summaryrefslogtreecommitdiff
path: root/ghc/compiler/nativeGen/AlphaGen.lhs
blob: 3eb5a04dba06097854623c908aa28fea8e5dd108 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
%
% (c) The AQUA Project, Glasgow University, 1993-1995
%

\begin{code}
#include "HsVersions.h"

module AlphaGen (
	alphaCodeGen,

	-- and, for self-sufficiency
	PprStyle, StixTree, CSeq
    ) where

IMPORT_Trace

import AbsCSyn	    ( AbstractC, MagicId(..), kindFromMagicId )
import AbsPrel	    ( PrimOp(..)
		      IF_ATTACK_PRAGMAS(COMMA tagOf_PrimOp)
			  IF_ATTACK_PRAGMAS(COMMA pprPrimOp)
		    )
import AsmRegAlloc  ( runRegAllocate, extractMappedRegNos, mkReg,
		      Reg(..), RegLiveness(..), RegUsage(..), FutureLive(..),
		      MachineRegisters(..), MachineCode(..)
    	    	    )
import CLabelInfo   ( CLabel, isAsmTemp )
import AlphaCode    {- everything -}
import MachDesc
import Maybes	    ( maybeToBool, Maybe(..) )
import OrdList	    -- ( mkEmptyList, mkUnitList, mkSeqList, mkParList, OrdList )
import Outputable
import PrimKind	    ( PrimKind(..), isFloatingKind )
import AlphaDesc
import Stix
import SplitUniq
import Unique
import Pretty
import Unpretty
import Util

type CodeBlock a = (OrdList a -> OrdList a)

\end{code}

%************************************************************************
%*									*
\subsection[AlphaCodeGen]{Generating Alpha Code}
%*									*
%************************************************************************

This is the top-level code-generation function for the Alpha.

\begin{code}

alphaCodeGen :: PprStyle -> [[StixTree]] -> SUniqSM Unpretty
alphaCodeGen sty trees = 
    mapSUs genAlphaCode trees	    	`thenSUs` \ dynamicCodes ->
    let
    	staticCodes = scheduleAlphaCode dynamicCodes
    	pretty = printLabeledCodes sty staticCodes
    in
    	returnSUs pretty

\end{code}

This bit does the code scheduling.  The scheduler must also deal with
register allocation of temporaries.  Much parallelism can be exposed via
the OrdList, but more might occur, so further analysis might be needed.

\begin{code}

scheduleAlphaCode :: [AlphaCode] -> [AlphaInstr]
scheduleAlphaCode = concat . map (runRegAllocate freeAlphaRegs reservedRegs)
  where
    freeAlphaRegs :: AlphaRegs
    freeAlphaRegs = mkMRegs (extractMappedRegNos freeRegs)

\end{code}

Registers passed up the tree.  If the stix code forces the register
to live in a pre-decided machine register, it comes out as @Fixed@;
otherwise, it comes out as @Any@, and the parent can decide which
register to put it in.

\begin{code}

data Register 
  = Fixed Reg PrimKind (CodeBlock AlphaInstr) 
  | Any PrimKind (Reg -> (CodeBlock AlphaInstr))

registerCode :: Register -> Reg -> CodeBlock AlphaInstr
registerCode (Fixed _ _ code) reg = code
registerCode (Any _ code) reg = code reg

registerName :: Register -> Reg -> Reg
registerName (Fixed reg _ _) _ = reg
registerName (Any _ _) reg = reg

registerKind :: Register -> PrimKind
registerKind (Fixed _ pk _) = pk
registerKind (Any pk _) = pk

isFixed :: Register -> Bool
isFixed (Fixed _ _ _) = True
isFixed (Any _ _)     = False

\end{code}

Memory addressing modes passed up the tree.

\begin{code}

data Amode = Amode Addr (CodeBlock AlphaInstr)

amodeAddr (Amode addr _) = addr
amodeCode (Amode _ code) = code

\end{code}

General things for putting together code sequences.

\begin{code}

asmVoid :: OrdList AlphaInstr
asmVoid = mkEmptyList

asmInstr :: AlphaInstr -> AlphaCode
asmInstr i = mkUnitList i

asmSeq :: [AlphaInstr] -> AlphaCode
asmSeq is = foldr (mkSeqList . asmInstr) asmVoid is

asmParThen :: [AlphaCode] -> CodeBlock AlphaInstr
asmParThen others code = mkSeqList (foldr mkParList mkEmptyList others) code

returnInstr :: AlphaInstr -> SUniqSM (CodeBlock AlphaInstr)
returnInstr instr = returnSUs (\xs -> mkSeqList (asmInstr instr) xs)

returnInstrs :: [AlphaInstr] -> SUniqSM (CodeBlock AlphaInstr)
returnInstrs instrs = returnSUs (\xs -> mkSeqList (asmSeq instrs) xs)

returnSeq :: (CodeBlock AlphaInstr) -> [AlphaInstr] -> SUniqSM (CodeBlock AlphaInstr)
returnSeq code instrs = returnSUs (\xs -> code (mkSeqList (asmSeq instrs) xs))

mkSeqInstr :: AlphaInstr -> (CodeBlock AlphaInstr)
mkSeqInstr instr code = mkSeqList (asmInstr instr) code

mkSeqInstrs :: [AlphaInstr] -> (CodeBlock AlphaInstr)
mkSeqInstrs instrs code = mkSeqList (asmSeq instrs) code

