summaryrefslogtreecommitdiff
path: root/ghc/compiler/ndpFlatten/Flattening.hs
blob: 18daaa632395071d485396e8d28cc7749e9ed9c8 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
--  $Id$
--
--  Copyright (c) [2001..2002] Manuel M T Chakravarty & Gabriele Keller
--  
--  Vectorisation and lifting
--
--- DESCRIPTION ---------------------------------------------------------------
--
--  This module implements the vectorisation and function lifting
--  transformations of the flattening transformation.
-- 
--- DOCU ----------------------------------------------------------------------
--
--  Language: Haskell 98 with C preprocessor
--
--  Types: 
--    the transformation on types has five purposes:
--
--        1) for each type definition, derive the lifted version of this type
--             liftTypeef
--        2) change the type annotations of functions & variables acc. to rep.
--             flattenType
--        3) derive the type of a lifted function
--             liftType
--        4) sumtypes:
--             this is the most fuzzy and complicated part. For each lifted
--             sumtype we need to generate function to access and combine the
--             component arrays
--
--   NOTE: the type information of variables and data constructors is *not*
--          changed to reflect it's representation. This has to be solved 
--          somehow (???, FIXME)  using type indexed types
--
--   Vectorisation:
--    is very naive at the moment. One of the most striking inefficiencies is
--    application vect (app e1 e2) -> app (fst (vect e1) (vect e2)) if e1 is a
--    lambda abstraction. The vectorisation produces a pair consisting of the
--    original and the lifted function, but the lifted version is discarded.
--    I'm also not sure how much of this would be thrown out by the simplifier
--    eventually
--
--        *) vectorise
--
--  Conventions:
--
--- TODO ----------------------------------------------------------------------
--
--   * look closer into the definition of type definition (TypeThing or so)
--

module Flattening (
  flatten, flattenExpr, 
) where 

#include "HsVersions.h"

-- friends
import NDPCoreUtils (tupleTyArgs, funTyArgs, parrElemTy, isDefault,
		     isLit, mkPArrTy, mkTuple, isSimpleExpr, substIdEnv)
import FlattenMonad (Flatten, runFlatten, mkBind, extendContext, packContext,
		     liftVar, liftConst, intersectWithContext, mk'fst,
		     mk'lengthP, mk'replicateP, mk'mapP, mk'bpermuteDftP,
		     mk'indexOfP,mk'eq,mk'neq) 

-- GHC
import TcType	    ( tcIsForAllTy, tcView )
import TypeRep	    ( Type(..) )
import StaticFlags  (opt_Flatten)
import Panic        (panic)
import ErrUtils     (dumpIfSet_dyn)
import UniqSupply   (mkSplitUniqSupply)
import DynFlags  (DynFlag(..))
import Literal      (Literal, literalType)
import Var	    (Var(..), idType, isTyVar)
import Id	    (setIdType)
import DataCon	    (DataCon, dataConTag)
import HscTypes	    ( ModGuts(..), ModGuts, HscEnv(..), hscEPS )
import CoreFVs	    (exprFreeVars)
import CoreSyn	    (Expr(..), Bind(..), Alt(..), AltCon(..), Note(..),
		     CoreBndr, CoreExpr, CoreBind, mkLams, mkLets,
		     mkApps, mkIntLitInt)  
import PprCore      (pprCoreExpr)
import CoreLint	    (showPass, endPass)

import CoreUtils    (exprType, applyTypeToArg, mkPiType)
import VarEnv       (zipVarEnv)
import TysWiredIn   (mkTupleTy)
import BasicTypes   (Boxity(..))
import Outputable
import FastString


-- FIXME: fro debugging - remove this
import TRACE    (trace)

-- standard
import Monad        (liftM, foldM)

