1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
|
-----------------------------------------------------------------------------
--
-- Machine-dependent assembly language
--
-- (c) The University of Glasgow 1993-2004
--
-----------------------------------------------------------------------------
#include "nativeGen/NCG.h"
module MachInstrs (
-- * Cmm instantiations
NatCmm, NatCmmTop, NatBasicBlock,
-- * Machine instructions
Instr(..),
Cond(..), condUnsigned, condToSigned, condToUnsigned,
#if !powerpc_TARGET_ARCH && !i386_TARGET_ARCH && !x86_64_TARGET_ARCH
Size(..), machRepSize,
#endif
RI(..),
#if i386_TARGET_ARCH || x86_64_TARGET_ARCH
Operand(..),
#endif
#if i386_TARGET_ARCH
i386_insert_ffrees,
#endif
#if sparc_TARGET_ARCH
riZero, fpRelEA, moveSp, fPair,
#endif
) where
#include "HsVersions.h"
import MachRegs
import Cmm
import MachOp ( MachRep(..) )
import CLabel ( CLabel, pprCLabel )
import Panic ( panic )
import Outputable
import FastString
import Constants ( wORD_SIZE )
import GLAEXTS
-- -----------------------------------------------------------------------------
-- Our flavours of the Cmm types
-- Type synonyms for Cmm populated with native code
type NatCmm = GenCmm CmmStatic Instr
type NatCmmTop = GenCmmTop CmmStatic Instr
type NatBasicBlock = GenBasicBlock Instr
-- -----------------------------------------------------------------------------
-- Conditions on this architecture
data Cond
#if alpha_TARGET_ARCH
= ALWAYS -- For BI (same as BR)
| EQQ -- For CMP and BI (NB: "EQ" is a 1.3 Prelude name)
| GE -- For BI only
| GTT -- For BI only (NB: "GT" is a 1.3 Prelude name)
| LE -- For CMP and BI
| LTT -- For CMP and BI (NB: "LT" is a 1.3 Prelude name)
| NE -- For BI only
| NEVER -- For BI (null instruction)
| ULE -- For CMP only
| ULT -- For CMP only
#endif
#if i386_TARGET_ARCH || x86_64_TARGET_ARCH
= ALWAYS -- What's really used? ToDo
| EQQ
| GE
| GEU
| GTT
| GU
| LE
| LEU
| LTT
| LU
| NE
| NEG
| POS
| CARRY
| OFLO
| PARITY
| NOTPARITY
#endif
#if sparc_TARGET_ARCH
= ALWAYS -- What's really used? ToDo
| EQQ
| GE
| GEU
| GTT
| GU
| LE
| LEU
| LTT
| LU
| NE
| NEG
| NEVER
| POS
| VC
| VS
#endif
#if powerpc_TARGET_ARCH
= ALWAYS
| EQQ
| GE
| GEU
| GTT
| GU
| LE
| LEU
| LTT
| LU
| NE
#endif
deriving Eq -- to make an assertion work
condUnsigned GU = True
condUnsigned LU = True
condUnsigned GEU = True
condUnsigned LEU = True
condUnsigned _ = False
condToSigned GU = GTT
condToSigned LU = LTT
condToSigned GEU = GE
condToSigned LEU = LE
condToSigned x = x
condToUnsigned GTT = GU
condToUnsigned LTT = LU
condToUnsigned GE = GEU
condToUnsigned LE = LEU
condToUnsigned x = x
-- -----------------------------------------------------------------------------
-- Sizes on this architecture
-- ToDo: it's not clear to me that we need separate signed-vs-unsigned sizes
-- here. I've removed them from the x86 version, we'll see what happens --SDM
#if !powerpc_TARGET_ARCH && !i386_TARGET_ARCH && !x86_64_TARGET_ARCH
data Size
#if alpha_TARGET_ARCH
= B -- byte
| Bu
-- | W -- word (2 bytes): UNUSED
-- | Wu -- : UNUSED
| L -- longword (4 bytes)
| Q -- quadword (8 bytes)
-- | FF -- VAX F-style floating pt: UNUSED
-- | GF -- VAX G-style floating pt: UNUSED
-- | DF -- VAX D-style floating pt: UNUSED
-- | SF -- IEEE single-precision floating pt: UNUSED
| TF -- IEEE double-precision floating pt
#endif
#if sparc_TARGET_ARCH || powerpc_TARGET_ARCH
= B -- byte (signed)
| Bu -- byte (unsigned)
| H -- halfword (signed, 2 bytes)
| Hu -- halfword (unsigned, 2 bytes)
| W -- word (4 bytes)
| F -- IEEE single-precision floating pt
| DF -- IEEE single-precision floating pt
