonna burn in hell.
let Ptr addr# = castStablePtrToPtr stablePtr
funCore <- dsLExpr realFun
argCore <- dsLExpr (L loc (HsLit (HsInt (fromIntegral (I# (addr2Int# addr#))))))
hvalCore <- dsLExpr (L loc (extractHVals ids))
return ((funCore `App` argCore) `App` hvalCore)
where extractIds :: HsExpr Id -> [Id]
extractIds (HsApp fn arg)
| HsVar argId <- unLoc arg
= argId:extractIds (unLoc fn)
| TyApp arg' ts <- unLoc arg
, HsVar argId <- unLoc arg'
= error (showSDoc (ppr ts)) -- argId:extractIds (unLoc fn)
extractIds x = []
extractHVals ids = ExplicitList unitTy (map (L loc . HsVar) ids)
hasTyVar (TyVarTy _) = True
hasTyVar (FunTy a b) = hasTyVar a || hasTyVar b
hasTyVar (NoteTy _ t) = hasTyVar t
hasTyVar (AppTy a b) = hasTyVar a || hasTyVar b
hasTyVar (TyConApp _ ts) = any hasTyVar ts
hasTyVar _ = False
#endif
dsExpr expr@(HsApp fun arg)
= dsLExpr fun `thenDs` \ core_fun ->
dsLExpr arg `thenDs` \ core_arg ->
returnDs (core_fun `App` core_arg)
\end{code}
Operator sections. At first it looks as if we can convert
\begin{verbatim}
(expr op)
\end{verbatim}
to
\begin{verbatim}
\x -> op expr x
\end{verbatim}
But no! expr might be a redex, and we can lose laziness badly this
way. Consider
\begin{verbatim}
map (expr op) xs
\end{verbatim}
for example. So we convert instead to
\begin{verbatim}
let y = expr in \x -> op y x
\end{verbatim}
If \tr{expr} is actually just a variable, say, then the simplifier
will sort it out.
\begin{code}
dsExpr (OpApp e1 op _ e2)
= dsLExpr op `thenDs` \ core_op ->
-- for the type of y, we need the type of op's 2nd argument
dsLExpr e1 `thenDs` \ x_core ->
dsLExpr e2 `thenDs` \ y_core ->
returnDs (mkApps core_op [x_core, y_core])
dsExpr (SectionL expr op)
= dsLExpr op `thenDs` \ core_op ->
-- for the type of y, we need the type of op's 2nd argument
let
(x_ty:y_ty:_, _) = splitFunTys (exprType core_op)
-- Must look through an implicit-parameter type;
-- newtype impossible; hence Type.splitFunTys
in
dsLExpr expr `thenDs` \ x_core ->
newSysLocalDs x_ty `thenDs` \ x_id ->
newSysLocalDs y_ty `thenDs` \ y_id ->
returnDs (bindNonRec x_id x_core $
Lam y_id (mkApps core_op [Var x_id, Var y_id]))
-- dsLExpr (SectionR op expr) -- \ x -> op x expr
dsExpr (SectionR op expr)
= dsLExpr op `thenDs` \ core_op ->
-- for the type of x, we need the type of op's 2nd argument
let
(x_ty:y_ty:_, _) = splitFunTys (exprType core_op)
-- See comment with SectionL
in
dsLExpr expr `thenDs` \ y_core ->
newSysLocalDs x_ty `thenDs` \ x_id ->
newSysLocalDs y_ty `thenDs` \ y_id ->
returnDs (bindNonRec y_id y_core $
Lam x_id (mkApps core_op [Var x_id, Var y_id]))
dsExpr (HsSCC cc expr)
= dsLExpr expr `thenDs` \ core_expr ->
getModuleDs `thenDs` \ mod_name ->
returnDs (Note (SCC (mkUserCC cc mod_name)) core_expr)
-- hdaume: core annotation
dsExpr (HsCoreAnn fs expr)
= dsLExpr expr `thenDs` \ core_expr ->
returnDs (Note (CoreNote $ unpackFS fs) core_expr)
dsExpr (HsCase discrim matches)
= dsLExpr discrim `thenDs` \ core_discrim ->
matchWrapper CaseAlt matches `thenDs` \ ([discrim_var], matching_code) ->
returnDs (scrungleMatch discrim_var core_discrim matching_code)
dsExpr (HsLet binds body)
= dsLExpr body `thenDs` \ body' ->
dsLocalBinds binds body'
-- We need the `ListComp' form to use `deListComp' (rather than the "do" form)
-- because the interpretation of `stmts' depends on what sort of thing it is.