-- toplevel transformation
-- -----------------------

-- entry point to the flattening transformation for the compiler driver when
-- compiling a complete module (EXPORTED) 
--
flatten :: HscEnv
	-> ModGuts
	-> IO ModGuts
flatten hsc_env mod_impl@(ModGuts {mg_binds = binds}) 
  | not opt_Flatten = return mod_impl -- skip without -fflatten
  | otherwise       =
  do
    let dflags = hsc_dflags hsc_env

    eps <- hscEPS hsc_env
    us <- mkSplitUniqSupply 'l'		-- 'l' as in fLattening
    --
    -- announce vectorisation
    --
    showPass dflags "Flattening [first phase: vectorisation]"
    --
    -- vectorise all toplevel bindings
    --
    let binds' = runFlatten hsc_env eps us $ vectoriseTopLevelBinds binds
    --
    -- and dump the result if requested
    --
    endPass dflags "Flattening [first phase: vectorisation]" 
	    Opt_D_dump_vect binds'
    return $ mod_impl {mg_binds = binds'}

-- entry point to the flattening transformation for the compiler driver when
-- compiling a single expression in interactive mode (EXPORTED) 
--
flattenExpr :: HscEnv
	    -> CoreExpr			-- the expression to be flattened
	    -> IO CoreExpr
flattenExpr hsc_env expr
  | not opt_Flatten = return expr       -- skip without -fflatten
  | otherwise       =
  do
    let dflags = hsc_dflags hsc_env
    eps <- hscEPS hsc_env

    us <- mkSplitUniqSupply 'l'		-- 'l' as in fLattening
    --
    -- announce vectorisation
    --
    showPass dflags "Flattening [first phase: vectorisation]"
    --
    -- vectorise the expression
    --
    let expr' = fst . runFlatten hsc_env eps us $ vectorise expr
    --
    -- and dump the result if requested
    --
    dumpIfSet_dyn dflags Opt_D_dump_vect "Vectorised expression"
		  (pprCoreExpr expr')
    return expr'


-- vectorisation of bindings and expressions
-- -----------------------------------------


vectoriseTopLevelBinds:: [CoreBind] -> Flatten [CoreBind]
vectoriseTopLevelBinds binds =
  do
    vbinds <- mapM vectoriseBind binds
    return (adjustTypeBinds vbinds)

adjustTypeBinds:: [CoreBind] -> [CoreBind]
adjustTypeBinds vbinds =
    let 
       ids = concat (map extIds vbinds)
       idEnv =  zipVarEnv ids ids
     in map (substIdEnvBind idEnv) vbinds
  where 
    -- FIXME replace by 'bindersOf'
    extIds (NonRec b expr) = [b]
    extIds (Rec      bnds) = map fst bnds
    substIdEnvBind idEnv (NonRec b expr) = NonRec b (substIdEnv idEnv expr)
    substIdEnvBind idEnv (Rec bnds)      
       = Rec (map (\ (b,e) -> (b, (substIdEnv idEnv e))) bnds) 

-- vectorise a single core binder
--
vectoriseBind	              :: CoreBind -> Flatten CoreBind
vectoriseBind (NonRec b expr)  = 
  liftM (NonRec b) $ liftM fst $ vectorise expr
vectoriseBind (Rec bindings)   = 
  liftM Rec        $ mapM vectoriseOne bindings
  where
    vectoriseOne (b, expr) = 
      do
	(vexpr, ty) <- vectorise expr
	return (setIdType b ty, vexpr)


-- Searches for function definitions and creates a lifted version for 
-- each function.
-- We have only two interesting cases:
-- 1) function application  (ex1) (ex2)
--      vectorise both subexpressions. The function will end up becoming a
--      pair (orig. fun, lifted fun), choose first component (in many cases,
--      this is pretty inefficient, since the lifted version is generated
--      although it is clear that it won't be used
-- 
-- 2) lambda abstraction
--      any function has to exist in two forms: it's original form and it's 
--      lifted form. Therefore, every lambda abstraction is transformed into
--      a pair of functions: the original function and its lifted variant
-- 
--
--  FIXME: currently, I use 'exprType' all over the place - this is terribly
--  inefficient. It should be suffiecient to change 'vectorise' and 'lift' to
--  return the type of the result expression as well.
--
vectorise:: CoreExpr -> Flatten (CoreExpr, Type)
vectorise (Var id)  =  
  do 
    let varTy  = idType id
    let vecTy  = vectoriseTy varTy
    return (Var (setIdType id vecTy), vecTy)

vectorise (Lit lit) =  
  return ((Lit lit), literalType lit) 


vectorise e@(App expr t@(Type _)) = 
  do 
    (vexpr, vexprTy) <- vectorise expr
    return ((App vexpr t), applyTypeToArg vexprTy t) 

vectorise  (App (Lam b expr) arg) =
  do
    (varg, argTy)    <- vectorise arg
    (vexpr, vexprTy) <- vectorise expr
    let vb            = setIdType b argTy
    return ((App (Lam vb  vexpr) varg), 
            applyTypeToArg (mkPiType vb vexprTy) varg)

