1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
|
%
% (c) The GRASP/AQUA Project, Glasgow University, 1992-1996
%
\section[Main_match]{The @match@ function}
\begin{code}
#include "HsVersions.h"
module Match ( match, matchWrapper, matchSimply ) where
import Ubiq
import DsLoop -- here for paranoia-checking reasons
-- and to break dsExpr/dsBinds-ish loop
import HsSyn hiding ( collectBinders{-also from CoreSyn-} )
import TcHsSyn ( TypecheckedPat(..), TypecheckedMatch(..),
TypecheckedHsBinds(..), TypecheckedHsExpr(..) )
import DsHsSyn ( outPatType, collectTypedPatBinders )
import CoreSyn
import CoreUtils ( coreExprType )
import DsMonad
import DsGRHSs ( dsGRHSs )
import DsUtils
import MatchCon ( matchConFamily )
import MatchLit ( matchLiterals )
import FieldLabel ( allFieldLabelTags, fieldLabelTag )
import Id ( idType, mkTupleCon, dataConSig,
dataConArgTys, recordSelectorFieldLabel,
GenId{-instance-}
)
import PprStyle ( PprStyle(..) )
import PprType ( GenType{-instance-}, GenTyVar{-ditto-} )
import PrelInfo ( nilDataCon, consDataCon, mkTupleTy, mkListTy,
charTy, charDataCon, intTy, intDataCon,
floatTy, floatDataCon, doubleTy, doubleDataCon,
integerTy, intPrimTy, charPrimTy,
floatPrimTy, doublePrimTy, stringTy,
addrTy, addrPrimTy, addrDataCon,
wordTy, wordPrimTy, wordDataCon,
pAT_ERROR_ID
)
import Type ( isPrimType, eqTy, getAppDataTyConExpandingDicts,
instantiateTauTy
)
import TyVar ( GenTyVar{-instance Eq-} )
import Unique ( Unique{-instance Eq-} )
import Util ( panic, pprPanic, assertPanic )
\end{code}
The function @match@ is basically the same as in the Wadler chapter,
except it is monadised, to carry around the name supply, info about
annotations, etc.
Notes on @match@'s arguments, assuming $m$ equations and $n$ patterns:
\begin{enumerate}
\item
A list of $n$ variable names, those variables presumably bound to the
$n$ expressions being matched against the $n$ patterns. Using the
list of $n$ expressions as the first argument showed no benefit and
some inelegance.
\item
The second argument, a list giving the ``equation info'' for each of
the $m$ equations:
\begin{itemize}
\item
the $n$ patterns for that equation, and
\item
a list of Core bindings [@(Id, CoreExpr)@ pairs] to be ``stuck on
the front'' of the matching code, as in:
\begin{verbatim}
let <binds>
in <matching-code>
\end{verbatim}
\item
and finally: (ToDo: fill in)
The right way to think about the ``after-match function'' is that it
is an embryonic @CoreExpr@ with a ``hole'' at the end for the
final ``else expression''.
\end{itemize}
There is a type synonym, @EquationInfo@, defined in module @DsUtils@.
An experiment with re-ordering this information about equations (in
particular, having the patterns available in column-major order)
showed no benefit.
\item
A default expression---what to evaluate if the overall pattern-match
fails. This expression will (almost?) always be
a measly expression @Var@, unless we know it will only be used once
(as we do in @glue_success_exprs@).
Leaving out this third argument to @match@ (and slamming in lots of
@Var "fail"@s) is a positively {\em bad} idea, because it makes it
impossible to share the default expressions. (Also, it stands no
chance of working in our post-upheaval world of @Locals@.)
\end{enumerate}
So, the full type signature:
\begin{code}
match :: [Id] -- Variables rep'ing the exprs we're matching with
-> [EquationInfo] -- Info about patterns, etc. (type synonym below)
-> [EquationInfo] -- Potentially shadowing equations above this one
-> DsM MatchResult -- Desugared result!