--
dsExpr (HsDo ListComp stmts body result_ty)
= -- Special case for list comprehensions
dsListComp stmts body elt_ty
where
[elt_ty] = tcTyConAppArgs result_ty
dsExpr (HsDo DoExpr stmts body result_ty)
= dsDo stmts body result_ty
dsExpr (HsDo (MDoExpr tbl) stmts body result_ty)
= dsMDo tbl stmts body result_ty
dsExpr (HsDo PArrComp stmts body result_ty)
= -- Special case for array comprehensions
dsPArrComp (map unLoc stmts) body elt_ty
where
[elt_ty] = tcTyConAppArgs result_ty
dsExpr (HsIf guard_expr then_expr else_expr)
= dsLExpr guard_expr `thenDs` \ core_guard ->
dsLExpr then_expr `thenDs` \ core_then ->
dsLExpr else_expr `thenDs` \ core_else ->
returnDs (mkIfThenElse core_guard core_then core_else)
\end{code}
\noindent
\underline{\bf Type lambda and application}
% ~~~~~~~~~~~~~~~~~~~~~~~~~~~
\begin{code}
dsExpr (TyLam tyvars expr)
= dsLExpr expr `thenDs` \ core_expr ->
returnDs (mkLams tyvars core_expr)
dsExpr (TyApp expr tys)
= dsLExpr expr `thenDs` \ core_expr ->
returnDs (mkTyApps core_expr tys)
\end{code}
\noindent
\underline{\bf Various data construction things}
% ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
\begin{code}
dsExpr (ExplicitList ty xs)
= go xs
where
go [] = returnDs (mkNilExpr ty)
go (x:xs) = dsLExpr x `thenDs` \ core_x ->
go xs `thenDs` \ core_xs ->
returnDs (mkConsExpr ty core_x core_xs)
-- we create a list from the array elements and convert them into a list using
-- `PrelPArr.toP'
--
-- * the main disadvantage to this scheme is that `toP' traverses the list
-- twice: once to determine the length and a second time to put to elements
-- into the array; this inefficiency could be avoided by exposing some of
-- the innards of `PrelPArr' to the compiler (ie, have a `PrelPArrBase') so
-- that we can exploit the fact that we already know the length of the array
-- here at compile time
--
dsExpr (ExplicitPArr ty xs)
= dsLookupGlobalId toPName `thenDs` \toP ->
dsExpr (ExplicitList ty xs) `thenDs` \coreList ->
returnDs (mkApps (Var toP) [Type ty, coreList])
dsExpr (ExplicitTuple expr_list boxity)
= mappM dsLExpr expr_list `thenDs` \ core_exprs ->
returnDs (mkConApp (tupleCon boxity (length expr_list))
(map (Type . exprType) core_exprs ++ core_exprs))
dsExpr (ArithSeq expr (From from))
= dsExpr expr `thenDs` \ expr2 ->
dsLExpr from `thenDs` \ from2 ->
returnDs (App expr2 from2)
dsExpr (ArithSeq expr (FromTo from two))
= dsExpr expr `thenDs` \ expr2 ->
dsLExpr from `thenDs` \ from2 ->
dsLExpr two `thenDs` \ two2 ->
returnDs (mkApps expr2 [from2, two2])
dsExpr (ArithSeq expr (FromThen from thn))
= dsExpr expr `thenDs` \ expr2 ->
dsLExpr from `thenDs` \ from2 ->
dsLExpr thn `thenDs` \ thn2 ->
returnDs (mkApps expr2 [from2, thn2])
dsExpr (ArithSeq expr (FromThenTo from thn two))
= dsExpr expr `thenDs` \ expr2 ->
dsLExpr from `thenDs` \ from2 ->
dsLExpr thn `thenDs` \ thn2 ->
dsLExpr two `thenDs` \ two2 ->
returnDs (mkApps expr2 [from2, thn2, two2])
dsExpr (PArrSeq expr (FromTo from two))
= dsExpr expr `thenDs` \ expr2 ->
dsLExpr from `thenDs` \ from2 ->
dsLExpr two `thenDs` \ two2 ->
returnDs (mkApps expr2 [from2, two2])
dsExpr (PArrSeq expr (FromThenTo from thn two))
= dsExpr expr `thenDs` \ expr2 ->
dsLExpr from `thenDs` \ from2 ->
dsLExpr thn `thenDs` \ thn2 ->
dsLExpr two `thenDs` \ two2 ->
returnDs (mkApps expr2 [from2, thn2, two2])
dsExpr (PArrSeq expr _)
= panic "DsExpr.dsExpr: Infinite parallel array!"