-- if vexpr expects a type as first argument
-- application stays just as it is
--
vectorise (App expr arg) =          
  do 
    (vexpr, vexprTy) <-  vectorise expr
    (varg,  vargTy)  <-  vectorise arg

    if (tcIsForAllTy vexprTy)
      then do
        let resTy =  applyTypeToArg vexprTy varg
        return (App vexpr varg, resTy)
      else do 
        let [t1, t2] = tupleTyArgs  vexprTy
        vexpr'      <-  mk'fst t1 t2 vexpr
        let resTy    = applyTypeToArg t1 varg   
        return  ((App vexpr' varg), resTy)  -- apply the first component of
                                            -- the vectorized function

vectorise  e@(Lam b expr)
  | isTyVar b
  =  do
        (vexpr, vexprTy) <- vectorise expr          -- don't vectorise 'b'!
        return ((Lam b vexpr), mkPiType b vexprTy)
  | otherwise =
     do          
       (vexpr, vexprTy)  <- vectorise expr
       let vb             = setIdType b (vectoriseTy (idType b))
       let ve             =  Lam  vb  vexpr 
       (lexpr, lexprTy)  <- lift e
       let veTy = mkPiType vb vexprTy  
       return $ (mkTuple [veTy, lexprTy] [ve, lexpr], 
                 mkTupleTy Boxed 2 [veTy, lexprTy])

vectorise (Let bind body) = 
  do    
    vbind            <- vectoriseBind bind
    (vbody, vbodyTy) <- vectorise body
    return ((Let vbind vbody), vbodyTy)

vectorise (Case expr b ty alts) =
  do 
    (vexpr, vexprTy) <- vectorise expr
    valts <- mapM vectorise' alts
    let res_ty = snd (head valts)
    return (Case vexpr (setIdType b vexprTy) res_ty (map fst valts), res_ty)
  where vectorise' (con, bs, expr) = 
          do 
            (vexpr, vexprTy) <- vectorise expr
            return ((con, bs, vexpr), vexprTy)  -- FIXME: change type of con
                                                --   and bs



vectorise (Note note expr) = 
 do 
   (vexpr, vexprTy) <- vectorise expr        -- FIXME: is this ok or does it
   return ((Note note vexpr), vexprTy)       --   change the validity of note?

vectorise e@(Type t) = 
  return (e, t)                              -- FIXME: panic instead of 't'???


{-
myShowTy (TyVarTy _) = "TyVar "
myShowTy (AppTy t1 t2) = 
  "AppTy (" ++ (myShowTy t1) ++ ", " ++ (myShowTy t2) ++ ")"
myShowTy (TyConApp _ t) =
  "TyConApp TC (" ++ (myShowTy t) ++ ")"
-}

vectoriseTy :: Type -> Type 
vectoriseTy ty | Just ty' <- tcView ty = vectoriseTy ty'
	-- Look through notes and synonyms
	-- NB: This will discard notes and synonyms, of course
	-- ToDo: retain somehow?
vectoriseTy t@(TyVarTy v)      =  t
vectoriseTy t@(AppTy t1 t2)    = 
  AppTy (vectoriseTy t1) (vectoriseTy t2)
vectoriseTy t@(TyConApp tc ts) = 
  TyConApp tc (map vectoriseTy ts)
vectoriseTy t@(FunTy t1 t2)    = 
  mkTupleTy Boxed 2 [(FunTy (vectoriseTy t1) (vectoriseTy t2)), 
                     (liftTy t)]
vectoriseTy  t@(ForAllTy v ty)  = 
  ForAllTy v (vectoriseTy  ty)
vectoriseTy  t =  t