\end{code}

Top level alpha code generator for a chunk of stix code.

\begin{code}

genAlphaCode :: [StixTree] -> SUniqSM (AlphaCode)

genAlphaCode trees =
    mapSUs getCode trees    	    	`thenSUs` \ blocks ->
    returnSUs (foldr (.) id blocks asmVoid)

\end{code}

Code extractor for an entire stix tree---stix statement level.

\begin{code}

getCode 
    :: StixTree     -- a stix statement
    -> SUniqSM (CodeBlock AlphaInstr)

getCode (StSegment seg) = returnInstr (SEGMENT seg)

getCode (StAssign pk dst src)
  | isFloatingKind pk = assignFltCode pk dst src
  | otherwise = assignIntCode pk dst src

getCode (StLabel lab) = returnInstr (LABEL lab)

getCode (StFunBegin lab) = returnInstr (FUNBEGIN lab)

getCode (StFunEnd lab) = returnInstr (FUNEND lab)

getCode (StJump arg) = genJump arg

-- When falling through on the alpha, we still have to load pv with the
-- address of the next routine, so that it can load gp
getCode (StFallThrough lbl) = returnInstr (LDA pv (AddrImm (ImmCLbl lbl)))

getCode (StCondJump lbl arg) = genCondJump lbl arg

getCode (StData kind args) = 
    mapAndUnzipSUs getData args		    `thenSUs` \ (codes, imms) ->
    returnSUs (\xs -> mkSeqList (asmInstr (DATA (kindToSize kind) imms))
                                (foldr1 (.) codes xs))
  where
    getData :: StixTree -> SUniqSM (CodeBlock AlphaInstr, Imm)
    getData (StInt i) = returnSUs (id, ImmInteger i)
#if __GLASGOW_HASKELL__ >= 23
--  getData (StDouble d) = returnSUs (id, strImmLab (_showRational 30 d))
    getData (StDouble d) = returnSUs (id, ImmLab (prettyToUn (ppRational d)))
#else
    getData (StDouble d) = returnSUs (id, strImmLab (show d))
#endif
    getData (StLitLbl s) = returnSUs (id, ImmLab s)
    getData (StLitLit s) = returnSUs (id, strImmLab (cvtLitLit (_UNPK_ s)))
    getData (StString s) = 
        getUniqLabelNCG 	    	    `thenSUs` \ lbl ->
	returnSUs (mkSeqInstrs [LABEL lbl, ASCII True (_UNPK_ s)], ImmCLbl lbl)
    getData (StCLbl l)   = returnSUs (id, ImmCLbl l)

getCode (StCall fn VoidKind args) = genCCall fn VoidKind args

getCode (StComment s) = returnInstr (COMMENT s)

\end{code}

Generate code to get a subtree into a register.

\begin{code}

getReg :: StixTree -> SUniqSM Register

getReg (StReg (StixMagicId stgreg)) =
    case stgRegMap stgreg of
    	Just reg -> returnSUs (Fixed reg (kindFromMagicId stgreg) id)
    	-- cannae be Nothing

getReg (StReg (StixTemp u pk)) = returnSUs (Fixed (UnmappedReg u pk) pk id)

getReg (StDouble d) =
    getUniqLabelNCG 	    	    `thenSUs` \ lbl ->
    getNewRegNCG PtrKind    	    `thenSUs` \ tmp ->
    let code dst = mkSeqInstrs [
    	    SEGMENT DataSegment,
	    LABEL lbl,
#if __GLASGOW_HASKELL__ >= 23
--	    DATA TF [strImmLab (_showRational 30 d)],
	    DATA TF [ImmLab (prettyToUn (ppRational d))],
#else
	    DATA TF [strImmLab (show d)],
#endif
	    SEGMENT TextSegment,
	    LDA tmp (AddrImm (ImmCLbl lbl)),
	    LD TF dst (AddrReg tmp)]
    in
    	returnSUs (Any DoubleKind code)

getReg (StString s) =
    getUniqLabelNCG 	    	    `thenSUs` \ lbl ->
    let code dst = mkSeqInstrs [
	    SEGMENT DataSegment,
	    LABEL lbl,
	    ASCII True (_UNPK_ s),
	    SEGMENT TextSegment,
	    LDA dst (AddrImm (ImmCLbl lbl))]
    in
    	returnSUs (Any PtrKind code)

getReg (StLitLit s) | _HEAD_ s == '"' && last xs == '"' =
    getUniqLabelNCG 	    	    `thenSUs` \ lbl ->
    let code dst = mkSeqInstrs [
	    SEGMENT DataSegment,
	    LABEL lbl,
	    ASCII False (init xs),
	    SEGMENT TextSegment,
	    LDA dst (AddrImm (ImmCLbl lbl))]
    in
    	returnSUs (Any PtrKind code)
  where
    xs = _UNPK_ (_TAIL_ s)

getReg tree@(StIndex _ _ _) = getReg (mangleIndexTree tree)

getReg (StCall fn kind args) = 
    genCCall fn kind args   	    `thenSUs` \ call ->
    returnSUs (Fixed reg kind call)
  where
    reg = if isFloatingKind kind then f0 else v0

getReg (StPrim primop args) = 
    case primop of

    	CharGtOp -> case args of [x,y] -> trivialCode (CMP LT) [y,x]
    	CharGeOp -> case args of [x,y] -> trivialCode (CMP LE) [y,x]
    	CharEqOp -> trivialCode (CMP EQ) args
    	CharNeOp -> intNECode args
    	CharLtOp -> trivialCode (CMP LT) args
    	CharLeOp -> trivialCode (CMP LE) args

