1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
|
%
% (c) The GRASP/AQUA Project, Glasgow University, 1999
%
\section[ParseUtil]{Parser Utilities}
\begin{code}
module ParseUtil (
parseError -- String -> Pa
, mkVanillaCon, mkRecCon,
, mkRecConstrOrUpdate -- HsExp -> [HsFieldUpdate] -> P HsExp
, groupBindings
, mkExtName -- RdrName -> ExtName
, checkPrec -- String -> P String
, checkContext -- HsType -> P HsContext
, checkInstType -- HsType -> P HsType
, checkDataHeader -- HsQualType -> P (HsContext,HsName,[HsName])
, checkSimple -- HsType -> [HsName] -> P ((HsName,[HsName]))
, checkPattern -- HsExp -> P HsPat
, checkPatterns -- SrcLoc -> [HsExp] -> P [HsPat]
, checkDo -- [Stmt] -> P [Stmt]
, checkValDef -- (SrcLoc, HsExp, HsRhs, [HsDecl]) -> P HsDecl
, checkValSig -- (SrcLoc, HsExp, HsRhs, [HsDecl]) -> P HsDecl
) where
#include "HsVersions.h"
import Lex
import HsSyn -- Lots of it
import SrcLoc
import RdrHsSyn ( RdrBinding(..),
RdrNameHsType, RdrNameBangType, RdrNameContext,
RdrNameHsTyVar, RdrNamePat, RdrNameHsExpr, RdrNameGRHSs,
RdrNameHsRecordBinds, RdrNameMonoBinds, RdrNameConDetails,
mkNPlusKPat
)
import RdrName
import PrelNames ( unitTyCon_RDR )
import OccName ( dataName, varName, tcClsName,
occNameSpace, setOccNameSpace, occNameUserString )
import CStrings ( CLabelString )
import FastString ( unpackFS )
import Outputable
-----------------------------------------------------------------------------
-- Misc utils
parseError :: String -> P a
parseError s =
getSrcLocP `thenP` \ loc ->
failMsgP (hcat [ppr loc, text ": ", text s])
-----------------------------------------------------------------------------
-- mkVanillaCon
-- When parsing data declarations, we sometimes inadvertently parse
-- a constructor application as a type (eg. in data T a b = C a b `D` E a b)
-- This function splits up the type application, adds any pending
-- arguments, and converts the type constructor back into a data constructor.
mkVanillaCon :: RdrNameHsType -> [RdrNameBangType] -> P (RdrName, RdrNameConDetails)
mkVanillaCon ty tys
= split ty tys
where
split (HsAppTy t u) ts = split t (unbangedType u : ts)
split (HsTyVar tc) ts = tyConToDataCon tc `thenP` \ data_con ->
returnP (data_con, VanillaCon ts)
split _ _ = parseError "Illegal data/newtype declaration"
mkRecCon :: RdrName -> [([RdrName],RdrNameBangType)] -> P (RdrName, RdrNameConDetails)
mkRecCon con fields
= tyConToDataCon con `thenP` \ data_con ->
returnP (data_con, RecCon fields)
tyConToDataCon :: RdrName -> P RdrName
tyConToDataCon tc
| occNameSpace tc_occ == tcClsName
= returnP (setRdrNameOcc tc (setOccNameSpace tc_occ dataName))
| otherwise
= parseError (showSDoc (text "not a constructor:" <+> quotes (ppr tc)))
where
tc_occ = rdrNameOcc tc
----------------------------------------------------------------------------
-- Various Syntactic Checks
checkInstType :: RdrNameHsType -> P RdrNameHsType
checkInstType t
= case t of
HsForAllTy tvs ctxt ty ->
checkDictTy ty [] `thenP` \ dict_ty ->
returnP (HsForAllTy tvs ctxt dict_ty)
ty -> checkDictTy ty [] `thenP` \ dict_ty->
returnP (HsForAllTy Nothing [] dict_ty)
checkContext :: RdrNameHsType -> P RdrNameContext
checkContext (HsTupleTy _ ts)
= mapP (\t -> checkPred t []) ts `thenP` \ps ->
returnP ps
checkContext (HsTyVar t) -- empty contexts are allowed
| t == unitTyCon_RDR = returnP []
checkContext t
= checkPred t [] `thenP` \p ->
returnP [p]
checkPred :: RdrNameHsType -> [RdrNameHsType]
-> P (HsPred RdrName)
checkPred (HsTyVar t) args@(_:_) | not (isRdrTyVar t)
= returnP (HsClassP t args)
checkPred (HsAppTy l r) args = checkPred l (r:args)
checkPred (HsPredTy (HsIParam n ty)) [] = returnP (HsIParam n ty)
checkPred _ _ = parseError "Illegal class assertion"
checkDictTy :: RdrNameHsType -> [RdrNameHsType] -> P RdrNameHsType
checkDictTy (HsTyVar t) args@(_:_) | not (isRdrTyVar t)
= returnP (mkHsDictTy t args)
checkDictTy (HsAppTy l r) args = checkDictTy l (r:args)
checkDictTy _ _ = parseError "Malformed context in instance header"
-- Put more comments!
