1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
|
%
% (c) The GRASP/AQUA Project, Glasgow University, 1992-1998
%
\section[HsBinds]{Abstract syntax: top-level bindings and signatures}
Datatype for: @BindGroup@, @Bind@, @Sig@, @Bind@.
\begin{code}
module HsBinds where
#include "HsVersions.h"
import {-# SOURCE #-} HsExpr ( HsExpr, pprExpr, LHsExpr,
MatchGroup, pprFunBind,
GRHSs, pprPatBind )
import {-# SOURCE #-} HsPat ( LPat )
import HsTypes ( LHsType, PostTcType )
import Type ( Type )
import Name ( Name )
import NameSet ( NameSet, elemNameSet )
import BasicTypes ( IPName, RecFlag(..), InlineSpec(..), Fixity )
import Outputable
import SrcLoc ( Located(..), SrcSpan, unLoc )
import Util ( sortLe )
import Var ( TyVar, DictId, Id )
import Bag ( Bag, emptyBag, isEmptyBag, bagToList, unionBags, unionManyBags )
\end{code}
%************************************************************************
%* *
\subsection{Bindings: @BindGroup@}
%* *
%************************************************************************
Global bindings (where clauses)
\begin{code}
data HsLocalBinds id -- Bindings in a 'let' expression
-- or a 'where' clause
= HsValBinds (HsValBinds id)
| HsIPBinds (HsIPBinds id)
| EmptyLocalBinds
data HsValBinds id -- Value bindings (not implicit parameters)
= ValBindsIn -- Before typechecking
(LHsBinds id) [LSig id] -- Not dependency analysed
-- Recursive by default
| ValBindsOut -- After renaming
[(RecFlag, LHsBinds id)] -- Dependency analysed
[LSig Name]
type LHsBinds id = Bag (LHsBind id)
type DictBinds id = LHsBinds id -- Used for dictionary or method bindings
type LHsBind id = Located (HsBind id)
data HsBind id
= FunBind { -- FunBind is used for both functions f x = e
-- and variables f = \x -> e
-- Reason 1: the Match stuff lets us have an optional
-- result type sig f :: a->a = ...mentions a...
--
-- Reason 2: Special case for type inference: see TcBinds.tcMonoBinds
--
-- Reason 3: instance decls can only have FunBinds, which is convenient
-- If you change this, you'll need tochange e.g. rnMethodBinds
fun_id :: Located id,
fun_infix :: Bool, -- True => infix declaration
fun_matches :: MatchGroup id, -- The payload
fun_co_fn :: ExprCoFn, -- Coercion from the type of the MatchGroup to the type of
-- the Id. Example:
-- f :: Int -> forall a. a -> a
-- f x y = y
-- Then the MatchGroup will have type (Int -> a' -> a')
-- (with a free type variable a'). The coercion will take
-- a CoreExpr of this type and convert it to a CoreExpr of
-- type Int -> forall a'. a' -> a'
-- Notice that the coercion captures the free a'. That's
-- why coercions are (CoreExpr -> CoreExpr), rather than
-- just CoreExpr (with a functional type)
bind_fvs :: NameSet -- After the renamer, this contains a superset of the
-- Names of the other binders in this binding group that
-- are free in the RHS of the defn
-- Before renaming, and after typechecking,
-- the field is unused; it's just an error thunk
}
| PatBind { -- The pattern is never a simple variable;
-- That case is done by FunBind
pat_lhs :: LPat id,
pat_rhs :: GRHSs id,
pat_rhs_ty :: PostTcType, -- Type of the GRHSs
bind_fvs :: NameSet -- Same as for FunBind
}
| VarBind { -- Dictionary binding and suchlike
var_id :: id, -- All VarBinds are introduced by the type checker
var_rhs :: LHsExpr id -- Located only for consistency
}
| AbsBinds { -- Binds abstraction; TRANSLATION
abs_tvs :: [TyVar],
abs_dicts :: [DictId],
abs_exports :: [([TyVar], id, id, [Prag])], -- (tvs, poly_id, mono_id, prags)
abs_binds :: LHsBinds id -- The dictionary bindings and typechecked user bindings
-- mixed up together; you can tell the dict bindings because
-- they are all VarBinds
}
-- Consider (AbsBinds tvs ds [(ftvs, poly_f, mono_f) binds]
--
-- Creates bindings for (polymorphic, overloaded) poly_f
-- in terms of monomorphic, non-overloaded mono_f
--
-- Invariants:
-- 1. 'binds' binds mono_f
-- 2. ftvs is a subset of tvs
-- 3. ftvs includes all tyvars free in ds
--
-- See section 9 of static semantics paper for more details.