    	IntAddOp -> trivialCode (ADD Q False) args

    	IntSubOp -> trivialCode (SUB Q False) args
    	IntMulOp -> trivialCode (MUL Q False) args
    	IntQuotOp -> trivialCode (DIV Q False) args
    	IntDivOp -> call SLIT("stg_div") IntKind
    	IntRemOp -> trivialCode (REM Q False) args
    	IntNegOp -> trivialUCode (NEG Q False) args
    	IntAbsOp -> trivialUCode (ABS Q) args
   
    	AndOp -> trivialCode AND args
    	OrOp  -> trivialCode OR args
    	NotOp -> trivialUCode NOT args
    	SllOp -> trivialCode SLL args
    	SraOp -> trivialCode SRA args
    	SrlOp -> trivialCode SRL args
    	ISllOp -> panic "AlphaGen:isll"
    	ISraOp -> panic "AlphaGen:isra"
    	ISrlOp -> panic "AlphaGen:isrl"
   
    	IntGtOp -> case args of [x,y] -> trivialCode (CMP LT) [y,x]
    	IntGeOp -> case args of [x,y] -> trivialCode (CMP LE) [y,x]
    	IntEqOp -> trivialCode (CMP EQ) args
    	IntNeOp -> intNECode args
    	IntLtOp -> trivialCode (CMP LT) args
    	IntLeOp -> trivialCode (CMP LE) args

    	WordGtOp -> case args of [x,y] -> trivialCode (CMP ULT) [y,x]
    	WordGeOp -> case args of [x,y] -> trivialCode (CMP ULE) [y,x]
    	WordEqOp -> trivialCode (CMP EQ) args
    	WordNeOp -> intNECode args
    	WordLtOp -> trivialCode (CMP ULT) args
    	WordLeOp -> trivialCode (CMP ULE) args

    	AddrGtOp -> case args of [x,y] -> trivialCode (CMP ULT) [y,x]
    	AddrGeOp -> case args of [x,y] -> trivialCode (CMP ULE) [y,x]
    	AddrEqOp -> trivialCode (CMP EQ) args
    	AddrNeOp -> intNECode args
    	AddrLtOp -> trivialCode (CMP ULT) args
    	AddrLeOp -> trivialCode (CMP ULE) args

    	FloatAddOp -> trivialFCode (FADD TF) args
    	FloatSubOp -> trivialFCode (FSUB TF) args
    	FloatMulOp -> trivialFCode (FMUL TF) args
    	FloatDivOp -> trivialFCode (FDIV TF) args
    	FloatNegOp -> trivialUFCode (FNEG TF) args

    	FloatGtOp -> cmpFCode (FCMP TF LE) EQ args
    	FloatGeOp -> cmpFCode (FCMP TF LT) EQ args
    	FloatEqOp -> cmpFCode (FCMP TF EQ) NE args
    	FloatNeOp -> cmpFCode (FCMP TF EQ) EQ args
    	FloatLtOp -> cmpFCode (FCMP TF LT) NE args
    	FloatLeOp -> cmpFCode (FCMP TF LE) NE args

    	FloatExpOp -> call SLIT("exp") DoubleKind
    	FloatLogOp -> call SLIT("log") DoubleKind
    	FloatSqrtOp -> call SLIT("sqrt") DoubleKind
       
    	FloatSinOp -> call SLIT("sin") DoubleKind
    	FloatCosOp -> call SLIT("cos") DoubleKind
    	FloatTanOp -> call SLIT("tan") DoubleKind
       
    	FloatAsinOp -> call SLIT("asin") DoubleKind
    	FloatAcosOp -> call SLIT("acos") DoubleKind
    	FloatAtanOp -> call SLIT("atan") DoubleKind
       
    	FloatSinhOp -> call SLIT("sinh") DoubleKind
    	FloatCoshOp -> call SLIT("cosh") DoubleKind
    	FloatTanhOp -> call SLIT("tanh") DoubleKind
       
    	FloatPowerOp -> call SLIT("pow") DoubleKind

    	DoubleAddOp -> trivialFCode (FADD TF) args
    	DoubleSubOp -> trivialFCode (FSUB TF) args
    	DoubleMulOp -> trivialFCode (FMUL TF) args
   	DoubleDivOp -> trivialFCode (FDIV TF) args
    	DoubleNegOp -> trivialUFCode (FNEG TF) args
   
    	DoubleGtOp -> cmpFCode (FCMP TF LE) EQ args
    	DoubleGeOp -> cmpFCode (FCMP TF LT) EQ args
    	DoubleEqOp -> cmpFCode (FCMP TF EQ) NE args
    	DoubleNeOp -> cmpFCode (FCMP TF EQ) EQ args
    	DoubleLtOp -> cmpFCode (FCMP TF LT) NE args
    	DoubleLeOp -> cmpFCode (FCMP TF LE) NE args

    	DoubleExpOp -> call SLIT("exp") DoubleKind
    	DoubleLogOp -> call SLIT("log") DoubleKind
    	DoubleSqrtOp -> call SLIT("sqrt") DoubleKind

    	DoubleSinOp -> call SLIT("sin") DoubleKind
    	DoubleCosOp -> call SLIT("cos") DoubleKind
    	DoubleTanOp -> call SLIT("tan") DoubleKind
       