-- liftTy: wrap the type in an array but be careful with function types
--    on the *top level* (is this sufficient???)

liftTy:: Type -> Type
liftTy ty | Just ty' <- tcView ty = liftTy ty'
liftTy (FunTy t1 t2)   = FunTy (liftTy t1) (liftTy t2)
liftTy (ForAllTy tv t) = ForAllTy tv (liftTy t)
liftTy  t              = mkPArrTy t


--  lifting:
-- ----------
--  * liftType
--  * lift


-- liftBinderType: Converts a  type 'a' stored in the binder to the
-- representation of '[:a:]' will therefore call liftType
--  
--  lift type, don't change name (incl unique) nor IdInfo. IdInfo looks ok,
--  but I'm not entirely sure about some fields (e.g., strictness info)
liftBinderType:: CoreBndr ->  Flatten CoreBndr
liftBinderType bndr = return $  setIdType bndr (liftTy (idType bndr))

-- lift: lifts an expression (a -> [:a:])
-- If the expression is a simple expression, it is treated like a constant
-- expression. 
-- If the body of a lambda expression is a simple expression, it is
-- transformed into a mapP
lift:: CoreExpr -> Flatten (CoreExpr, Type)
lift cExpr@(Var id)    = 
  do
    lVar@(Var lId) <- liftVar id
    return (lVar, idType lId)

lift cExpr@(Lit lit)   = 
  do
    lLit  <- liftConst cExpr
    return (lLit, exprType lLit)   
                                   

lift (Lam b expr)
  | isSimpleExpr expr      =  liftSimpleFun b expr
  | isTyVar b = 
    do
      (lexpr, lexprTy) <- lift expr  -- don't lift b!
      return (Lam b lexpr, mkPiType b lexprTy)
  | otherwise =
    do
      lb               <- liftBinderType b
      (lexpr, lexprTy) <- extendContext [lb] (lift expr)
      return ((Lam lb lexpr) , mkPiType lb lexprTy)

lift (App expr1 expr2) = 
  do
    (lexpr1, lexpr1Ty) <- lift expr1
    (lexpr2, _)        <- lift expr2
    return ((App lexpr1 lexpr2), applyTypeToArg lexpr1Ty lexpr2)


lift (Let (NonRec b expr1) expr2) 
  |isSimpleExpr expr2 =
    do  			
      (lexpr1, _)        <- lift expr1
      (lexpr2, lexpr2Ty) <- liftSimpleFun b expr2
      let (t1, t2) = funTyArgs lexpr2Ty
      liftM (\x -> (x, liftTy t2)) $  mk'mapP t1 t2 lexpr2 lexpr1 

  | otherwise =
    do 
      (lexpr1, _)        <- lift expr1
      lb                 <- liftBinderType b
      (lexpr2, lexpr2Ty) <- extendContext [lb] (lift expr1)
      return ((Let (NonRec lb lexpr1) lexpr2), lexpr2Ty)

lift (Let (Rec binds) expr2) =
  do
    let (bndVars, exprs)  = unzip binds
    lBndVars           <- mapM liftBinderType bndVars 
    lexprs             <- extendContext bndVars (mapM lift exprs)
    (lexpr2, lexpr2Ty) <- extendContext bndVars (lift expr2)
    return ((Let (Rec (zip  lBndVars (map fst lexprs))) lexpr2), lexpr2Ty)

-- FIXME: 
-- Assumption: alternatives can either be literals or data construtors.
--             Due to type restrictions, I don't think it is possible 
--             that they are mixed.
--             The handling of literals and data constructors is completely
--             different
--
--
-- let b = expr in alts
--
-- I think I read somewhere that the default case (if present) is stored
-- in the head of the list. Assume for now this is true, have to check
--
-- (1) literals
-- (2) data constructors
--
-- FIXME: optimisation: first, filter out all simple expression and 
--   loop (mapP & filter) over all the corresponding values in a single
--   traversal:
							     