-- (You can get a PhD for explaining the True Meaning
-- of this last construct.)
placeHolderNames :: NameSet
-- Used for the NameSet in FunBind and PatBind prior to the renamer
placeHolderNames = panic "placeHolderNames"
------------
instance OutputableBndr id => Outputable (HsLocalBinds id) where
ppr (HsValBinds bs) = ppr bs
ppr (HsIPBinds bs) = ppr bs
ppr EmptyLocalBinds = empty
instance OutputableBndr id => Outputable (HsValBinds id) where
ppr (ValBindsIn binds sigs)
= pprValBindsForUser binds sigs
ppr (ValBindsOut sccs sigs)
= getPprStyle $ \ sty ->
if debugStyle sty then -- Print with sccs showing
vcat (map ppr sigs) $$ vcat (map ppr_scc sccs)
else
pprValBindsForUser (unionManyBags (map snd sccs)) sigs
where
ppr_scc (rec_flag, binds) = pp_rec rec_flag <+> pprLHsBinds binds
pp_rec Recursive = ptext SLIT("rec")
pp_rec NonRecursive = ptext SLIT("nonrec")
-- *not* pprLHsBinds because we don't want braces; 'let' and
-- 'where' include a list of HsBindGroups and we don't want
-- several groups of bindings each with braces around.
-- Sort by location before printing
pprValBindsForUser binds sigs
= vcat (map snd (sort_by_loc decls))
where
decls :: [(SrcSpan, SDoc)]
decls = [(loc, ppr sig) | L loc sig <- sigs] ++
[(loc, ppr bind) | L loc bind <- bagToList binds]
sort_by_loc decls = sortLe (\(l1,_) (l2,_) -> l1 <= l2) decls
pprLHsBinds :: OutputableBndr id => LHsBinds id -> SDoc
pprLHsBinds binds
| isEmptyLHsBinds binds = empty
| otherwise = lbrace <+> vcat (map ppr (bagToList binds)) <+> rbrace
------------
emptyLocalBinds :: HsLocalBinds a
emptyLocalBinds = EmptyLocalBinds
isEmptyLocalBinds :: HsLocalBinds a -> Bool
isEmptyLocalBinds (HsValBinds ds) = isEmptyValBinds ds
isEmptyLocalBinds (HsIPBinds ds) = isEmptyIPBinds ds
isEmptyLocalBinds EmptyLocalBinds = True
isEmptyValBinds :: HsValBinds a -> Bool
isEmptyValBinds (ValBindsIn ds sigs) = isEmptyLHsBinds ds && null sigs
isEmptyValBinds (ValBindsOut ds sigs) = null ds && null sigs
emptyValBindsIn, emptyValBindsOut :: HsValBinds a
emptyValBindsIn = ValBindsIn emptyBag []
emptyValBindsOut = ValBindsOut [] []
emptyLHsBinds :: LHsBinds id
emptyLHsBinds = emptyBag
isEmptyLHsBinds :: LHsBinds id -> Bool
isEmptyLHsBinds = isEmptyBag
------------
plusHsValBinds :: HsValBinds a -> HsValBinds a -> HsValBinds a
plusHsValBinds (ValBindsIn ds1 sigs1) (ValBindsIn ds2 sigs2)
= ValBindsIn (ds1 `unionBags` ds2) (sigs1 ++ sigs2)
plusHsValBinds (ValBindsOut ds1 sigs1) (ValBindsOut ds2 sigs2)
= ValBindsOut (ds1 ++ ds2) (sigs1 ++ sigs2)
\end{code}
What AbsBinds means
~~~~~~~~~~~~~~~~~~~
AbsBinds tvs
[d1,d2]
[(tvs1, f1p, f1m),
(tvs2, f2p, f2m)]
BIND
means
f1p = /\ tvs -> \ [d1,d2] -> letrec DBINDS and BIND
in fm
gp = ...same again, with gm instead of fm
This is a pretty bad translation, because it duplicates all the bindings.
So the desugarer tries to do a better job:
fp = /\ [a,b] -> \ [d1,d2] -> case tp [a,b] [d1,d2] of
(fm,gm) -> fm
..ditto for gp..