\end{code}
Note: @match@ is often called via @matchWrapper@ (end of this module),
a function that does much of the house-keeping that goes with a call
to @match@.
It is also worth mentioning the {\em typical} way a block of equations
is desugared with @match@. At each stage, it is the first column of
patterns that is examined. The steps carried out are roughly:
\begin{enumerate}
\item
Tidy the patterns in column~1 with @tidyEqnInfo@ (this may add
bindings to the second component of the equation-info):
\begin{itemize}
\item
Remove the `as' patterns from column~1.
\item
Make all constructor patterns in column~1 into @ConPats@, notably
@ListPats@ and @TuplePats@.
\item
Handle any irrefutable (or ``twiddle'') @LazyPats@.
\end{itemize}
\item
Now {\em unmix} the equations into {\em blocks} [w/ local function
@unmix_eqns@], in which the equations in a block all have variable
patterns in column~1, or they all have constructor patterns in ...
(see ``the mixture rule'' in SLPJ).
\item
Call @matchUnmixedEqns@ on each block of equations; it will do the
appropriate thing for each kind of column-1 pattern, usually ending up
in a recursive call to @match@.
\end{enumerate}
%************************************************************************
%* *
%* match: empty rule *
%* *
%************************************************************************
\subsection[Match-empty-rule]{The ``empty rule''}
We are a little more paranoid about the ``empty rule'' (SLPJ, p.~87)
than the Wadler-chapter code for @match@ (p.~93, first @match@ clause).
And gluing the ``success expressions'' together isn't quite so pretty.
\begin{code}
match [] eqns_info shadows
= pin_eqns eqns_info `thenDs` \ match_result@(MatchResult _ _ _ cxt) ->
-- If at this stage we find that at least one of the shadowing
-- equations is guaranteed not to fail, then warn of an overlapping pattern
if not (all shadow_can_fail shadows) then
dsShadowError cxt `thenDs` \ _ ->
returnDs match_result
else
returnDs match_result
where
pin_eqns [EqnInfo [] match_result] = returnDs match_result
-- Last eqn... can't have pats ...
pin_eqns (EqnInfo [] match_result1 : more_eqns)
= pin_eqns more_eqns `thenDs` \ match_result2 ->
combineMatchResults match_result1 match_result2
pin_eqns other_pat = panic "match: pin_eqns"
shadow_can_fail :: EquationInfo -> Bool
shadow_can_fail (EqnInfo [] (MatchResult CanFail _ _ _)) = True
shadow_can_fail (EqnInfo [] (MatchResult CantFail _ _ _)) = False
shadow_can_fail other = panic "match:shadow_can_fail"
\end{code}
%************************************************************************
%* *
%* match: non-empty rule *
%* *
%************************************************************************
\subsection[Match-nonempty]{@match@ when non-empty: unmixing}
This (more interesting) clause of @match@ uses @tidy_and_unmix_eqns@
(a)~to get `as'- and `twiddle'-patterns out of the way (tidying), and
(b)~to do ``the mixture rule'' (SLPJ, p.~88) [which really {\em
un}mixes the equations], producing a list of equation-info
blocks, each block having as its first column of patterns either all
constructors, or all variables (or similar beasts), etc.
@match_unmixed_eqn_blks@ simply takes the place of the @foldr@ in the
Wadler-chapter @match@ (p.~93, last clause), and @match_unmixed_blk@
corresponds roughly to @matchVarCon@.