#endif
deriving Eq
machRepSize :: MachRep -> Size
machRepSize I8 = IF_ARCH_alpha(Bu, IF_ARCH_sparc(Bu, ))
machRepSize I16 = IF_ARCH_alpha(err,IF_ARCH_sparc(Hu, ))
machRepSize I32 = IF_ARCH_alpha(L, IF_ARCH_sparc(W, ))
machRepSize I64 = panic "machRepSize: I64"
machRepSize I128 = panic "machRepSize: I128"
machRepSize F32 = IF_ARCH_alpha(TF, IF_ARCH_sparc(F, ))
machRepSize F64 = IF_ARCH_alpha(TF, IF_ARCH_sparc(DF,))
#endif
-- -----------------------------------------------------------------------------
-- Register or immediate (a handy type on some platforms)
data RI = RIReg Reg
| RIImm Imm
-- -----------------------------------------------------------------------------
-- Machine's assembly language
-- We have a few common "instructions" (nearly all the pseudo-ops) but
-- mostly all of 'Instr' is machine-specific.
data Instr
= COMMENT FastString -- comment pseudo-op
| LDATA Section [CmmStatic] -- some static data spat out during code
-- generation. Will be extracted before
-- pretty-printing.
| NEWBLOCK BlockId -- start a new basic block. Useful during
-- codegen, removed later. Preceding
-- instruction should be a jump, as per the
-- invariants for a BasicBlock (see Cmm).
| DELTA Int -- specify current stack offset for
-- benefit of subsequent passes
-- -----------------------------------------------------------------------------
-- Alpha instructions
#if alpha_TARGET_ARCH
-- data Instr continues...
-- Loads and stores.
| LD Size Reg AddrMode -- size, dst, src
| LDA Reg AddrMode -- dst, src
| LDAH Reg AddrMode -- dst, src
| LDGP Reg AddrMode -- dst, src
| LDI Size Reg Imm -- size, dst, src
| ST Size Reg AddrMode -- size, src, dst
-- Int Arithmetic.
| CLR Reg -- dst
| ABS Size RI Reg -- size, src, dst
| NEG Size Bool RI Reg -- size, overflow, src, dst
| ADD Size Bool Reg RI Reg -- size, overflow, src, src, dst
| SADD Size Size Reg RI Reg -- size, scale, src, src, dst
| SUB Size Bool Reg RI Reg -- size, overflow, src, src, dst
| SSUB Size Size Reg RI Reg -- size, scale, src, src, dst
| MUL Size Bool Reg RI Reg -- size, overflow, src, src, dst
| DIV Size Bool Reg RI Reg -- size, unsigned, src, src, dst
| REM Size Bool Reg RI Reg -- size, unsigned, src, src, dst
-- Simple bit-twiddling.
| NOT RI Reg
| AND Reg RI Reg
| ANDNOT Reg RI Reg
| OR Reg RI Reg
| ORNOT Reg RI Reg
| XOR Reg RI Reg
| XORNOT Reg RI Reg
| SLL Reg RI Reg
| SRL Reg RI Reg
| SRA Reg RI Reg
| ZAP Reg RI Reg
| ZAPNOT Reg RI Reg
| NOP
-- Comparison
| CMP Cond Reg RI Reg
-- Float Arithmetic.
| FCLR Reg
| FABS Reg Reg
| FNEG Size Reg Reg
| FADD Size Reg Reg Reg
| FDIV Size Reg Reg Reg
| FMUL Size Reg Reg Reg
| FSUB Size Reg Reg Reg
| CVTxy Size Size Reg Reg
| FCMP Size Cond Reg Reg Reg
| FMOV Reg Reg
-- Jumping around.
| BI Cond Reg Imm
| BF Cond Reg Imm
| BR Imm
| JMP Reg AddrMode Int
| BSR Imm Int
| JSR Reg AddrMode Int
-- Alpha-specific pseudo-ops.
| FUNBEGIN CLabel
| FUNEND CLabel
data RI
= RIReg Reg
| RIImm Imm
#endif /* alpha_TARGET_ARCH */
-- -----------------------------------------------------------------------------
-- Intel x86 instructions
{-
Intel, in their infinite wisdom, selected a stack model for floating
point registers on x86. That might have made sense back in 1979 --
nowadays we can see it for the nonsense it really is. A stack model
fits poorly with the existing nativeGen infrastructure, which assumes
flat integer and FP register sets. Prior to this commit, nativeGen
could not generate correct x86 FP code -- to do so would have meant
somehow working the register-stack paradigm into the register
allocator and spiller, which sounds very difficult.