    	DoubleAsinOp -> call SLIT("asin") DoubleKind
    	DoubleAcosOp -> call SLIT("acos") DoubleKind
    	DoubleAtanOp -> call SLIT("atan") DoubleKind
       
    	DoubleSinhOp -> call SLIT("sinh") DoubleKind
    	DoubleCoshOp -> call SLIT("cosh") DoubleKind
    	DoubleTanhOp -> call SLIT("tanh") DoubleKind
       
    	DoublePowerOp -> call SLIT("pow") DoubleKind

    	OrdOp -> coerceIntCode IntKind args
    	ChrOp -> chrCode args
       
    	Float2IntOp -> coerceFP2Int args
    	Int2FloatOp -> coerceInt2FP args
    	Double2IntOp -> coerceFP2Int args
    	Int2DoubleOp -> coerceInt2FP args
       
    	Double2FloatOp -> coerceFltCode args
    	Float2DoubleOp -> coerceFltCode args

  where
    call fn pk = getReg (StCall fn pk args)

getReg (StInd pk mem) =
    getAmode mem    	    	    `thenSUs` \ amode ->
    let 
    	code = amodeCode amode
    	src   = amodeAddr amode
    	size = kindToSize pk
    	code__2 dst = code . mkSeqInstr (LD size dst src)
    in
    	returnSUs (Any pk code__2)

getReg (StInt i)
  | is8Bits i =
    let
    	code dst = mkSeqInstr (OR zero (RIImm src) dst)
    in
    	returnSUs (Any IntKind code)
  | otherwise =
    let
    	code dst = mkSeqInstr (LDI Q dst src)
    in
    	returnSUs (Any IntKind code)
  where
    src = ImmInt (fromInteger i)

getReg leaf
  | maybeToBool imm =
    let
    	code dst = mkSeqInstr (LDA dst (AddrImm imm__2))
    in
    	returnSUs (Any PtrKind code)
  where
    imm = maybeImm leaf
    imm__2 = case imm of Just x -> x

\end{code}

Now, given a tree (the argument to an StInd) that references memory,
produce a suitable addressing mode.

\begin{code}

getAmode :: StixTree -> SUniqSM Amode

getAmode tree@(StIndex _ _ _) = getAmode (mangleIndexTree tree)

getAmode (StPrim IntSubOp [x, StInt i]) =
    getNewRegNCG PtrKind    	    `thenSUs` \ tmp ->
    getReg x    	    	    `thenSUs` \ register ->
    let
    	code = registerCode register tmp
    	reg  = registerName register tmp
    	off  = ImmInt (-(fromInteger i))
    in
    	returnSUs (Amode (AddrRegImm reg off) code)


getAmode (StPrim IntAddOp [x, StInt i]) =
    getNewRegNCG PtrKind    	    `thenSUs` \ tmp ->
    getReg x    	    	    `thenSUs` \ register ->
    let
    	code = registerCode register tmp
    	reg  = registerName register tmp
    	off  = ImmInt (fromInteger i)
    in
    	returnSUs (Amode (AddrRegImm reg off) code)

getAmode leaf
  | maybeToBool imm =
    	returnSUs (Amode (AddrImm imm__2) id)
  where
    imm = maybeImm leaf
    imm__2 = case imm of Just x -> x

getAmode other =
    getNewRegNCG PtrKind    	    `thenSUs` \ tmp ->
    getReg other    	    	    `thenSUs` \ register ->
    let
    	code = registerCode register tmp
    	reg  = registerName register tmp
    in
    	returnSUs (Amode (AddrReg reg) code)

\end{code}

Try to get a value into a specific register (or registers) for a call.
The first 6 arguments go into the appropriate argument register
(separate registers for integer and floating point arguments, but used
in lock-step), and the remaining arguments are dumped to the stack,
beginning at 0(sp).  Our first argument is a pair of the list of
remaining argument registers to be assigned for this call and the next
stack offset to use for overflowing arguments.  This way, @getCallArg@
can be applied to all of a call's arguments using @mapAccumL@.

\begin{code}

getCallArg 
    :: ([(Reg,Reg)],Int)    -- Argument registers and stack offset (accumulator)
    -> StixTree 	    -- Current argument
    -> SUniqSM (([(Reg,Reg)],Int), CodeBlock AlphaInstr) -- Updated accumulator and code

-- We have to use up all of our argument registers first.

getCallArg ((iDst,fDst):dsts, offset) arg = 
    getReg arg	    	    	    `thenSUs` \ register ->
    let
    	reg = if isFloatingKind pk then fDst else iDst
    	code = registerCode register reg
    	src = registerName register reg
    	pk = registerKind register
    in
    	returnSUs (
            if isFloatingKind pk then
    	        ((dsts, offset), if isFixed register then 
    	    	    code . mkSeqInstr (FMOV src fDst)
    	    	    else code)
    	    else 
                ((dsts, offset), if isFixed register then 
    	    	    code . mkSeqInstr (OR src (RIReg src) iDst)
    	    	    else code))

-- Once we have run out of argument registers, we move to the stack

getCallArg ([], offset) arg = 
    getReg arg	    	    	    `thenSUs` \ register ->
    getNewRegNCG (registerKind register)
    	    	        	    `thenSUs` \ tmp ->
    let 
    	code = registerCode register tmp
    	src = registerName register tmp
    	pk = registerKind register
    	sz = kindToSize pk
    in
    	returnSUs (([], offset + 1), code . mkSeqInstr (ST sz src (spRel offset)))

