1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
|
%
% (c) The GRASP/AQUA Project, Glasgow University, 1992-1998
%
\begin{code}
module BuildTyCl (
buildSynTyCon, buildAlgTyCon, buildDataCon,
buildClass,
mkAbstractTyConRhs, mkNewTyConRhs, mkDataTyConRhs
) where
#include "HsVersions.h"
import IfaceEnv ( newImplicitBinder )
import TcRnMonad
import DataCon ( DataCon, isNullarySrcDataCon, dataConTyVars,
mkDataCon, dataConFieldLabels, dataConOrigArgTys )
import Var ( tyVarKind, TyVar, Id )
import VarSet ( isEmptyVarSet, intersectVarSet, elemVarSet )
import TysWiredIn ( unitTy )
import BasicTypes ( RecFlag, StrictnessMark(..) )
import Name ( Name )
import OccName ( mkDataConWrapperOcc, mkDataConWorkerOcc, mkClassTyConOcc,
mkClassDataConOcc, mkSuperDictSelOcc )
import MkId ( mkDataConIds, mkRecordSelId, mkDictSelId )
import Class ( mkClass, Class( classTyCon), FunDep, DefMeth(..) )
import TyCon ( mkSynTyCon, mkAlgTyCon, visibleDataCons, tyConStupidTheta,
tyConDataCons, isNewTyCon, mkClassTyCon, TyCon( tyConTyVars ),
isRecursiveTyCon,
ArgVrcs, AlgTyConRhs(..), newTyConRhs )
import Type ( mkArrowKinds, liftedTypeKind, typeKind,
tyVarsOfType, tyVarsOfTypes, tyVarsOfPred,
splitTyConApp_maybe, splitAppTy_maybe, getTyVar_maybe,
mkPredTys, mkTyVarTys, ThetaType, Type,
substTyWith, zipTopTvSubst, substTheta )
import Outputable
import List ( nub )
\end{code}
\begin{code}
------------------------------------------------------
buildSynTyCon name tvs rhs_ty arg_vrcs
= mkSynTyCon name kind tvs rhs_ty arg_vrcs
where
kind = mkArrowKinds (map tyVarKind tvs) (typeKind rhs_ty)
------------------------------------------------------
buildAlgTyCon :: Name -> [TyVar]
-> ThetaType -- Stupid theta
-> AlgTyConRhs
-> ArgVrcs -> RecFlag
-> Bool -- True <=> want generics functions
-> TcRnIf m n TyCon
buildAlgTyCon tc_name tvs stupid_theta rhs arg_vrcs is_rec want_generics
= do { let { tycon = mkAlgTyCon tc_name kind tvs arg_vrcs stupid_theta
rhs fields is_rec want_generics
; kind = mkArrowKinds (map tyVarKind tvs) liftedTypeKind
; fields = mkTyConSelIds tycon rhs
}
; return tycon }
------------------------------------------------------
mkAbstractTyConRhs :: AlgTyConRhs
mkAbstractTyConRhs = AbstractTyCon
mkDataTyConRhs :: [DataCon] -> AlgTyConRhs
mkDataTyConRhs cons
= DataTyCon { data_cons = cons, is_enum = all isNullarySrcDataCon cons }
mkNewTyConRhs :: TyCon -> DataCon -> AlgTyConRhs
mkNewTyConRhs tycon con
= NewTyCon { data_con = con,
nt_rhs = rhs_ty,
nt_etad_rhs = eta_reduce tvs rhs_ty,
nt_rep = mkNewTyConRep tycon rhs_ty }
where
tvs = dataConTyVars con
rhs_ty = head (dataConOrigArgTys con)
-- Newtypes are guaranteed vanilla, so OrigArgTys will do
eta_reduce [] ty = ([], ty)
eta_reduce (a:as) ty | null as',
Just (fun, arg) <- splitAppTy_maybe ty',
Just tv <- getTyVar_maybe arg,
tv == a,
not (a `elemVarSet` tyVarsOfType fun)
= ([], fun) -- Successful eta reduction
| otherwise
= (a:as', ty')
where
(as', ty') = eta_reduce as ty
mkNewTyConRep :: TyCon -- The original type constructor
-> Type -- The arg type of its constructor
-> Type -- Chosen representation type
-- The "representation type" is guaranteed not to be another newtype
-- at the outermost level; but it might have newtypes in type arguments
-- Find the representation type for this newtype TyCon
-- Remember that the representation type is the *ultimate* representation
-- type, looking through other newtypes.
--
-- The non-recursive newtypes are easy, because they look transparent
-- to splitTyConApp_maybe, but recursive ones really are represented as
-- TyConApps (see TypeRep).