We have decided to cheat, and go for a simple fix which requires no
infrastructure modifications, at the expense of generating ropey but
correct FP code. All notions of the x86 FP stack and its insns have
been removed. Instead, we pretend (to the instruction selector and
register allocator) that x86 has six floating point registers, %fake0
.. %fake5, which can be used in the usual flat manner. We further
claim that x86 has floating point instructions very similar to SPARC
and Alpha, that is, a simple 3-operand register-register arrangement.
Code generation and register allocation proceed on this basis.
When we come to print out the final assembly, our convenient fiction
is converted to dismal reality. Each fake instruction is
independently converted to a series of real x86 instructions.
%fake0 .. %fake5 are mapped to %st(0) .. %st(5). To do reg-reg
arithmetic operations, the two operands are pushed onto the top of the
FP stack, the operation done, and the result copied back into the
relevant register. There are only six %fake registers because 2 are
needed for the translation, and x86 has 8 in total.
The translation is inefficient but is simple and it works. A cleverer
translation would handle a sequence of insns, simulating the FP stack
contents, would not impose a fixed mapping from %fake to %st regs, and
hopefully could avoid most of the redundant reg-reg moves of the
current translation.
We might as well make use of whatever unique FP facilities Intel have
chosen to bless us with (let's not be churlish, after all).
Hence GLDZ and GLD1. Bwahahahahahahaha!
-}
{-
MORE FLOATING POINT MUSINGS...
Intel's internal floating point registers are by default 80 bit
extended precision. This means that all operations done on values in
registers are done at 80 bits, and unless the intermediate values are
truncated to the appropriate size (32 or 64 bits) by storing in
memory, calculations in registers will give different results from
calculations which pass intermediate values in memory (eg. via
function calls).
One solution is to set the FPU into 64 bit precision mode. Some OSs
do this (eg. FreeBSD) and some don't (eg. Linux). The problem here is
that this will only affect 64-bit precision arithmetic; 32-bit
calculations will still be done at 64-bit precision in registers. So
it doesn't solve the whole problem.
There's also the issue of what the C library is expecting in terms of
precision. It seems to be the case that glibc on Linux expects the
FPU to be set to 80 bit precision, so setting it to 64 bit could have
unexpected effects. Changing the default could have undesirable
effects on other 3rd-party library code too, so the right thing would
be to save/restore the FPU control word across Haskell code if we were
to do this.
gcc's -ffloat-store gives consistent results by always storing the
results of floating-point calculations in memory, which works for both
32 and 64-bit precision. However, it only affects the values of
user-declared floating point variables in C, not intermediate results.
GHC in -fvia-C mode uses -ffloat-store (see the -fexcess-precision
flag).
Another problem is how to spill floating point registers in the
register allocator. Should we spill the whole 80 bits, or just 64?
On an OS which is set to 64 bit precision, spilling 64 is fine. On
Linux, spilling 64 bits will round the results of some operations.
This is what gcc does. Spilling at 80 bits requires taking up a full
128 bit slot (so we get alignment). We spill at 80-bits and ignore
the alignment problems.
In the future, we'll use the SSE registers for floating point. This
requires a CPU that supports SSE2 (ordinary SSE only supports 32 bit
precision float ops), which means P4 or Xeon and above. Using SSE
will solve all these problems, because the SSE registers use fixed 32
bit or 64 bit precision.
--SDM 1/2003
-}
#if i386_TARGET_ARCH || x86_64_TARGET_ARCH
-- data Instr continues...
-- Moves.
| MOV MachRep Operand Operand
| MOVZxL MachRep Operand Operand -- size is the size of operand 1
| MOVSxL MachRep Operand Operand -- size is the size of operand 1
-- x86_64 note: plain mov into a 32-bit register always zero-extends
-- into the 64-bit reg, in contrast to the 8 and 16-bit movs which
-- don't affect the high bits of the register.