\end{code}

Assignments are really at the heart of the whole code generation business.
Almost all top-level nodes of any real importance are assignments, which
correspond to loads, stores, or register transfers.  If we're really lucky,
some of the register transfers will go away, because we can use the destination
register to complete the code generation for the right hand side.  This only
fails when the right hand side is forced into a fixed register (e.g. the result
of a call).  

\begin{code}

assignIntCode :: PrimKind -> StixTree -> StixTree -> SUniqSM (CodeBlock AlphaInstr)

assignIntCode pk (StInd _ dst) src =
    getNewRegNCG IntKind    	    `thenSUs` \ tmp ->
    getAmode dst    	    	    `thenSUs` \ amode ->
    getReg src	    	    	    `thenSUs` \ register ->
    let 
    	code1 = amodeCode amode asmVoid
    	dst__2  = amodeAddr amode
    	code2 = registerCode register tmp asmVoid
    	src__2  = registerName register tmp
    	sz    = kindToSize pk
    	code__2 = asmParThen [code1, code2] . mkSeqInstr (ST sz src__2 dst__2)
    in
    	returnSUs code__2

assignIntCode pk dst src =
    getReg dst	    	    	    `thenSUs` \ register1 ->
    getReg src	    	    	    `thenSUs` \ register2 ->
    let 
    	dst__2 = registerName register1 zero
    	code = registerCode register2 dst__2
    	src__2 = registerName register2 dst__2
    	code__2 = if isFixed register2 then 
    	    	    code . mkSeqInstr (OR src__2 (RIReg src__2) dst__2)
    	    	else code
    in
    	returnSUs code__2

assignFltCode :: PrimKind -> StixTree -> StixTree -> SUniqSM (CodeBlock AlphaInstr)

assignFltCode pk (StInd _ dst) src =
    getNewRegNCG pk        	    `thenSUs` \ tmp ->
    getAmode dst    	    	    `thenSUs` \ amode ->
    getReg src	    	    	    `thenSUs` \ register ->
    let 
    	code1 = amodeCode amode asmVoid
    	dst__2  = amodeAddr amode
    	code2 = registerCode register tmp asmVoid
    	src__2  = registerName register tmp
    	sz    = kindToSize pk
    	code__2 = asmParThen [code1, code2] . mkSeqInstr (ST sz src__2 dst__2)
    in
        returnSUs code__2

assignFltCode pk dst src =
    getReg dst	    	    	    `thenSUs` \ register1 ->
    getReg src	    	    	    `thenSUs` \ register2 ->
    let 
    	dst__2 = registerName register1 zero
    	code = registerCode register2 dst__2
    	src__2 = registerName register2 dst__2
    	code__2 = if isFixed register2 then 
    	    	    code . mkSeqInstr (FMOV src__2 dst__2)
    	    	else code
    in
    	returnSUs code__2

\end{code} 

Generating an unconditional branch.  We accept two types of targets:
an immediate CLabel or a tree that gets evaluated into a register.
Any CLabels which are AsmTemporaries are assumed to be in the local
block of code, close enough for a branch instruction.  Other CLabels
are assumed to be far away, so we use jmp.

\begin{code}

genJump 
    :: StixTree     -- the branch target
    -> SUniqSM (CodeBlock AlphaInstr)

genJump (StCLbl lbl) 
  | isAsmTemp lbl = returnInstr (BR target)
  | otherwise     = returnInstrs [LDA pv (AddrImm target), JMP zero (AddrReg pv) 0]
  where
    target = ImmCLbl lbl

genJump tree =
    getReg tree	    	    	    `thenSUs` \ register ->
    getNewRegNCG PtrKind    	    `thenSUs` \ tmp ->
    let
    	dst = registerName register pv
    	code = registerCode register pv
    	target = registerName register pv
    in
    	if isFixed register then
    	    returnSeq code [OR dst (RIReg dst) pv, JMP zero (AddrReg pv) 0]
    	else
    	    returnSUs (code . mkSeqInstr (JMP zero (AddrReg pv) 0))

\end{code}

Conditional jumps are always to local labels, so we can use
branch instructions.  We peek at the arguments to decide what kind 
of comparison to do.  For comparisons with 0, we're laughing, because 
we can just do the desired conditional branch.  

\begin{code}

genCondJump 
    :: CLabel	    -- the branch target
    -> StixTree     -- the condition on which to branch
    -> SUniqSM (CodeBlock AlphaInstr)

genCondJump lbl (StPrim op [x, StInt 0]) =
    getReg x	  	    	    `thenSUs` \ register ->
    getNewRegNCG (registerKind register)
    	    	        	    `thenSUs` \ tmp ->
    let
    	code = registerCode register tmp
    	value = registerName register tmp
    	pk = registerKind register
        target = ImmCLbl lbl    
    in
    	    returnSeq code [BI (cmpOp op) value target]
  where
    cmpOp CharGtOp = GT
    cmpOp CharGeOp = GE
    cmpOp CharEqOp = EQ
    cmpOp CharNeOp = NE
    cmpOp CharLtOp = LT
    cmpOp CharLeOp = LE
    cmpOp IntGtOp = GT
    cmpOp IntGeOp = GE
    cmpOp IntEqOp = EQ
    cmpOp IntNeOp = NE
    cmpOp IntLtOp = LT
    cmpOp IntLeOp = LE
    cmpOp WordGtOp = NE
    cmpOp WordGeOp = ALWAYS
    cmpOp WordEqOp = EQ
    cmpOp WordNeOp = NE
    cmpOp WordLtOp = NEVER
    cmpOp WordLeOp = EQ
    cmpOp AddrGtOp = NE
    cmpOp AddrGeOp = ALWAYS
    cmpOp AddrEqOp = EQ
    cmpOp AddrNeOp = NE
    cmpOp AddrLtOp = NEVER
    cmpOp AddrLeOp = EQ