tp = /\ [a,b] -> \ [d1,d2] -> letrec DBINDS and BIND
in (fm,gm)
\begin{code}
instance OutputableBndr id => Outputable (HsBind id) where
ppr mbind = ppr_monobind mbind
ppr_monobind :: OutputableBndr id => HsBind id -> SDoc
ppr_monobind (PatBind { pat_lhs = pat, pat_rhs = grhss }) = pprPatBind pat grhss
ppr_monobind (VarBind { var_id = var, var_rhs = rhs }) = ppr var <+> equals <+> pprExpr (unLoc rhs)
ppr_monobind (FunBind { fun_id = fun, fun_matches = matches }) = pprFunBind (unLoc fun) matches
-- ToDo: print infix if appropriate
ppr_monobind (AbsBinds { abs_tvs = tyvars, abs_dicts = dictvars,
abs_exports = exports, abs_binds = val_binds })
= sep [ptext SLIT("AbsBinds"),
brackets (interpp'SP tyvars),
brackets (interpp'SP dictvars),
brackets (sep (punctuate comma (map ppr_exp exports)))]
$$
nest 2 ( vcat [pprBndr LetBind x | (_,x,_,_) <- exports]
-- Print type signatures
$$ pprLHsBinds val_binds )
where
ppr_exp (tvs, gbl, lcl, prags)
= vcat [ppr gbl <+> ptext SLIT("<=") <+> ppr tvs <+> ppr lcl,
nest 2 (vcat (map (pprPrag gbl) prags))]
\end{code}
%************************************************************************
%* *
Implicit parameter bindings
%* *
%************************************************************************
\begin{code}
data HsIPBinds id
= IPBinds
[LIPBind id]
(DictBinds id) -- Only in typechecker output; binds
-- uses of the implicit parameters
isEmptyIPBinds :: HsIPBinds id -> Bool
isEmptyIPBinds (IPBinds is ds) = null is && isEmptyBag ds
type LIPBind id = Located (IPBind id)
-- | Implicit parameter bindings.
data IPBind id
= IPBind
(IPName id)
(LHsExpr id)
instance (OutputableBndr id) => Outputable (HsIPBinds id) where
ppr (IPBinds bs ds) = vcat (map ppr bs)
$$ pprLHsBinds ds
instance (OutputableBndr id) => Outputable (IPBind id) where
ppr (IPBind id rhs) = pprBndr LetBind id <+> equals <+> pprExpr (unLoc rhs)
\end{code}
%************************************************************************
%* *
\subsection{Coercion functions}
%* *
%************************************************************************
\begin{code}
-- A Coercion is an expression with a hole in it
-- We need coercions to have concrete form so that we can zonk them
data ExprCoFn
= CoHole -- The identity coercion
| CoCompose ExprCoFn ExprCoFn
| CoApps ExprCoFn [Id] -- Non-empty list
| CoTyApps ExprCoFn [Type] -- in all of these
| CoLams [Id] ExprCoFn -- so that the identity coercion
| CoTyLams [TyVar] ExprCoFn -- is just Hole
| CoLet (LHsBinds Id) ExprCoFn -- Would be nicer to be core bindings
(<.>) :: ExprCoFn -> ExprCoFn -> ExprCoFn
(<.>) = CoCompose
idCoercion :: ExprCoFn
idCoercion = CoHole
isIdCoercion :: ExprCoFn -> Bool
isIdCoercion CoHole = True
isIdCoercion other = False
\end{code}
%************************************************************************
%* *
\subsection{@Sig@: type signatures and value-modifying user pragmas}
%* *
%************************************************************************
It is convenient to lump ``value-modifying'' user-pragmas (e.g.,
``specialise this function to these four types...'') in with type
signatures. Then all the machinery to move them into place, etc.,
serves for both.
\begin{code}
type LSig name = Located (Sig name)
data Sig name
= TypeSig (Located name) -- A bog-std type signature
(LHsType name)
| SpecSig (Located name) -- Specialise a function or datatype ...