-- Load effective address (also a very useful three-operand add instruction :-)
| LEA MachRep Operand Operand
-- Int Arithmetic.
| ADD MachRep Operand Operand
| ADC MachRep Operand Operand
| SUB MachRep Operand Operand
| MUL MachRep Operand Operand
| IMUL MachRep Operand Operand -- signed int mul
| IMUL2 MachRep Operand -- %edx:%eax = operand * %eax
| DIV MachRep Operand -- eax := eax:edx/op, edx := eax:edx%op
| IDIV MachRep Operand -- ditto, but signed
-- Simple bit-twiddling.
| AND MachRep Operand Operand
| OR MachRep Operand Operand
| XOR MachRep Operand Operand
| NOT MachRep Operand
| NEGI MachRep Operand -- NEG instruction (name clash with Cond)
-- Shifts (amount may be immediate or %cl only)
| SHL MachRep Operand{-amount-} Operand
| SAR MachRep Operand{-amount-} Operand
| SHR MachRep Operand{-amount-} Operand
| BT MachRep Imm Operand
| NOP
#if i386_TARGET_ARCH
-- Float Arithmetic.
-- Note that we cheat by treating G{ABS,MOV,NEG} of doubles
-- as single instructions right up until we spit them out.
-- all the 3-operand fake fp insns are src1 src2 dst
-- and furthermore are constrained to be fp regs only.
-- IMPORTANT: keep is_G_insn up to date with any changes here
| GMOV Reg Reg -- src(fpreg), dst(fpreg)
| GLD MachRep AddrMode Reg -- src, dst(fpreg)
| GST MachRep Reg AddrMode -- src(fpreg), dst
| GLDZ Reg -- dst(fpreg)
| GLD1 Reg -- dst(fpreg)
| GFTOI Reg Reg -- src(fpreg), dst(intreg)
| GDTOI Reg Reg -- src(fpreg), dst(intreg)
| GITOF Reg Reg -- src(intreg), dst(fpreg)
| GITOD Reg Reg -- src(intreg), dst(fpreg)
| GADD MachRep Reg Reg Reg -- src1, src2, dst
| GDIV MachRep Reg Reg Reg -- src1, src2, dst
| GSUB MachRep Reg Reg Reg -- src1, src2, dst
| GMUL MachRep Reg Reg Reg -- src1, src2, dst
-- FP compare. Cond must be `elem` [EQQ, NE, LE, LTT, GE, GTT]
-- Compare src1 with src2; set the Zero flag iff the numbers are
-- comparable and the comparison is True. Subsequent code must
-- test the %eflags zero flag regardless of the supplied Cond.
| GCMP Cond Reg Reg -- src1, src2
| GABS MachRep Reg Reg -- src, dst
| GNEG MachRep Reg Reg -- src, dst
| GSQRT MachRep Reg Reg -- src, dst
| GSIN MachRep Reg Reg -- src, dst
| GCOS MachRep Reg Reg -- src, dst
| GTAN MachRep Reg Reg -- src, dst
| GFREE -- do ffree on all x86 regs; an ugly hack
#endif
#if x86_64_TARGET_ARCH
-- SSE2 floating point: we use a restricted set of the available SSE2
-- instructions for floating-point.
-- use MOV for moving (either movss or movsd (movlpd better?))
| CVTSS2SD Reg Reg -- F32 to F64
| CVTSD2SS Reg Reg -- F64 to F32
| CVTSS2SI Operand Reg -- F32 to I32/I64 (with rounding)
| CVTSD2SI Operand Reg -- F64 to I32/I64 (with rounding)
| CVTSI2SS Operand Reg -- I32/I64 to F32
| CVTSI2SD Operand Reg -- I32/I64 to F64
-- use ADD & SUB for arithmetic. In both cases, operands
-- are Operand Reg.
-- SSE2 floating-point division:
| FDIV MachRep Operand Operand -- divisor, dividend(dst)
-- use CMP for comparisons. ucomiss and ucomisd instructions
-- compare single/double prec floating point respectively.
| SQRT MachRep Operand Reg -- src, dst
#endif
-- Comparison
| TEST MachRep Operand Operand
| CMP MachRep Operand Operand
| SETCC Cond Operand
-- Stack Operations.
| PUSH MachRep Operand
| POP MachRep Operand
-- both unused (SDM):
-- | PUSHA
-- | POPA
-- Jumping around.
| JMP Operand
| JXX Cond BlockId -- includes unconditional branches
| JMP_TBL Operand [BlockId] -- table jump
| CALL (Either Imm Reg) [Reg]
-- Other things.