\begin{code}
match vars@(v:vs) eqns_info shadows
= mapDs (tidyEqnInfo v) eqns_info `thenDs` \ tidy_eqns_info ->
mapDs (tidyEqnInfo v) shadows `thenDs` \ tidy_shadows ->
let
tidy_eqns_blks = unmix_eqns tidy_eqns_info
in
match_unmixed_eqn_blks vars tidy_eqns_blks tidy_shadows
where
unmix_eqns [] = []
unmix_eqns [eqn] = [ [eqn] ]
unmix_eqns (eq1@(EqnInfo (p1:p1s) _) : eq2@(EqnInfo (p2:p2s) _) : eqs)
= if ( (unfailablePat p1 && unfailablePat p2)
|| (isConPat p1 && isConPat p2)
|| (isLitPat p1 && isLitPat p2) ) then
eq1 `tack_onto` unmixed_rest
else
[ eq1 ] : unmixed_rest
where
unmixed_rest = unmix_eqns (eq2:eqs)
x `tack_onto` xss = ( x : head xss) : tail xss
-----------------------------------------------------------------------
-- loop through the blocks:
-- subsequent blocks create a "fail expr" for the first one...
match_unmixed_eqn_blks :: [Id]
-> [ [EquationInfo] ] -- List of eqn BLOCKS
-> [EquationInfo] -- Shadows
-> DsM MatchResult
match_unmixed_eqn_blks vars [] shadows = panic "match_unmixed_eqn_blks"
match_unmixed_eqn_blks vars [eqn_blk] shadows = matchUnmixedEqns vars eqn_blk shadows
match_unmixed_eqn_blks vars (eqn_blk:eqn_blks) shadows
= matchUnmixedEqns vars eqn_blk shadows `thenDs` \ match_result1 -> -- try to match with first blk
match_unmixed_eqn_blks vars eqn_blks shadows' `thenDs` \ match_result2 ->
combineMatchResults match_result1 match_result2
where
shadows' = eqn_blk ++ shadows
\end{code}
Tidy up the leftmost pattern in an @EquationInfo@, given the variable @v@
which will be scrutinised. This means:
\begin{itemize}
\item
Replace variable patterns @x@ (@x /= v@) with the pattern @_@,
together with the binding @x = v@.
\item
Replace the `as' pattern @x@@p@ with the pattern p and a binding @x = v@.
\item
Removing lazy (irrefutable) patterns (you don't want to know...).
\item
Converting explicit tuple- and list-pats into ordinary @ConPats@.
\end{itemize}
The result of this tidying is that the column of patterns will include
{\em only}:
\begin{description}
\item[@WildPats@:]
The @VarPat@ information isn't needed any more after this.
\item[@ConPats@:]
@ListPats@, @TuplePats@, etc., are all converted into @ConPats@.
\item[@LitPats@ and @NPats@:]
@LitPats@/@NPats@ of ``known friendly types'' (Int, Char,
Float, Double, at least) are converted to unboxed form; e.g.,
\tr{(NPat (HsInt i) _ _)} is converted to:
\begin{verbatim}
(ConPat I# _ _ [LitPat (HsIntPrim i) _])
\end{verbatim}
\end{description}
\begin{code}
tidyEqnInfo :: Id -> EquationInfo -> DsM EquationInfo
-- DsM'd because of internal call to "match".
-- "tidy1" does the interesting stuff, looking at
-- one pattern and fiddling the list of bindings.
tidyEqnInfo v (EqnInfo (pat : pats) match_result)
= tidy1 v pat match_result `thenDs` \ (pat', match_result') ->
returnDs (EqnInfo (pat' : pats) match_result')
tidy1 :: Id -- The Id being scrutinised
-> TypecheckedPat -- The pattern against which it is to be matched
-> MatchResult -- Current thing do do after matching
-> DsM (TypecheckedPat, -- Equivalent pattern
MatchResult) -- Augmented thing to do afterwards
-- The augmentation usually takes the form
-- of new bindings to be added to the front
tidy1 v (VarPat var) match_result
= returnDs (WildPat (idType var),
mkCoLetsMatchResult extra_binds match_result)
where
extra_binds | v == var = []
| otherwise = [NonRec var (Var v)]
tidy1 v (AsPat var pat) match_result
= tidy1 v pat (mkCoLetsMatchResult extra_binds match_result)
where
extra_binds | v == var = []
| otherwise = [NonRec var (Var v)]
tidy1 v (WildPat ty) match_result
= returnDs (WildPat ty, match_result)
{- now, here we handle lazy patterns:
tidy1 v ~p bs = (v, v1 = case v of p -> v1 :
v2 = case v of p -> v2 : ... : bs )
where the v_i's are the binders in the pattern.