--    (1) splitAlts:: [Alt CoreBndr] -> ([Alt CoreBndr],[Alt CoreBndr])
--                                       simple alts     reg alts
--    (2) if simpleAlts = [] then (just as before)
--        if regAlts    = [] then (the whole thing is just a loop)
--        otherwise (a) compute index vector for simpleAlts (for def permute
--                      later on
--                  (b) 
-- gaw 2004 FIX? 
lift cExpr@(Case expr b _ alts)  =
  do  
    (lExpr, _) <- lift expr
    lb    <- liftBinderType  b     -- lift alt-expression
    lalts <- if isLit alts 
                then extendContext [lb] (liftCaseLit b alts)
                else extendContext [lb] (liftCaseDataCon b alts)
    letWrapper lExpr b lalts

lift (Note (Coerce t1 t2) expr) =
  do  
    (lexpr, t) <- lift expr
    let lt1 = liftTy t1
    return ((Note (Coerce lt1 (liftTy t2)) lexpr), lt1)

lift (Note note expr) =
  do 
    (lexpr, t) <- lift expr
    return ((Note note lexpr), t)

lift e@(Type t) = return (e, t)


-- auxilliary functions for lifting of case statements 
--

liftCaseDataCon:: CoreBndr -> [Alt CoreBndr] -> 
       Flatten (([CoreBind], [CoreBind], [CoreBind]))
liftCaseDataCon b [] =
  return ([], [], [])
liftCaseDataCon b alls@(alt:alts)
  | isDefault alt  =
    do
      (i,  e,  defAltBndrs) <- liftCaseDataConDefault b alt alts 
      (is, es, altBndrs)    <- liftCaseDataCon' b alts 
      return (i:is, e:es, defAltBndrs ++ altBndrs)
  | otherwise =
    liftCaseDataCon' b alls

liftCaseDataCon':: CoreBndr -> [Alt CoreBndr] ->  
    Flatten ([CoreBind], [CoreBind], [CoreBind])
liftCaseDataCon' _ [] =
  do
    return ([], [], []) 


liftCaseDataCon' b ((DataAlt dcon, bnds, expr): alts) =
  do
    (permBnd, exprBnd, packBnd)    <-  liftSingleDataCon b dcon bnds expr   
    (permBnds, exprBnds, packBnds) <-  liftCaseDataCon' b alts 
    return (permBnd:permBnds, exprBnd:exprBnds, packBnd ++ packBnds)


-- FIXME: is is really necessary to return the binding to the permutation
-- array in the data constructor case, as the representation already 
-- contains the extended flag vector
liftSingleDataCon:: CoreBndr -> DataCon -> [CoreBndr] -> CoreExpr ->
  Flatten (CoreBind, CoreBind, [CoreBind])
liftSingleDataCon b dcon bnds expr =
  do 
    let dconId           = dataConTag dcon
    indexExpr           <- mkIndexOfExprDCon (idType b)  b dconId
    (bb, bbind)         <- mkBind FSLIT("is") indexExpr
    lbnds               <- mapM liftBinderType bnds
    ((lExpr, _), bnds') <- packContext  bb (extendContext lbnds (lift expr))
    (_, vbind)          <- mkBind FSLIT("r") lExpr
    return (bbind, vbind, bnds')

-- FIXME: clean this up. the datacon and the literal case are so
--   similar that it would be easy to use the same function here
--   instead of duplicating all the code.
--
liftCaseDataConDefault:: CoreBndr -> (Alt CoreBndr) ->  [Alt CoreBndr] 
  ->  Flatten (CoreBind, CoreBind, [CoreBind])
liftCaseDataConDefault b (_, _, def) alts =
  do
    let dconIds        = map (\(DataAlt d, _, _) -> dataConTag d) alts
    indexExpr         <- mkIndexOfExprDConDft (idType b) b dconIds
    (bb, bbind)       <- mkBind FSLIT("is") indexExpr
    ((lDef, _), bnds) <- packContext  bb (lift def)     
    (_, vbind)        <- mkBind FSLIT("r") lDef
    return (bbind, vbind, bnds)