| CLTD MachRep -- sign extend %eax into %edx:%eax
| FETCHGOT Reg -- pseudo-insn for ELF position-independent code
-- pretty-prints as
-- call 1f
-- 1: popl %reg
-- addl __GLOBAL_OFFSET_TABLE__+.-1b, %reg
| FETCHPC Reg -- pseudo-insn for Darwin position-independent code
-- pretty-prints as
-- call 1f
-- 1: popl %reg
data Operand
= OpReg Reg -- register
| OpImm Imm -- immediate value
| OpAddr AddrMode -- memory reference
#endif /* i386 or x86_64 */
#if i386_TARGET_ARCH
i386_insert_ffrees :: [Instr] -> [Instr]
i386_insert_ffrees insns
| any is_G_instr insns
= concatMap ffree_before_nonlocal_transfers insns
| otherwise
= insns
ffree_before_nonlocal_transfers insn
= case insn of
CALL _ _ -> [GFREE, insn]
JMP _ -> [GFREE, insn]
other -> [insn]
-- if you ever add a new FP insn to the fake x86 FP insn set,
-- you must update this too
is_G_instr :: Instr -> Bool
is_G_instr instr
= case instr of
GMOV _ _ -> True; GLD _ _ _ -> True; GST _ _ _ -> True
GLDZ _ -> True; GLD1 _ -> True
GFTOI _ _ -> True; GDTOI _ _ -> True
GITOF _ _ -> True; GITOD _ _ -> True
GADD _ _ _ _ -> True; GDIV _ _ _ _ -> True
GSUB _ _ _ _ -> True; GMUL _ _ _ _ -> True
GCMP _ _ _ -> True; GABS _ _ _ -> True
GNEG _ _ _ -> True; GSQRT _ _ _ -> True
GSIN _ _ _ -> True; GCOS _ _ _ -> True; GTAN _ _ _ -> True
GFREE -> panic "is_G_instr: GFREE (!)"
other -> False
#endif /* i386_TARGET_ARCH */
-- -----------------------------------------------------------------------------
-- Sparc instructions
#if sparc_TARGET_ARCH
-- data Instr continues...
-- Loads and stores.
| LD MachRep AddrMode Reg -- size, src, dst
| ST MachRep Reg AddrMode -- size, src, dst
-- Int Arithmetic.
| ADD Bool Bool Reg RI Reg -- x?, cc?, src1, src2, dst
| SUB Bool Bool Reg RI Reg -- x?, cc?, src1, src2, dst
| UMUL Bool Reg RI Reg -- cc?, src1, src2, dst
| SMUL Bool Reg RI Reg -- cc?, src1, src2, dst
| RDY Reg -- move contents of Y register to reg
-- Simple bit-twiddling.
| AND Bool Reg RI Reg -- cc?, src1, src2, dst
| ANDN Bool Reg RI Reg -- cc?, src1, src2, dst
| OR Bool Reg RI Reg -- cc?, src1, src2, dst
| ORN Bool Reg RI Reg -- cc?, src1, src2, dst
| XOR Bool Reg RI Reg -- cc?, src1, src2, dst
| XNOR Bool Reg RI Reg -- cc?, src1, src2, dst
| SLL Reg RI Reg -- src1, src2, dst
| SRL Reg RI Reg -- src1, src2, dst
| SRA Reg RI Reg -- src1, src2, dst
| SETHI Imm Reg -- src, dst
| NOP -- Really SETHI 0, %g0, but worth an alias
-- Float Arithmetic.
-- Note that we cheat by treating F{ABS,MOV,NEG} of doubles as single
-- instructions right up until we spit them out.
| FABS MachRep Reg Reg -- src dst
| FADD MachRep Reg Reg Reg -- src1, src2, dst
| FCMP Bool MachRep Reg Reg -- exception?, src1, src2, dst
| FDIV MachRep Reg Reg Reg -- src1, src2, dst
| FMOV MachRep Reg Reg -- src, dst
| FMUL MachRep Reg Reg Reg -- src1, src2, dst
| FNEG MachRep Reg Reg -- src, dst
| FSQRT MachRep Reg Reg -- src, dst
| FSUB MachRep Reg Reg Reg -- src1, src2, dst
| FxTOy MachRep MachRep Reg Reg -- src, dst
-- Jumping around.