ToDo: in "v_i = ... -> v_i", are the v_i's really the same thing?
The case expr for v_i is just: match [v] [(p, [], \ x -> Var v_i)] any_expr
-}
tidy1 v (LazyPat pat) match_result
= mkSelectorBinds [] pat l_to_l (Var v) `thenDs` \ sel_binds ->
returnDs (WildPat (idType v),
mkCoLetsMatchResult [NonRec b rhs | (b,rhs) <- sel_binds] match_result)
where
l_to_l = binders `zip` binders -- Boring
binders = collectTypedPatBinders pat
-- re-express <con-something> as (ConPat ...) [directly]
tidy1 v (ConOpPat pat1 id pat2 ty) match_result
= returnDs (ConPat id ty [pat1, pat2], match_result)
tidy1 v (RecPat con_id pat_ty rpats) match_result
= returnDs (ConPat con_id pat_ty pats, match_result)
where
pats = map mk_pat tagged_arg_tys
-- Boring stuff to find the arg-tys of the constructor
(_, inst_tys, _) = {-_trace "Match.getAppDataTyConExpandingDicts" $-} getAppDataTyConExpandingDicts pat_ty
con_arg_tys' = dataConArgTys con_id inst_tys
tagged_arg_tys = con_arg_tys' `zip` allFieldLabelTags
-- mk_pat picks a WildPat of the appropriate type for absent fields,
-- and the specified pattern for present fields
mk_pat (arg_ty, tag) = case [pat | (sel_id,pat,_) <- rpats,
fieldLabelTag (recordSelectorFieldLabel sel_id) == tag
] of
(pat:pats) -> ASSERT( null pats )
pat
[] -> WildPat arg_ty
tidy1 v (ListPat ty pats) match_result
= returnDs (list_ConPat, match_result)
where
list_ty = mkListTy ty
list_ConPat
= foldr (\ x -> \y -> ConPat consDataCon list_ty [x, y])
(ConPat nilDataCon list_ty [])
pats
tidy1 v (TuplePat pats) match_result
= returnDs (tuple_ConPat, match_result)
where
arity = length pats
tuple_ConPat
= ConPat (mkTupleCon arity)
(mkTupleTy arity (map outPatType pats))
pats
tidy1 v (DictPat dicts methods) match_result
= case num_of_d_and_ms of
0 -> tidy1 v (TuplePat []) match_result
1 -> tidy1 v (head dict_and_method_pats) match_result
_ -> tidy1 v (TuplePat dict_and_method_pats) match_result
where
num_of_d_and_ms = length dicts + length methods
dict_and_method_pats = map VarPat (dicts ++ methods)
-- deeply ugly mangling for some (common) NPats/LitPats
-- LitPats: the desugarer only sees these at well-known types
tidy1 v pat@(LitPat lit lit_ty) match_result
| isPrimType lit_ty
= returnDs (pat, match_result)
| lit_ty `eqTy` charTy
= returnDs (ConPat charDataCon charTy [LitPat (mk_char lit) charPrimTy],
match_result)
| otherwise = pprPanic "tidy1:LitPat:" (ppr PprDebug pat)
where
mk_char (HsChar c) = HsCharPrim c
-- NPats: we *might* be able to replace these w/ a simpler form
tidy1 v pat@(NPat lit lit_ty _) match_result
= returnDs (better_pat, match_result)
where
better_pat
| lit_ty `eqTy` charTy = ConPat charDataCon lit_ty [LitPat (mk_char lit) charPrimTy]
| lit_ty `eqTy` intTy = ConPat intDataCon lit_ty [LitPat (mk_int lit) intPrimTy]
| lit_ty `eqTy` wordTy = ConPat wordDataCon lit_ty [LitPat (mk_word lit) wordPrimTy]
| lit_ty `eqTy` addrTy = ConPat addrDataCon lit_ty [LitPat (mk_addr lit) addrPrimTy]
| lit_ty `eqTy` floatTy = ConPat floatDataCon lit_ty [LitPat (mk_float lit) floatPrimTy]