--
-- The trick is to to deal correctly with recursive newtypes
-- such as newtype T = MkT T
mkNewTyConRep tc rhs_ty
| null (tyConDataCons tc) = unitTy
-- External Core programs can have newtypes with no data constructors
| otherwise = go [tc] rhs_ty
where
-- Invariant: tcs have been seen before
go tcs rep_ty
= case splitTyConApp_maybe rep_ty of
Just (tc, tys)
| tc `elem` tcs -> unitTy -- Recursive loop
| isNewTyCon tc -> ASSERT( isRecursiveTyCon tc )
-- Non-recursive ones have been
-- dealt with by splitTyConApp_maybe
go (tc:tcs) (substTyWith tvs tys rhs_ty)
where
(tvs, rhs_ty) = newTyConRhs tc
other -> rep_ty
------------------------------------------------------
buildDataCon :: Name -> Bool -> Bool
-> [StrictnessMark]
-> [Name] -- Field labels
-> [TyVar]
-> ThetaType -- Does not include the "stupid theta"
-> [Type] -> TyCon -> [Type]
-> TcRnIf m n DataCon
-- A wrapper for DataCon.mkDataCon that
-- a) makes the worker Id
-- b) makes the wrapper Id if necessary, including
-- allocating its unique (hence monadic)
buildDataCon src_name declared_infix vanilla arg_stricts field_lbls
tyvars ctxt arg_tys tycon res_tys
= do { wrap_name <- newImplicitBinder src_name mkDataConWrapperOcc
; work_name <- newImplicitBinder src_name mkDataConWorkerOcc
-- This last one takes the name of the data constructor in the source
-- code, which (for Haskell source anyway) will be in the DataName name
-- space, and puts it into the VarName name space
; let
stupid_ctxt = mkDataConStupidTheta tycon arg_tys res_tys
data_con = mkDataCon src_name declared_infix vanilla
arg_stricts field_lbls
tyvars stupid_ctxt ctxt
arg_tys tycon res_tys dc_ids
dc_ids = mkDataConIds wrap_name work_name data_con
; returnM data_con }
-- The stupid context for a data constructor should be limited to
-- the type variables mentioned in the arg_tys
mkDataConStupidTheta tycon arg_tys res_tys
| null stupid_theta = [] -- The common case
| otherwise = filter in_arg_tys stupid_theta
where
tc_subst = zipTopTvSubst (tyConTyVars tycon) res_tys
stupid_theta = substTheta tc_subst (tyConStupidTheta tycon)
-- Start by instantiating the master copy of the
-- stupid theta, taken from the TyCon
arg_tyvars = tyVarsOfTypes arg_tys
in_arg_tys pred = not $ isEmptyVarSet $
tyVarsOfPred pred `intersectVarSet` arg_tyvars
------------------------------------------------------
mkTyConSelIds :: TyCon -> AlgTyConRhs -> [Id]
mkTyConSelIds tycon rhs
= [ mkRecordSelId tycon fld
| fld <- nub (concatMap dataConFieldLabels (visibleDataCons rhs)) ]
-- We'll check later that fields with the same name
-- from different constructors have the same type.
\end{code}
------------------------------------------------------
\begin{code}
buildClass :: Name -> [TyVar] -> ThetaType
-> [FunDep TyVar] -- Functional dependencies
-> [(Name, DefMeth, Type)] -- Method info
-> RecFlag -> ArgVrcs -- Info for type constructor
-> TcRnIf m n Class
buildClass class_name tvs sc_theta fds sig_stuff tc_isrec tc_vrcs
= do { tycon_name <- newImplicitBinder class_name mkClassTyConOcc
; datacon_name <- newImplicitBinder class_name mkClassDataConOcc
-- The class name is the 'parent' for this datacon, not its tycon,
-- because one should import the class to get the binding for
-- the datacon
; sc_sel_names <- mapM (newImplicitBinder class_name . mkSuperDictSelOcc)
[1..length sc_theta]
-- We number off the superclass selectors, 1, 2, 3 etc so that we
-- can construct names for the selectors. Thus
-- class (C a, C b) => D a b where ...
-- gives superclass selectors
-- D_sc1, D_sc2
-- (We used to call them D_C, but now we can have two different
-- superclasses both called C!)
; fixM (\ clas -> do { -- Only name generation inside loop
let { op_tys = [ty | (_,_,ty) <- sig_stuff]
; sc_tys = mkPredTys sc_theta
; dict_component_tys = sc_tys ++ op_tys
; sc_sel_ids = [mkDictSelId sc_name clas | sc_name <- sc_sel_names]
; op_items = [ (mkDictSelId op_name clas, dm_info)
| (op_name, dm_info, _) <- sig_stuff ] }
-- Build the selector id and default method id
; dict_con <- buildDataCon datacon_name
False -- Not declared infix
True -- Is vanilla; tyvars same as tycon
(map (const NotMarkedStrict) dict_component_tys)
[{- No labelled fields -}]
tvs [{-No context-}] dict_component_tys
(classTyCon clas) (mkTyVarTys tvs)
; let { clas = mkClass class_name tvs fds
sc_theta sc_sel_ids op_items
tycon
; tycon = mkClassTyCon tycon_name clas_kind tvs
tc_vrcs rhs clas tc_isrec
-- A class can be recursive, and in the case of newtypes
-- this matters. For example
-- class C a where { op :: C b => a -> b -> Int }
-- Because C has only one operation, it is represented by
-- a newtype, and it should be a *recursive* newtype.
-- [If we don't make it a recursive newtype, we'll expand the
-- newtype like a synonym, but that will lead to an infinite type]
; clas_kind = mkArrowKinds (map tyVarKind tvs) liftedTypeKind
; rhs = case dict_component_tys of
[rep_ty] -> mkNewTyConRhs tycon dict_con
other -> mkDataTyConRhs [dict_con]
}
; return clas
})}
\end{code}
|