-- the parser shouldn't have generated it and the renamer and typechecker
-- shouldn't have let it through
\end{code}
\noindent
\underline{\bf Record construction and update}
% ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
For record construction we do this (assuming T has three arguments)
\begin{verbatim}
T { op2 = e }
==>
let err = /\a -> recConErr a
T (recConErr t1 "M.lhs/230/op1")
e
(recConErr t1 "M.lhs/230/op3")
\end{verbatim}
@recConErr@ then converts its arugment string into a proper message
before printing it as
\begin{verbatim}
M.lhs, line 230: missing field op1 was evaluated
\end{verbatim}
We also handle @C{}@ as valid construction syntax for an unlabelled
constructor @C@, setting all of @C@'s fields to bottom.
\begin{code}
dsExpr (RecordCon (L _ data_con_id) con_expr rbinds)
= dsExpr con_expr `thenDs` \ con_expr' ->
let
(arg_tys, _) = tcSplitFunTys (exprType con_expr')
-- A newtype in the corner should be opaque;
-- hence TcType.tcSplitFunTys
mk_arg (arg_ty, lbl) -- Selector id has the field label as its name
= case [rhs | (L _ sel_id, rhs) <- rbinds, lbl == idName sel_id] of
(rhs:rhss) -> ASSERT( null rhss )
dsLExpr rhs
[] -> mkErrorAppDs rEC_CON_ERROR_ID arg_ty (showSDoc (ppr lbl))
unlabelled_bottom arg_ty = mkErrorAppDs rEC_CON_ERROR_ID arg_ty ""
labels = dataConFieldLabels (idDataCon data_con_id)
-- The data_con_id is guaranteed to be the wrapper id of the constructor
in
(if null labels
then mappM unlabelled_bottom arg_tys
else mappM mk_arg (zipEqual "dsExpr:RecordCon" arg_tys labels))
`thenDs` \ con_args ->
returnDs (mkApps con_expr' con_args)
\end{code}
Record update is a little harder. Suppose we have the decl:
\begin{verbatim}
data T = T1 {op1, op2, op3 :: Int}
| T2 {op4, op2 :: Int}
| T3
\end{verbatim}
Then we translate as follows:
\begin{verbatim}
r { op2 = e }
===>
let op2 = e in
case r of
T1 op1 _ op3 -> T1 op1 op2 op3
T2 op4 _ -> T2 op4 op2
other -> recUpdError "M.lhs/230"
\end{verbatim}
It's important that we use the constructor Ids for @T1@, @T2@ etc on the
RHSs, and do not generate a Core constructor application directly, because the constructor
might do some argument-evaluation first; and may have to throw away some
dictionaries.
\begin{code}
dsExpr (RecordUpd record_expr [] record_in_ty record_out_ty)
= dsLExpr record_expr
dsExpr expr@(RecordUpd record_expr rbinds record_in_ty record_out_ty)
= dsLExpr record_expr `thenDs` \ record_expr' ->
-- Desugar the rbinds, and generate let-bindings if
-- necessary so that we don't lose sharing
let
in_inst_tys = tcTyConAppArgs record_in_ty -- Newtype opaque
out_inst_tys = tcTyConAppArgs record_out_ty -- Newtype opaque
in_out_ty = mkFunTy record_in_ty record_out_ty
mk_val_arg field old_arg_id
= case [rhs | (L _ sel_id, rhs) <- rbinds, field == idName sel_id] of
(rhs:rest) -> ASSERT(null rest) rhs
[] -> nlHsVar old_arg_id
mk_alt con
= newSysLocalsDs (dataConInstOrigArgTys con in_inst_tys) `thenDs` \ arg_ids ->
-- This call to dataConInstOrigArgTys won't work for existentials
-- but existentials don't have record types anyway
let
val_args = zipWithEqual "dsExpr:RecordUpd" mk_val_arg
(dataConFieldLabels con) arg_ids
rhs = foldl (\a b -> nlHsApp a b)
(noLoc $ TyApp (nlHsVar (dataConWrapId con))
out_inst_tys)
val_args
in
returnDs (mkSimpleMatch [noLoc $ ConPatOut (noLoc con) [] [] emptyLHsBinds
(PrefixCon (map nlVarPat arg_ids)) record_in_ty]
rhs)
in
-- Record stuff doesn't work for existentials
-- The type checker checks for this, but we need
-- worry only about the constructors that are to be updated
ASSERT2( all isVanillaDataCon cons_to_upd, ppr expr )
-- It's important to generate the match with matchWrapper,
-- and the right hand sides with applications of the wrapper Id
-- so that everything works when we are doing fancy unboxing on the
-- constructor aguments.