| lit_ty `eqTy` doubleTy = ConPat doubleDataCon lit_ty [LitPat (mk_double lit) doublePrimTy]
| otherwise = pat
mk_int (HsInt i) = HsIntPrim i
mk_int l@(HsLitLit s) = l
mk_char (HsChar c) = HsCharPrim c
mk_char l@(HsLitLit s) = l
mk_word l@(HsLitLit s) = l
mk_addr l@(HsLitLit s) = l
mk_float (HsInt i) = HsFloatPrim (fromInteger i)
mk_float (HsFrac f) = HsFloatPrim f
mk_float l@(HsLitLit s) = l
mk_double (HsInt i) = HsDoublePrim (fromInteger i)
mk_double (HsFrac f) = HsDoublePrim f
mk_double l@(HsLitLit s) = l
-- and everything else goes through unchanged...
tidy1 v non_interesting_pat match_result
= returnDs (non_interesting_pat, match_result)
\end{code}
PREVIOUS matchTwiddled STUFF:
Now we get to the only interesting part; note: there are choices for
translation [from Simon's notes]; translation~1:
\begin{verbatim}
deTwiddle [s,t] e
\end{verbatim}
returns
\begin{verbatim}
[ w = e,
s = case w of [s,t] -> s
t = case w of [s,t] -> t
]
\end{verbatim}
Here \tr{w} is a fresh variable, and the \tr{w}-binding prevents multiple
evaluation of \tr{e}. An alternative translation (No.~2):
\begin{verbatim}
[ w = case e of [s,t] -> (s,t)
s = case w of (s,t) -> s
t = case w of (s,t) -> t
]
\end{verbatim}
%************************************************************************
%* *
\subsubsection[improved-unmixing]{UNIMPLEMENTED idea for improved unmixing}
%* *
%************************************************************************
We might be able to optimise unmixing when confronted by
only-one-constructor-possible, of which tuples are the most notable
examples. Consider:
\begin{verbatim}
f (a,b,c) ... = ...
f d ... (e:f) = ...
f (g,h,i) ... = ...
f j ... = ...
\end{verbatim}
This definition would normally be unmixed into four equation blocks,
one per equation. But it could be unmixed into just one equation
block, because if the one equation matches (on the first column),
the others certainly will.
You have to be careful, though; the example
\begin{verbatim}
f j ... = ...
-------------------
f (a,b,c) ... = ...
f d ... (e:f) = ...
f (g,h,i) ... = ...
\end{verbatim}
{\em must} be broken into two blocks at the line shown; otherwise, you
are forcing unnecessary evaluation. In any case, the top-left pattern
always gives the cue. You could then unmix blocks into groups of...
\begin{description}
\item[all variables:]
As it is now.
\item[constructors or variables (mixed):]
Need to make sure the right names get bound for the variable patterns.
\item[literals or variables (mixed):]
Presumably just a variant on the constructor case (as it is now).
\end{description}
%************************************************************************
%* *
%* match on an unmixed block: the real business *
%* *
%************************************************************************
\subsection[matchUnmixedEqns]{@matchUnmixedEqns@: getting down to business}
The function @matchUnmixedEqns@ is where the matching stuff sets to
work a block of equations, to which the mixture rule has been applied.