genCondJump lbl (StPrim op [x, StDouble 0.0]) =
    getReg x	  	    	    `thenSUs` \ register ->
    getNewRegNCG (registerKind register)
    	    	        	    `thenSUs` \ tmp ->
    let
    	code = registerCode register tmp
    	value = registerName register tmp
    	pk = registerKind register
        target = ImmCLbl lbl    
    in
    	    returnSUs (code . mkSeqInstr (BF (cmpOp op) value target))
  where
    cmpOp FloatGtOp = GT
    cmpOp FloatGeOp = GE
    cmpOp FloatEqOp = EQ
    cmpOp FloatNeOp = NE
    cmpOp FloatLtOp = LT
    cmpOp FloatLeOp = LE
    cmpOp DoubleGtOp = GT
    cmpOp DoubleGeOp = GE
    cmpOp DoubleEqOp = EQ
    cmpOp DoubleNeOp = NE
    cmpOp DoubleLtOp = LT
    cmpOp DoubleLeOp = LE

genCondJump lbl (StPrim op args) 
  | fltCmpOp op =
    trivialFCode instr args    	    `thenSUs` \ register ->
    getNewRegNCG DoubleKind    	    `thenSUs` \ tmp ->
    let
    	code = registerCode register tmp
    	result = registerName register tmp
        target = ImmCLbl lbl    
    in
        returnSUs (code . mkSeqInstr (BF cond result target))
  where
    fltCmpOp op = case op of
        FloatGtOp -> True
        FloatGeOp -> True
        FloatEqOp -> True
        FloatNeOp -> True
        FloatLtOp -> True
        FloatLeOp -> True
        DoubleGtOp -> True
        DoubleGeOp -> True
        DoubleEqOp -> True
        DoubleNeOp -> True
        DoubleLtOp -> True
        DoubleLeOp -> True
        _ -> False
    (instr, cond) = case op of
        FloatGtOp -> (FCMP TF LE, EQ)
        FloatGeOp -> (FCMP TF LT, EQ)
        FloatEqOp -> (FCMP TF EQ, NE)
        FloatNeOp -> (FCMP TF EQ, EQ)
        FloatLtOp -> (FCMP TF LT, NE)
        FloatLeOp -> (FCMP TF LE, NE)
        DoubleGtOp -> (FCMP TF LE, EQ)
        DoubleGeOp -> (FCMP TF LT, EQ)
        DoubleEqOp -> (FCMP TF EQ, NE)
        DoubleNeOp -> (FCMP TF EQ, EQ)
        DoubleLtOp -> (FCMP TF LT, NE)
        DoubleLeOp -> (FCMP TF LE, NE)

genCondJump lbl (StPrim op args) =
    trivialCode instr args    	    `thenSUs` \ register ->
    getNewRegNCG IntKind    	    `thenSUs` \ tmp ->
    let
    	code = registerCode register tmp
    	result = registerName register tmp
        target = ImmCLbl lbl    
    in
        returnSUs (code . mkSeqInstr (BI cond result target))
  where
    (instr, cond) = case op of
        CharGtOp -> (CMP LE, EQ)
        CharGeOp -> (CMP LT, EQ)
        CharEqOp -> (CMP EQ, NE)
        CharNeOp -> (CMP EQ, EQ)
        CharLtOp -> (CMP LT, NE)
        CharLeOp -> (CMP LE, NE)
        IntGtOp -> (CMP LE, EQ)
        IntGeOp -> (CMP LT, EQ)
        IntEqOp -> (CMP EQ, NE)
        IntNeOp -> (CMP EQ, EQ)
        IntLtOp -> (CMP LT, NE)
        IntLeOp -> (CMP LE, NE)
        WordGtOp -> (CMP ULE, EQ)
        WordGeOp -> (CMP ULT, EQ)
        WordEqOp -> (CMP EQ, NE)
        WordNeOp -> (CMP EQ, EQ)
        WordLtOp -> (CMP ULT, NE)
        WordLeOp -> (CMP ULE, NE)
        AddrGtOp -> (CMP ULE, EQ)
        AddrGeOp -> (CMP ULT, EQ)
        AddrEqOp -> (CMP EQ, NE)
        AddrNeOp -> (CMP EQ, EQ)
        AddrLtOp -> (CMP ULT, NE)
        AddrLeOp -> (CMP ULE, NE)

\end{code}

Now the biggest nightmare---calls.  Most of the nastiness is buried in
getCallArg, which moves the arguments to the correct registers/stack
locations.  Apart from that, the code is easy.