-- liftCaseLit: checks if we have a default case and handles it 
-- if necessary
liftCaseLit:: CoreBndr -> [Alt CoreBndr] -> 
       Flatten ([CoreBind], [CoreBind], [CoreBind])
liftCaseLit b [] =
    return ([], [], [])    --FIXME: a case with no cases at all???
liftCaseLit b alls@(alt:alts)
  | isDefault alt  =
    do
        (i,  e,  defAltBndrs) <- liftCaseLitDefault b alt alts 
        (is, es, altBndrs)    <- liftCaseLit' b alts 
        return (i:is, e:es, defAltBndrs ++ altBndrs)
  | otherwise = 
    do 
      liftCaseLit' b alls 

-- liftCaseLitDefault: looks at all the other alternatives which 
--    contain a literal and filters all those elements from the 
--    array which do not match any of the literals in the other
--    alternatives.
liftCaseLitDefault:: CoreBndr -> (Alt CoreBndr) ->  [Alt CoreBndr] 
  ->  Flatten (CoreBind, CoreBind, [CoreBind])
liftCaseLitDefault b (_, _, def) alts =
  do
    let lits           = map (\(LitAlt l, _, _) -> l) alts
    indexExpr         <- mkIndexOfExprDft (idType b) b lits
    (bb, bbind)       <- mkBind FSLIT("is") indexExpr
    ((lDef, _), bnds) <- packContext  bb (lift def)     
    (_, vbind)        <- mkBind FSLIT("r") lDef
    return (bbind, vbind, bnds)

-- FIXME: 
--  Assumption: in case of Lit, the list of binders of the alt is empty.
--
-- returns 
--   a list of all vars bound to the expr in the body of the alternative
--   a list of (var, expr) pairs, where var has to be bound to expr
--   by letWrapper
liftCaseLit':: CoreBndr -> [Alt CoreBndr] ->  
    Flatten ([CoreBind], [CoreBind], [CoreBind])						       
liftCaseLit' _ [] =
  do
    return ([], [], [])
liftCaseLit' b ((LitAlt lit, [], expr):alts) =
  do
    (permBnd, exprBnd, packBnd)    <-  liftSingleCaseLit b lit expr 
    (permBnds, exprBnds, packBnds) <-  liftCaseLit' b alts 
    return (permBnd:permBnds, exprBnd:exprBnds, packBnd ++ packBnds)

-- lift a single alternative of the form: case  b of lit -> expr. 
--    
--   It returns the bindings:
--   (a) let b' = indexOfP (mapP (\x -> x == lit) b)
--
--   (b) lift expr in the packed context. Returns lexpr and the
--       list of binds (bnds) that describe the packed arrays
--
--   (c) create new var v' to bind lexpr to
--
--   (d) return (b' = indexOf...., v' = lexpr, bnds)
liftSingleCaseLit:: CoreBndr -> Literal -> CoreExpr  -> 
  Flatten (CoreBind, CoreBind, [CoreBind])
liftSingleCaseLit b lit expr =
 do 
   indexExpr          <- mkIndexOfExpr (idType b) b lit -- (a)
   (bb, bbind)        <- mkBind FSLIT("is") indexExpr
   ((lExpr, t), bnds) <- packContext  bb (lift expr)     -- (b)         
   (_, vbind)         <- mkBind FSLIT("r") lExpr
   return (bbind, vbind, bnds)

-- letWrapper lExpr b ([indexbnd_i], [exprbnd_i], [pckbnd_ij])
-- 
-- let b = lExpr in
--  let index_bnd_1 in
--    let packbnd_11 in
--      ... packbnd_1m in 
--         let exprbnd_1 in        ....
--      ...
--          let nvar = replicate dummy (length <current context>)
--               nvar1 = bpermuteDftP index_bnd_1 ...
--
--   in bpermuteDftP index_bnd_n nvar_(n-1)
--
letWrapper:: CoreExpr -> CoreBndr ->([CoreBind], [CoreBind], [CoreBind]) ->
  Flatten (CoreExpr, Type)
letWrapper lExpr b (indBnds, exprBnds, pckBnds)  =
  do 
    (defBpBnds, ty) <- dftbpBinders indBnds exprBnds
    let resExpr      = getExprOfBind (head defBpBnds)
    return ((mkLets (indBnds ++ pckBnds ++ exprBnds ++ defBpBnds) resExpr), ty)