| BI Cond Bool Imm -- cond, annul?, target
| BF Cond Bool Imm -- cond, annul?, target
| JMP AddrMode -- target
| CALL (Either Imm Reg) Int Bool -- target, args, terminal
riZero :: RI -> Bool
riZero (RIImm (ImmInt 0)) = True
riZero (RIImm (ImmInteger 0)) = True
riZero (RIReg (RealReg 0)) = True
riZero _ = False
-- Calculate the effective address which would be used by the
-- corresponding fpRel sequence. fpRel is in MachRegs.lhs,
-- alas -- can't have fpRelEA here because of module dependencies.
fpRelEA :: Int -> Reg -> Instr
fpRelEA n dst
= ADD False False fp (RIImm (ImmInt (n * wORD_SIZE))) dst
-- Code to shift the stack pointer by n words.
moveSp :: Int -> Instr
moveSp n
= ADD False False sp (RIImm (ImmInt (n * wORD_SIZE))) sp
-- Produce the second-half-of-a-double register given the first half.
fPair :: Reg -> Reg
fPair (RealReg n) | n >= 32 && n `mod` 2 == 0 = RealReg (n+1)
fPair other = pprPanic "fPair(sparc NCG)" (ppr other)
#endif /* sparc_TARGET_ARCH */
-- -----------------------------------------------------------------------------
-- PowerPC instructions
#ifdef powerpc_TARGET_ARCH
-- data Instr continues...
-- Loads and stores.
| LD MachRep Reg AddrMode -- Load size, dst, src
| LA MachRep Reg AddrMode -- Load arithmetic size, dst, src
| ST MachRep Reg AddrMode -- Store size, src, dst
| STU MachRep Reg AddrMode -- Store with Update size, src, dst
| LIS Reg Imm -- Load Immediate Shifted dst, src
| LI Reg Imm -- Load Immediate dst, src
| MR Reg Reg -- Move Register dst, src -- also for fmr
| CMP MachRep Reg RI --- size, src1, src2
| CMPL MachRep Reg RI --- size, src1, src2
| BCC Cond BlockId
| JMP CLabel -- same as branch,
-- but with CLabel instead of block ID
| MTCTR Reg
| BCTR [BlockId] -- with list of local destinations
| BL CLabel [Reg] -- with list of argument regs
| BCTRL [Reg]
| ADD Reg Reg RI -- dst, src1, src2
| ADDC Reg Reg Reg -- (carrying) dst, src1, src2
| ADDE Reg Reg Reg -- (extend) dst, src1, src2
| ADDIS Reg Reg Imm -- Add Immediate Shifted dst, src1, src2
| SUBF Reg Reg Reg -- dst, src1, src2 ; dst = src2 - src1
| MULLW Reg Reg RI
| DIVW Reg Reg Reg
| DIVWU Reg Reg Reg
| MULLW_MayOflo Reg Reg Reg
-- dst = 1 if src1 * src2 overflows
-- pseudo-instruction; pretty-printed as:
-- mullwo. dst, src1, src2
-- mfxer dst
-- rlwinm dst, dst, 2, 31,31
| AND Reg Reg RI -- dst, src1, src2
| OR Reg Reg RI -- dst, src1, src2
| XOR Reg Reg RI -- dst, src1, src2
| XORIS Reg Reg Imm -- XOR Immediate Shifted dst, src1, src2
| EXTS MachRep Reg Reg
| NEG Reg Reg
| NOT Reg Reg
| SLW Reg Reg RI -- shift left word
| SRW Reg Reg RI -- shift right word
| SRAW Reg Reg RI -- shift right arithmetic word
-- Rotate Left Word Immediate then AND with Mask
| RLWINM Reg Reg Int Int Int
| FADD MachRep Reg Reg Reg
| FSUB MachRep Reg Reg Reg
| FMUL MachRep Reg Reg Reg
| FDIV MachRep Reg Reg Reg
| FNEG Reg Reg -- negate is the same for single and double prec.
| FCMP Reg Reg
| FCTIWZ Reg Reg -- convert to integer word
| FRSP Reg Reg -- reduce to single precision
-- (but destination is a FP register)
| CRNOR Int Int Int -- condition register nor
| MFCR Reg -- move from condition register
| MFLR Reg -- move from link register
| FETCHPC Reg -- pseudo-instruction:
-- bcl to next insn, mflr reg
#endif /* powerpc_TARGET_ARCH */
|