\begin{code}

genCCall
    :: FAST_STRING    -- function to call
    -> PrimKind	    -- type of the result
    -> [StixTree]   -- arguments (of mixed type)
    -> SUniqSM (CodeBlock AlphaInstr)

genCCall fn kind args =
    mapAccumLNCG getCallArg (argRegs,stackArgLoc) args 
    	    	    	    	    `thenSUs` \ ((unused,_), argCode) ->
    let
    	nRegs = length argRegs - length unused
    	code = asmParThen (map ($ asmVoid) argCode)
    in
    	returnSeq code [
    	    LDA pv (AddrImm (ImmLab (uppPStr fn))),
    	    JSR ra (AddrReg pv) nRegs, 
    	    LDGP gp (AddrReg ra)]
  where
    mapAccumLNCG f b []     = returnSUs (b, [])
    mapAccumLNCG f b (x:xs) = 
    	f b x   	        	    `thenSUs` \ (b__2, x__2) ->
    	mapAccumLNCG f b__2 xs   	    `thenSUs` \ (b__3, xs__2) ->
    	returnSUs (b__3, x__2:xs__2)

\end{code}

Trivial (dyadic) instructions.  Only look for constants on the right hand
side, because that's where the generic optimizer will have put them.

\begin{code}

trivialCode 
    :: (Reg -> RI -> Reg -> AlphaInstr) 
    -> [StixTree]
    -> SUniqSM Register

trivialCode instr [x, StInt y]
  | is8Bits y =
    getReg x	    	    	    `thenSUs` \ register ->
    getNewRegNCG IntKind    	    `thenSUs` \ tmp ->
    let
    	code = registerCode register tmp
    	src1 = registerName register tmp
    	src2 = ImmInt (fromInteger y)
    	code__2 dst = code . mkSeqInstr (instr src1 (RIImm src2) dst)
    in
    	returnSUs (Any IntKind code__2)

trivialCode instr [x, y] =
    getReg x	    	    	    `thenSUs` \ register1 ->
    getReg y	    	    	    `thenSUs` \ register2 ->
    getNewRegNCG IntKind    	    `thenSUs` \ tmp1 ->
    getNewRegNCG IntKind    	    `thenSUs` \ tmp2 ->
    let
    	code1 = registerCode register1 tmp1 asmVoid
    	src1  = registerName register1 tmp1
    	code2 = registerCode register2 tmp2 asmVoid
    	src2  = registerName register2 tmp2
    	code__2 dst = asmParThen [code1, code2] .
    	    	     mkSeqInstr (instr src1 (RIReg src2) dst)
    in
    	returnSUs (Any IntKind code__2)

trivialFCode 
    :: (Reg -> Reg -> Reg -> AlphaInstr) 
    -> [StixTree] 
    -> SUniqSM Register

trivialFCode instr [x, y] =
    getReg x	    	    	    `thenSUs` \ register1 ->
    getReg y	    	    	    `thenSUs` \ register2 ->
    getNewRegNCG DoubleKind   	    `thenSUs` \ tmp1 ->
    getNewRegNCG DoubleKind   	    `thenSUs` \ tmp2 ->
    let
    	code1 = registerCode register1 tmp1
    	src1  = registerName register1 tmp1

    	code2 = registerCode register2 tmp2
    	src2  = registerName register2 tmp2

    	code__2 dst = asmParThen [code1 asmVoid, code2 asmVoid] .
    	    	      mkSeqInstr (instr src1 src2 dst)
    in
    	returnSUs (Any DoubleKind code__2)

\end{code}

Some bizarre special code for getting condition codes into registers.
Integer non-equality is a test for equality followed by an XOR with 1.
(Integer comparisons always set the result register to 0 or 1.)  Floating
point comparisons of any kind leave the result in a floating point register, 
so we need to wrangle an integer register out of things.

\begin{code}
intNECode
    :: [StixTree]
    -> SUniqSM Register

intNECode args =
    trivialCode (CMP EQ) args  	    `thenSUs` \ register ->
    getNewRegNCG IntKind    	    `thenSUs` \ tmp ->
    let
    	code = registerCode register tmp
    	src  = registerName register tmp
    	code__2 dst = code . mkSeqInstr (XOR src (RIImm (ImmInt 1)) dst)
    in
    	returnSUs (Any IntKind code__2)

cmpFCode 
    :: (Reg -> Reg -> Reg -> AlphaInstr) 
    -> Cond
    -> [StixTree] 
    -> SUniqSM Register

cmpFCode instr cond args =
    trivialFCode instr args    	    `thenSUs` \ register ->
    getNewRegNCG DoubleKind    	    `thenSUs` \ tmp ->
    getUniqLabelNCG 	    	    `thenSUs` \ lbl ->
    let
    	code = registerCode register tmp
    	result  = registerName register tmp

    	code__2 dst = code . mkSeqInstrs [
    	    OR zero (RIImm (ImmInt 1)) dst,
    	    BF cond result (ImmCLbl lbl),
    	    OR zero (RIReg zero) dst,
            LABEL lbl]
    in
    	returnSUs (Any IntKind code__2)

\end{code}

Trivial unary instructions.  Note that we don't have to worry about
matching an StInt as the argument, because genericOpt will already
have handled the constant-folding.

\begin{code}

trivialUCode 
    :: (RI -> Reg -> AlphaInstr) 
    -> [StixTree]
    -> SUniqSM Register

trivialUCode instr [x] =
    getReg x	    	    	    `thenSUs` \ register ->
    getNewRegNCG IntKind    	    `thenSUs` \ tmp ->
    let
    	code = registerCode register tmp
    	src  = registerName register tmp
    	code__2 dst = code . mkSeqInstr (instr (RIReg src) dst)
    in
    	returnSUs (Any IntKind code__2)

trivialUFCode 
    :: (Reg -> Reg -> AlphaInstr) 
    -> [StixTree]
    -> SUniqSM Register

trivialUFCode instr [x] =
    getReg x	    	    	    `thenSUs` \ register ->
    getNewRegNCG DoubleKind    	    `thenSUs` \ tmp ->
    let
    	code = registerCode register tmp
    	src  = registerName register tmp
    	code__2 dst = code . mkSeqInstr (instr src dst)
    in
    	returnSUs (Any DoubleKind code__2)