Its arguments and results are the same as for the ``top-level'' @match@.
\begin{code}
matchUnmixedEqns :: [Id]
-> [EquationInfo]
-> [EquationInfo] -- Shadows
-> DsM MatchResult
matchUnmixedEqns [] _ _ = panic "matchUnmixedEqns: no names"
matchUnmixedEqns all_vars@(var:vars) eqns_info shadows
| unfailablePat first_pat
= ASSERT( unfailablePats column_1_pats ) -- Sanity check
-- Real true variables, just like in matchVar, SLPJ p 94
match vars remaining_eqns_info remaining_shadows
| isConPat first_pat
= ASSERT( patsAreAllCons column_1_pats )
matchConFamily all_vars eqns_info shadows
| isLitPat first_pat
= ASSERT( patsAreAllLits column_1_pats )
-- see notes in MatchLiteral
-- not worried about the same literal more than once in a column
-- (ToDo: sort this out later)
matchLiterals all_vars eqns_info shadows
where
first_pat = head column_1_pats
column_1_pats = [pat | EqnInfo (pat:_) _ <- eqns_info]
remaining_eqns_info = [EqnInfo pats match_result | EqnInfo (_:pats) match_result <- eqns_info]
remaining_shadows = [EqnInfo pats match_result | EqnInfo (pat:pats) match_result <- shadows,
irrefutablePat pat ]
-- Discard shadows which can be refuted, since they don't shadow
-- a variable
\end{code}
%************************************************************************
%* *
%* matchWrapper: a convenient way to call @match@ *
%* *
%************************************************************************
\subsection[matchWrapper]{@matchWrapper@: a convenient interface to @match@}
Calls to @match@ often involve similar (non-trivial) work; that work
is collected here, in @matchWrapper@. This function takes as
arguments:
\begin{itemize}
\item
Typchecked @Matches@ (of a function definition, or a case or lambda
expression)---the main input;
\item
An error message to be inserted into any (runtime) pattern-matching
failure messages.
\end{itemize}
As results, @matchWrapper@ produces:
\begin{itemize}
\item
A list of variables (@Locals@) that the caller must ``promise'' to
bind to appropriate values; and
\item
a @CoreExpr@, the desugared output (main result).
\end{itemize}
The main actions of @matchWrapper@ include:
\begin{enumerate}
\item
Flatten the @[TypecheckedMatch]@ into a suitable list of
@EquationInfo@s.
\item
Create as many new variables as there are patterns in a pattern-list
(in any one of the @EquationInfo@s).
\item
Create a suitable ``if it fails'' expression---a call to @error@ using
the error-string input; the {\em type} of this fail value can be found
by examining one of the RHS expressions in one of the @EquationInfo@s.
\item
Call @match@ with all of this information!
\end{enumerate}
\begin{code}
matchWrapper :: DsMatchKind -- For shadowing warning messages
-> [TypecheckedMatch] -- Matches being desugared
-> String -- Error message if the match fails
-> DsM ([Id], CoreExpr) -- Results
-- a special case for the common ...:
-- just one Match
-- lots of (all?) unfailable pats
-- e.g.,
-- f x y z = ....
matchWrapper kind [(PatMatch (VarPat var) match)] error_string
= matchWrapper kind [match] error_string `thenDs` \ (vars, core_expr) ->
returnDs (var:vars, core_expr)
matchWrapper kind [(PatMatch (WildPat ty) match)] error_string
= newSysLocalDs ty `thenDs` \ var ->
matchWrapper kind [match] error_string `thenDs` \ (vars, core_expr) ->
returnDs (var:vars, core_expr)
matchWrapper kind [(GRHSMatch
(GRHSsAndBindsOut [OtherwiseGRHS expr _] binds _))] error_string
= dsBinds binds `thenDs` \ core_binds ->
dsExpr expr `thenDs` \ core_expr ->
returnDs ([], mkCoLetsAny core_binds core_expr)
----------------------------------------------------------------------------
-- and all the rest... (general case)
matchWrapper kind matches error_string
= flattenMatches kind matches `thenDs` \ eqns_info@(EqnInfo arg_pats (MatchResult _ result_ty _ _) : _) ->
selectMatchVars arg_pats `thenDs` \ new_vars ->
match new_vars eqns_info [] `thenDs` \ match_result ->
mkErrorAppDs pAT_ERROR_ID result_ty error_string `thenDs` \ fail_expr ->
extractMatchResult match_result fail_expr `thenDs` \ result_expr ->
returnDs (new_vars, result_expr)
\end{code}
%************************************************************************
%* *
\subsection[matchSimply]{@matchSimply@: match a single expression against a single pattern}
%* *
%************************************************************************
@mkSimpleMatch@ is a wrapper for @match@ which deals with the
situation where we want to match a single expression against a single
pattern. It returns an expression.