-- dftbpBinders: return the list of binders necessary to construct the overall
--   result from the subresults computed in the different branches of the case
--   statement. The binding which contains the final result is in the *head*
--   of the result list.
-- 
-- dftbpBinders [ind_i = ...] [expr_i = ...] = [dn = ..., d_n-1 = .., d1 = ...]
--
-- let def = replicate (length of context) undefined
--     d1  = bpermuteDftP dft e1 i1
--     .....
--
dftbpBinders:: [CoreBind] -> [CoreBind] -> Flatten ([CoreBind], Type)
dftbpBinders indexBnds exprBnds =
  do
    let expr = getExprOfBind (head exprBnds)
    defVecExpr     <- createDftArrayBind expr
    ((b, bnds), t) <- dftbpBinders' indexBnds exprBnds defVecExpr
    return ((b:bnds),t)
  where
    dftbpBinders' :: [CoreBind] 
		  -> [CoreBind] 
		  -> CoreBind 
		  -> Flatten ((CoreBind, [CoreBind]), Type)
    dftbpBinders' [] [] cBnd =
      return ((cBnd, []), panic "dftbpBinders: undefined type")
    dftbpBinders' (i:is) (e:es) cBind =
      do
	let iVar = getVarOfBind i
	let eVar = getVarOfBind e
	let cVar = getVarOfBind cBind
        let ty   = idType eVar
	newBnd  <- mkDftBackpermute ty iVar eVar cVar
	((fBnd, restBnds), _) <- dftbpBinders' is es newBnd
	return ((fBnd, (newBnd:restBnds)), liftTy ty)

    dftbpBinders'  _ _ _ = 
      panic "Flattening.dftbpBinders: index and expression binder lists have different length!"

getExprOfBind:: CoreBind -> CoreExpr
getExprOfBind (NonRec _ expr) = expr

getVarOfBind:: CoreBind -> Var
getVarOfBind (NonRec b _) = b



-- Optimised Transformation
-- =========================
--

-- liftSimpleFun
--   if variables x_1 to x_i occur in the context *and* free in expr
--   then 
--   (liftSimpleExpression expr) => mapP (\ (x1,..xn) -> expr) (x1,..xn)
--
liftSimpleFun:: CoreBndr -> CoreExpr -> Flatten (CoreExpr, Type)
liftSimpleFun b expr =
  do
    bndVars <- collectBoundVars expr
    let bndVars'     = b:bndVars
        bndVarsTuple = mkTuple (map idType bndVars') (map Var bndVars')
	lamExpr      = mkLams (b:bndVars) expr     -- FIXME: should be tuple
                                                   -- here 
    let (t1, t2)     = funTyArgs . exprType $ lamExpr
    mapExpr         <-  mk'mapP t1 t2 lamExpr bndVarsTuple
    let lexpr        = mkApps mapExpr [bndVarsTuple]
    return (lexpr, undefined)                      -- FIXME!!!!!


collectBoundVars:: CoreExpr -> Flatten [CoreBndr]
collectBoundVars  expr = 
  intersectWithContext (exprFreeVars expr)


-- auxilliary routines
-- -------------------

-- mkIndexOfExpr b lit ->
--   indexOf (mapP (\x -> x == lit) b) b
--
mkIndexOfExpr:: Type -> CoreBndr -> Literal -> Flatten CoreExpr
mkIndexOfExpr  idType b lit =
  do 
    eqExpr        <- mk'eq idType (Var b) (Lit lit)
    let lambdaExpr = (Lam b eqExpr)
    mk'indexOfP idType  lambdaExpr (Var b)

-- there is FlattenMonad.mk'indexOfP as well as
-- CoreSyn.mkApps and CoreSyn.mkLam, all of which should help here

-- for case-distinction over data constructors:
-- let b = expr in 
--   case b of
--      dcon args -> ....
-- dconId = dataConTag dcon 
-- the call "mkIndexOfExprDCon b dconId" computes the core expression for
-- indexOfP (\x -> x == dconId) b)
--
mkIndexOfExprDCon::Type -> CoreBndr -> Int -> Flatten CoreExpr
mkIndexOfExprDCon  idType b dId = 
  do 
    let intExpr    = mkIntLitInt dId
    eqExpr        <- mk'eq  idType (Var b) intExpr
    let lambdaExpr = (Lam b intExpr)
    mk'indexOfP idType lambdaExpr (Var b) 