(LHsType name) -- ... to these types
InlineSpec
| InlineSig (Located name) -- Function name
InlineSpec
| SpecInstSig (LHsType name) -- (Class tys); should be a specialisation of the
-- current instance decl
| FixSig (FixitySig name) -- Fixity declaration
type LFixitySig name = Located (FixitySig name)
data FixitySig name = FixitySig (Located name) Fixity
-- A Prag conveys pragmas from the type checker to the desugarer
data Prag
= InlinePrag
InlineSpec
| SpecPrag
(HsExpr Id) -- An expression, of the given specialised type, which
PostTcType -- specialises the polymorphic function
[Id] -- Dicts mentioned free in the expression
InlineSpec -- Inlining spec for the specialised function
isInlinePrag (InlinePrag _) = True
isInlinePrag prag = False
isSpecPrag (SpecPrag _ _ _ _) = True
isSpecPrag prag = False
\end{code}
\begin{code}
okBindSig :: NameSet -> LSig Name -> Bool
okBindSig ns sig = sigForThisGroup ns sig
okHsBootSig :: LSig Name -> Bool
okHsBootSig (L _ (TypeSig _ _)) = True
okHsBootSig (L _ (FixSig _)) = True
okHsBootSig sig = False
okClsDclSig :: LSig Name -> Bool
okClsDclSig (L _ (SpecInstSig _)) = False
okClsDclSig sig = True -- All others OK
okInstDclSig :: NameSet -> LSig Name -> Bool
okInstDclSig ns lsig@(L _ sig) = ok ns sig
where
ok ns (TypeSig _ _) = False
ok ns (FixSig _) = False
ok ns (SpecInstSig _) = True
ok ns sig = sigForThisGroup ns lsig
sigForThisGroup :: NameSet -> LSig Name -> Bool
sigForThisGroup ns sig
= case sigName sig of
Nothing -> False
Just n -> n `elemNameSet` ns
sigName :: LSig name -> Maybe name
sigName (L _ sig) = f sig
where
f (TypeSig n _) = Just (unLoc n)
f (SpecSig n _ _) = Just (unLoc n)
f (InlineSig n _) = Just (unLoc n)
f (FixSig (FixitySig n _)) = Just (unLoc n)
f other = Nothing
isFixityLSig :: LSig name -> Bool
isFixityLSig (L _ (FixSig {})) = True
isFixityLSig _ = False
isVanillaLSig :: LSig name -> Bool
isVanillaLSig (L _(TypeSig {})) = True
isVanillaLSig sig = False
isSpecLSig :: LSig name -> Bool
isSpecLSig (L _(SpecSig {})) = True
isSpecLSig sig = False
isSpecInstLSig (L _ (SpecInstSig {})) = True
isSpecInstLSig sig = False
isPragLSig :: LSig name -> Bool
-- Identifies pragmas
isPragLSig (L _ (SpecSig {})) = True
isPragLSig (L _ (InlineSig {})) = True
isPragLSig other = False
isInlineLSig :: LSig name -> Bool
-- Identifies inline pragmas
isInlineLSig (L _ (InlineSig {})) = True
isInlineLSig other = False
hsSigDoc (TypeSig {}) = ptext SLIT("type signature")
hsSigDoc (SpecSig {}) = ptext SLIT("SPECIALISE pragma")
hsSigDoc (InlineSig _ spec) = ppr spec <+> ptext SLIT("pragma")
hsSigDoc (SpecInstSig {}) = ptext SLIT("SPECIALISE instance pragma")
hsSigDoc (FixSig {}) = ptext SLIT("fixity declaration")
\end{code}
Signature equality is used when checking for duplicate signatures
\begin{code}
eqHsSig :: LSig Name -> LSig Name -> Bool
eqHsSig (L _ (FixSig (FixitySig n1 _))) (L _ (FixSig (FixitySig n2 _))) = unLoc n1 == unLoc n2
eqHsSig (L _ (TypeSig n1 _)) (L _ (TypeSig n2 _)) = unLoc n1 == unLoc n2
eqHsSig (L _ (InlineSig n1 s1)) (L _ (InlineSig n2 s2)) = s1 == s2 && unLoc n1 == unLoc n2
-- For specialisations, we don't have equality over
-- HsType, so it's not convenient to spot duplicate
-- specialisations here. Check for this later, when we're in Type land
eqHsSig _other1 _other2 = False
\end{code}
\begin{code}
instance (OutputableBndr name) => Outputable (Sig name) where
ppr sig = ppr_sig sig
ppr_sig :: OutputableBndr name => Sig name -> SDoc
ppr_sig (TypeSig var ty) = pprVarSig (unLoc var) ty
ppr_sig (FixSig fix_sig) = ppr fix_sig
ppr_sig (SpecSig var ty inl) = pragBrackets (pprSpec var ty inl)
ppr_sig (InlineSig var inl) = pragBrackets (ppr inl <+> ppr var)
ppr_sig (SpecInstSig ty) = pragBrackets (ptext SLIT("SPECIALIZE instance") <+> ppr ty)
instance Outputable name => Outputable (FixitySig name) where
ppr (FixitySig name fixity) = sep [ppr fixity, ppr name]
pragBrackets :: SDoc -> SDoc
pragBrackets doc = ptext SLIT("{-#") <+> doc <+> ptext SLIT("#-}")
pprVarSig :: (Outputable id, Outputable ty) => id -> ty -> SDoc
pprVarSig var ty = sep [ppr var <+> dcolon, nest 2 (ppr ty)]
pprSpec :: (Outputable id, Outputable ty) => id -> ty -> InlineSpec -> SDoc
pprSpec var ty inl = sep [ptext SLIT("SPECIALIZE") <+> ppr inl <+> pprVarSig var ty]
pprPrag :: Outputable id => id -> Prag -> SDoc
pprPrag var (InlinePrag inl) = ppr inl <+> ppr var
pprPrag var (SpecPrag expr ty _ inl) = pprSpec var ty inl
\end{code}
|