\begin{code}
matchSimply :: CoreExpr -- Scrutinee
-> TypecheckedPat -- Pattern it should match
-> Type -- Type of result
-> CoreExpr -- Return this if it matches
-> CoreExpr -- Return this if it does
-> DsM CoreExpr
matchSimply (Var var) pat result_ty result_expr fail_expr
= match [var] [eqn_info] [] `thenDs` \ match_result ->
extractMatchResult match_result fail_expr
where
eqn_info = EqnInfo [pat] initial_match_result
initial_match_result = MatchResult CantFail
result_ty
(\ ignore -> result_expr)
NoMatchContext
matchSimply scrut_expr pat result_ty result_expr msg
= newSysLocalDs (outPatType pat) `thenDs` \ scrut_var ->
matchSimply (Var scrut_var) pat result_ty result_expr msg `thenDs` \ expr ->
returnDs (Let (NonRec scrut_var scrut_expr) expr)
extractMatchResult (MatchResult CantFail _ match_fn _) fail_expr
= returnDs (match_fn (error "It can't fail!"))
extractMatchResult (MatchResult CanFail result_ty match_fn _) fail_expr
= mkFailurePair result_ty `thenDs` \ (fail_bind_fn, if_it_fails) ->
returnDs (Let (fail_bind_fn fail_expr) (match_fn if_it_fails))
\end{code}
%************************************************************************
%* *
%* flattenMatches : create a list of EquationInfo *
%* *
%************************************************************************
\subsection[flattenMatches]{@flattenMatches@: create @[EquationInfo]@}
This is actually local to @matchWrapper@.
\begin{code}
flattenMatches
:: DsMatchKind
-> [TypecheckedMatch]
-> DsM [EquationInfo]
flattenMatches kind [] = returnDs []
flattenMatches kind (match : matches)
= flatten_match [] match `thenDs` \ eqn_info ->
flattenMatches kind matches `thenDs` \ eqn_infos ->
returnDs (eqn_info : eqn_infos)
where
flatten_match :: [TypecheckedPat] -- Reversed list of patterns encountered so far
-> TypecheckedMatch
-> DsM EquationInfo
flatten_match pats_so_far (PatMatch pat match)
= flatten_match (pat:pats_so_far) match
flatten_match pats_so_far (GRHSMatch (GRHSsAndBindsOut grhss binds ty))
= dsBinds binds `thenDs` \ core_binds ->
dsGRHSs ty kind pats grhss `thenDs` \ match_result ->
returnDs (EqnInfo pats (mkCoLetsMatchResult core_binds match_result))
where
pats = reverse pats_so_far -- They've accumulated in reverse order
flatten_match pats_so_far (SimpleMatch expr)
= dsExpr expr `thenDs` \ core_expr ->
returnDs (EqnInfo pats
(MatchResult CantFail (coreExprType core_expr)
(\ ignore -> core_expr)
NoMatchContext))
-- The NoMatchContext is just a place holder. In a simple match,
-- the matching can't fail, so we won't generate an error message.
where
pats = reverse pats_so_far -- They've accumulated in reverse order
\end{code}
|