  

-- there is FlattenMonad.mk'indexOfP as well as
-- CoreSyn.mkApps and CoreSyn.mkLam, all of which should help here

-- mk'IndexOfExprDConDft b dconIds : Generates the index expression for the
-- default case. "dconIds" is a list of all the data constructor idents which 
-- are covered by the other cases.
-- indexOfP (\x -> x != dconId_1 && ....) b)
--
mkIndexOfExprDConDft:: Type -> CoreBndr -> [Int] -> Flatten CoreExpr
mkIndexOfExprDConDft idType b dId  = 
  do 
    let intExprs   = map mkIntLitInt dId
    bExpr         <- foldM (mk'neq idType) (head intExprs) (tail intExprs)
    let lambdaExpr = (Lam b bExpr)
    mk'indexOfP idType (Var b) bExpr
  

-- mkIndexOfExprDef b [lit1, lit2,...] ->
--   indexOf (\x -> not (x == lit1 || x == lit2 ....) b
mkIndexOfExprDft:: Type -> CoreBndr -> [Literal] -> Flatten CoreExpr
mkIndexOfExprDft idType b lits = 
  do 
    let litExprs   = map (\l-> Lit l)  lits
    bExpr         <- foldM (mk'neq idType) (head litExprs) (tail litExprs)
    let lambdaExpr = (Lam b bExpr)
    mk'indexOfP idType bExpr (Var b) 


-- create a back-permute binder
--
--  * `mkDftBackpermute ty indexArrayVar srcArrayVar dftArrayVar' creates a
--   Core binding of the form
--
--     x = bpermuteDftP indexArrayVar srcArrayVar dftArrayVar
--
--   where `x' is a new local variable
--
mkDftBackpermute :: Type -> Var -> Var -> Var -> Flatten CoreBind
mkDftBackpermute ty idx src dft = 
  do
    rhs <- mk'bpermuteDftP ty (Var idx) (Var src) (Var dft)
    liftM snd $ mkBind FSLIT("dbp") rhs

-- create a dummy array with elements of the given type, which can be used as
-- default array for the combination of the subresults of the lifted case
-- expression
--
createDftArrayBind    :: CoreExpr -> Flatten CoreBind
createDftArrayBind e  =
  panic "Flattening.createDftArrayBind: not implemented yet"
{-
  do
    let ty = parrElemTy . exprType $ expr
    len <- mk'lengthP e
    rhs <- mk'replicateP ty len err??
    lift snd $ mkBind FSLIT("dft") rhs
FIXME: nicht so einfach; man kann kein "error"-Wert nehmen, denn der w"urde
  beim bpermuteDftP sofort evaluiert, aber es ist auch schwer m"oglich einen
  generischen Wert f"ur jeden beliebigen Typ zu erfinden.
-}




-- show functions (the pretty print functions sometimes don't 
-- show it the way I want....

-- shows just the structure
showCoreExpr (Var _ )    = "Var "
showCoreExpr (Lit _) = "Lit "
showCoreExpr (App e1 e2) = 
  "(App \n  " ++ (showCoreExpr e1) ++ "\n  " ++ (showCoreExpr e2) ++ ") "
showCoreExpr (Lam b e)   =
  "Lam b " ++ (showCoreExpr e)
showCoreExpr (Let bnds expr) =
  "Let \n" ++ (showBinds bnds) ++ "in " ++ (showCoreExpr expr)
  where showBinds (NonRec b e) = showBind (b,e)
        showBinds (Rec bnds)   = concat (map showBind bnds)
        showBind (b,e) = "  b = " ++ (showCoreExpr e)++ "\n"
-- gaw 2004 FIX?
showCoreExpr (Case ex b ty alts) =
  "Case b = " ++ (showCoreExpr ex) ++ " of \n" ++ (showAlts alts)
  where showAlts _ = ""  
showCoreExpr (Note _ ex) = "Note n " ++ (showCoreExpr ex)
showCoreExpr (Type t) = "Type"