mappM mk_alt cons_to_upd `thenDs` \ alts ->
matchWrapper RecUpd (MatchGroup alts in_out_ty) `thenDs` \ ([discrim_var], matching_code) ->
returnDs (bindNonRec discrim_var record_expr' matching_code)
where
updated_fields :: [FieldLabel]
updated_fields = [ idName sel_id | (L _ sel_id,_) <- rbinds]
-- Get the type constructor from the record_in_ty
-- so that we are sure it'll have all its DataCons
-- (In GHCI, it's possible that some TyCons may not have all
-- their constructors, in a module-loop situation.)
tycon = tcTyConAppTyCon record_in_ty
data_cons = tyConDataCons tycon
cons_to_upd = filter has_all_fields data_cons
has_all_fields :: DataCon -> Bool
has_all_fields con_id
= all (`elem` con_fields) updated_fields
where
con_fields = dataConFieldLabels con_id
\end{code}
\noindent
\underline{\bf Dictionary lambda and application}
% ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
@DictLam@ and @DictApp@ turn into the regular old things.
(OLD:) @DictFunApp@ also becomes a curried application, albeit slightly more
complicated; reminiscent of fully-applied constructors.
\begin{code}
dsExpr (DictLam dictvars expr)
= dsLExpr expr `thenDs` \ core_expr ->
returnDs (mkLams dictvars core_expr)
------------------
dsExpr (DictApp expr dicts) -- becomes a curried application
= dsLExpr expr `thenDs` \ core_expr ->
returnDs (foldl (\f d -> f `App` (Var d)) core_expr dicts)
dsExpr (HsCoerce co_fn e) = dsCoercion co_fn (dsExpr e)
\end{code}
Here is where we desugar the Template Haskell brackets and escapes
\begin{code}
-- Template Haskell stuff
#ifdef GHCI /* Only if bootstrapping */
dsExpr (HsBracketOut x ps) = dsBracket x ps
dsExpr (HsSpliceE s) = pprPanic "dsExpr:splice" (ppr s)
#endif
-- Arrow notation extension
dsExpr (HsProc pat cmd) = dsProcExpr pat cmd
\end{code}
\begin{code}
#ifdef DEBUG
-- HsSyn constructs that just shouldn't be here:
dsExpr (ExprWithTySig _ _) = panic "dsExpr:ExprWithTySig"
#endif
\end{code}
%--------------------------------------------------------------------
Desugar 'do' and 'mdo' expressions (NOT list comprehensions, they're
handled in DsListComp). Basically does the translation given in the
Haskell 98 report:
\begin{code}
dsDo :: [LStmt Id]
-> LHsExpr Id
-> Type -- Type of the whole expression
-> DsM CoreExpr
dsDo stmts body result_ty
= go (map unLoc stmts)
where
go [] = dsLExpr body
go (ExprStmt rhs then_expr _ : stmts)
= do { rhs2 <- dsLExpr rhs
; then_expr2 <- dsExpr then_expr
; rest <- go stmts
; returnDs (mkApps then_expr2 [rhs2, rest]) }
go (LetStmt binds : stmts)
= do { rest <- go stmts
; dsLocalBinds binds rest }
go (BindStmt pat rhs bind_op fail_op : stmts)
= do { body <- go stmts
; var <- selectSimpleMatchVarL pat
; match <- matchSinglePat (Var var) (StmtCtxt DoExpr) pat
result_ty (cantFailMatchResult body)
; match_code <- handle_failure pat match fail_op
; rhs' <- dsLExpr rhs
; bind_op' <- dsExpr bind_op
; returnDs (mkApps bind_op' [rhs', Lam var match_code]) }
-- In a do expression, pattern-match failure just calls
-- the monadic 'fail' rather than throwing an exception
handle_failure pat match fail_op
| matchCanFail match
= do { fail_op' <- dsExpr fail_op
; fail_msg <- mkStringExpr (mk_fail_msg pat)
; extractMatchResult match (App fail_op' fail_msg) }
| otherwise
= extractMatchResult match (error "It can't fail")