\end{code}

Simple coercions that don't require any code to be generated.
Here we just change the type on the register passed on up

\begin{code}

coerceIntCode :: PrimKind -> [StixTree] -> SUniqSM Register
coerceIntCode pk [x] =
    getReg x	    	    	    `thenSUs` \ register ->
    case register of
    	Fixed reg _ code -> returnSUs (Fixed reg pk code)
    	Any _ code       -> returnSUs (Any pk code)

coerceFltCode :: [StixTree] -> SUniqSM Register
coerceFltCode [x] =
    getReg x	    	    	    `thenSUs` \ register ->
    case register of
    	Fixed reg _ code -> returnSUs (Fixed reg DoubleKind code)
    	Any _ code       -> returnSUs (Any DoubleKind code)

\end{code}

Integer to character conversion.  

\begin{code}

chrCode [x] =
    getReg x	    	    	    `thenSUs` \ register ->
    getNewRegNCG IntKind    	    `thenSUs` \ reg ->
    let
    	code = registerCode register reg
    	src  = registerName register reg
    	code__2 dst = code . mkSeqInstr (ZAPNOT src (RIImm (ImmInt 1)) dst)
    in
    	returnSUs (Any IntKind code__2)

\end{code}

More complicated integer/float conversions.  Here we have to store
temporaries in memory to move between the integer and the floating
point register sets.

\begin{code}

coerceInt2FP :: [StixTree] -> SUniqSM Register
coerceInt2FP [x] = 
    getReg x	    	    	    `thenSUs` \ register ->
    getNewRegNCG IntKind      	    `thenSUs` \ reg ->
    let
    	code = registerCode register reg
    	src  = registerName register reg

    	code__2 dst = code . mkSeqInstrs [
    	    ST Q src (spRel 0),
    	    LD TF dst (spRel 0),
    	    CVTxy Q TF dst dst]
    in
    	returnSUs (Any DoubleKind code__2)

coerceFP2Int :: [StixTree] -> SUniqSM Register
coerceFP2Int [x] =
    getReg x	    	    	    `thenSUs` \ register ->
    getNewRegNCG DoubleKind    	    `thenSUs` \ tmp ->
    let
    	code = registerCode register tmp
    	src  = registerName register tmp

    	code__2 dst = code . mkSeqInstrs [
    	    CVTxy TF Q src tmp,
    	    ST TF tmp (spRel 0),
    	    LD Q dst (spRel 0)]
    in
    	returnSUs (Any IntKind code__2)

\end{code}

Some random little helpers.

\begin{code}

is8Bits :: Integer -> Bool
is8Bits i = i >= -256 && i < 256

maybeImm :: StixTree -> Maybe Imm
maybeImm (StInt i) 
  | i >= toInteger minInt && i <= toInteger maxInt = Just (ImmInt (fromInteger i))
  | otherwise = Just (ImmInteger i)
maybeImm (StLitLbl s)  = Just (ImmLab s)
maybeImm (StLitLit s)  = Just (strImmLab (cvtLitLit (_UNPK_ s)))
maybeImm (StCLbl l) = Just (ImmCLbl l)
maybeImm _          = Nothing

mangleIndexTree :: StixTree -> StixTree

mangleIndexTree (StIndex pk base (StInt i)) = 
    StPrim IntAddOp [base, off]
  where
    off = StInt (i * size pk)
    size :: PrimKind -> Integer
    size pk = case kindToSize pk of
    	{B -> 1; BU -> 1; W -> 2; WU -> 2; L -> 4; FF -> 4; SF -> 4; _ -> 8}

mangleIndexTree (StIndex pk base off) = 
    case pk of
    	CharKind -> StPrim IntAddOp [base, off]
    	_   	 -> StPrim IntAddOp [base, off__2]
  where
    off__2 = StPrim SllOp [off, StInt 3]

cvtLitLit :: String -> String
cvtLitLit "stdin" = "_iob+0"   -- This one is probably okay...
cvtLitLit "stdout" = "_iob+56" -- but these next two are dodgy at best
cvtLitLit "stderr" = "_iob+112"
cvtLitLit s 
  | isHex s = s
  | otherwise = error ("Native code generator can't handle ``" ++ s ++ "''")
  where 
    isHex ('0':'x':xs) = all isHexDigit xs
    isHex _ = False
    -- Now, where have I seen this before?
    isHexDigit c = isDigit c || c >= 'A' && c <= 'F' || c >= 'a' && c <= 'f'


\end{code}

spRel gives us a stack relative addressing mode for volatile temporaries
and for excess call arguments.

\begin{code}

spRel 
    :: Int  	-- desired stack offset in words, positive or negative
    -> Addr
spRel n = AddrRegImm sp (ImmInt (n * 8))

stackArgLoc = 0 :: Int	    -- where to stack extra call arguments (beyond 6)

\end{code}

\begin{code}

getNewRegNCG :: PrimKind -> SUniqSM Reg
getNewRegNCG pk = 
      getSUnique          `thenSUs` \ u ->
      returnSUs (mkReg u pk)

\end{code}