mk_fail_msg pat = "Pattern match failure in do expression at " ++
showSDoc (ppr (getLoc pat))
\end{code}
Translation for RecStmt's:
-----------------------------
We turn (RecStmt [v1,..vn] stmts) into:
(v1,..,vn) <- mfix (\~(v1,..vn). do stmts
return (v1,..vn))
\begin{code}
dsMDo :: PostTcTable
-> [LStmt Id]
-> LHsExpr Id
-> Type -- Type of the whole expression
-> DsM CoreExpr
dsMDo tbl stmts body result_ty
= go (map unLoc stmts)
where
(m_ty, b_ty) = tcSplitAppTy result_ty -- result_ty must be of the form (m b)
mfix_id = lookupEvidence tbl mfixName
return_id = lookupEvidence tbl returnMName
bind_id = lookupEvidence tbl bindMName
then_id = lookupEvidence tbl thenMName
fail_id = lookupEvidence tbl failMName
ctxt = MDoExpr tbl
go [] = dsLExpr body
go (LetStmt binds : stmts)
= do { rest <- go stmts
; dsLocalBinds binds rest }
go (ExprStmt rhs _ rhs_ty : stmts)
= do { rhs2 <- dsLExpr rhs
; rest <- go stmts
; returnDs (mkApps (Var then_id) [Type rhs_ty, Type b_ty, rhs2, rest]) }
go (BindStmt pat rhs _ _ : stmts)
= do { body <- go stmts
; var <- selectSimpleMatchVarL pat
; match <- matchSinglePat (Var var) (StmtCtxt ctxt) pat
result_ty (cantFailMatchResult body)
; fail_msg <- mkStringExpr (mk_fail_msg pat)
; let fail_expr = mkApps (Var fail_id) [Type b_ty, fail_msg]
; match_code <- extractMatchResult match fail_expr
; rhs' <- dsLExpr rhs
; returnDs (mkApps (Var bind_id) [Type (hsPatType pat), Type b_ty,
rhs', Lam var match_code]) }
go (RecStmt rec_stmts later_ids rec_ids rec_rets binds : stmts)
= ASSERT( length rec_ids > 0 )
ASSERT( length rec_ids == length rec_rets )
go (new_bind_stmt : let_stmt : stmts)
where
new_bind_stmt = mkBindStmt (mk_tup_pat later_pats) mfix_app
let_stmt = LetStmt (HsValBinds (ValBindsOut [(Recursive, binds)] []))
-- Remove the later_ids that appear (without fancy coercions)
-- in rec_rets, because there's no need to knot-tie them separately
-- See Note [RecStmt] in HsExpr
later_ids' = filter (`notElem` mono_rec_ids) later_ids
mono_rec_ids = [ id | HsVar id <- rec_rets ]
mfix_app = nlHsApp (noLoc $ TyApp (nlHsVar mfix_id) [tup_ty]) mfix_arg
mfix_arg = noLoc $ HsLam (MatchGroup [mkSimpleMatch [mfix_pat] body]
(mkFunTy tup_ty body_ty))
-- The rec_tup_pat must bind the rec_ids only; remember that the
-- trimmed_laters may share the same Names
-- Meanwhile, the later_pats must bind the later_vars
rec_tup_pats = map mk_wild_pat later_ids' ++ map nlVarPat rec_ids
later_pats = map nlVarPat later_ids' ++ map mk_later_pat rec_ids
rets = map nlHsVar later_ids' ++ map noLoc rec_rets
mfix_pat = noLoc $ LazyPat $ mk_tup_pat rec_tup_pats
body = noLoc $ HsDo ctxt rec_stmts return_app body_ty
body_ty = mkAppTy m_ty tup_ty
tup_ty = mkCoreTupTy (map idType (later_ids' ++ rec_ids))
-- mkCoreTupTy deals with singleton case
return_app = nlHsApp (noLoc $ TyApp (nlHsVar return_id) [tup_ty])
(mk_ret_tup rets)
mk_wild_pat :: Id -> LPat Id
mk_wild_pat v = noLoc $ WildPat $ idType v
mk_later_pat :: Id -> LPat Id
mk_later_pat v | v `elem` later_ids' = mk_wild_pat v
| otherwise = nlVarPat v
mk_tup_pat :: [LPat Id] -> LPat Id
mk_tup_pat [p] = p
mk_tup_pat ps = noLoc $ mkVanillaTuplePat ps Boxed
mk_ret_tup :: [LHsExpr Id] -> LHsExpr Id
mk_ret_tup [r] = r
mk_ret_tup rs = noLoc $ ExplicitTuple rs Boxed
\end{code}
|