-- Checks that the lhs of a datatype declaration
-- is of the form Context => T a b ... z
checkDataHeader :: RdrNameHsType
-> P (RdrNameContext, RdrName, [RdrNameHsTyVar])
checkDataHeader (HsForAllTy Nothing cs t) =
checkSimple t [] `thenP` \(c,ts) ->
returnP (cs,c,map UserTyVar ts)
checkDataHeader t =
checkSimple t [] `thenP` \(c,ts) ->
returnP ([],c,map UserTyVar ts)
-- Checks the type part of the lhs of a datatype declaration
checkSimple :: RdrNameHsType -> [RdrName] -> P ((RdrName,[RdrName]))
checkSimple (HsAppTy l (HsTyVar a)) xs | isRdrTyVar a
= checkSimple l (a:xs)
checkSimple (HsTyVar tycon) xs | not (isRdrTyVar tycon) = returnP (tycon,xs)
checkSimple (HsOpTy (HsTyVar t1) tycon (HsTyVar t2)) []
| not (isRdrTyVar tycon) && isRdrTyVar t1 && isRdrTyVar t2
= returnP (tycon,[t1,t2])
checkSimple t _ = parseError "Illegal left hand side in data/newtype declaration"
---------------------------------------------------------------------------
-- Checking statements in a do-expression
-- We parse do { e1 ; e2 ; }
-- as [ExprStmt e1, ExprStmt e2]
-- checkDo (a) checks that the last thing is an ExprStmt
-- (b) transforms it to a ResultStmt
checkDo [] = parseError "Empty 'do' construct"
checkDo [ExprStmt e _ l] = returnP [ResultStmt e l]
checkDo [s] = parseError "The last statement in a 'do' construct must be an expression"
checkDo (s:ss) = checkDo ss `thenP` \ ss' ->
returnP (s:ss')
---------------------------------------------------------------------------
-- Checking Patterns.
-- We parse patterns as expressions and check for valid patterns below,
-- converting the expression into a pattern at the same time.
checkPattern :: SrcLoc -> RdrNameHsExpr -> P RdrNamePat
checkPattern loc e = setSrcLocP loc (checkPat e [])
checkPatterns :: SrcLoc -> [RdrNameHsExpr] -> P [RdrNamePat]
checkPatterns loc es = mapP (checkPattern loc) es
checkPat :: RdrNameHsExpr -> [RdrNamePat] -> P RdrNamePat
checkPat (HsVar c) args | isRdrDataCon c = returnP (ConPatIn c args)
checkPat (HsApp f x) args =
checkPat x [] `thenP` \x ->
checkPat f (x:args)
checkPat e [] = case e of
EWildPat -> returnP WildPatIn
HsVar x -> returnP (VarPatIn x)
HsLit l -> returnP (LitPatIn l)
HsOverLit l -> returnP (NPatIn l)
ELazyPat e -> checkPat e [] `thenP` (returnP . LazyPatIn)
EAsPat n e -> checkPat e [] `thenP` (returnP . AsPatIn n)
ExprWithTySig e t -> checkPat e [] `thenP` \e ->
-- Pattern signatures are parsed as sigtypes,
-- but they aren't explicit forall points. Hence
-- we have to remove the implicit forall here.
let t' = case t of
HsForAllTy Nothing [] ty -> ty
other -> other
in
returnP (SigPatIn e t')
OpApp (HsVar n) (HsVar plus) _ (HsOverLit lit@(HsIntegral _ _))
| plus == plus_RDR
-> returnP (mkNPlusKPat n lit)
where
plus_RDR = mkUnqual varName SLIT("+") -- Hack
OpApp l op fix r -> checkPat l [] `thenP` \l ->
checkPat r [] `thenP` \r ->
case op of
HsVar c -> returnP (ConOpPatIn l c fix r)
_ -> patFail
HsPar e -> checkPat e [] `thenP` (returnP . ParPatIn)
ExplicitList _ es -> mapP (\e -> checkPat e []) es `thenP` \ps ->
returnP (ListPatIn ps)
ExplicitTuple es b -> mapP (\e -> checkPat e []) es `thenP` \ps ->
returnP (TuplePatIn ps b)
RecordCon c fs -> mapP checkPatField fs `thenP` \fs ->
returnP (RecPatIn c fs)
-- Generics
HsType ty -> returnP (TypePatIn ty)
_ -> patFail
checkPat _ _ = patFail
checkPatField :: (RdrName, RdrNameHsExpr, Bool)
-> P (RdrName, RdrNamePat, Bool)
checkPatField (n,e,b) =
checkPat e [] `thenP` \p ->
returnP (n,p,b)
patFail = parseError "Parse error in pattern"
---------------------------------------------------------------------------
-- Check Equation Syntax
checkValDef
:: RdrNameHsExpr
-> Maybe RdrNameHsType
-> RdrNameGRHSs
-> SrcLoc
-> P RdrBinding
checkValDef lhs opt_sig grhss loc
= case isFunLhs lhs [] of
Just (f,inf,es) ->
checkPatterns loc es `thenP` \ps ->
returnP (RdrValBinding (FunMonoBind f inf [Match [] ps opt_sig grhss] loc))
Nothing ->
checkPattern loc lhs `thenP` \lhs ->
returnP (RdrValBinding (PatMonoBind lhs grhss loc))
checkValSig
:: RdrNameHsExpr
-> RdrNameHsType
-> SrcLoc
-> P RdrBinding
checkValSig (HsVar v) ty loc = returnP (RdrSig (Sig v ty loc))
checkValSig other ty loc = parseError "Type signature given for an expression"
-- A variable binding is parsed as an RdrNameFunMonoBind.
-- See comments with HsBinds.MonoBinds
isFunLhs :: RdrNameHsExpr -> [RdrNameHsExpr] -> Maybe (RdrName, Bool, [RdrNameHsExpr])
isFunLhs (OpApp l (HsVar op) fix r) es | not (isRdrDataCon op)
= Just (op, True, (l:r:es))
| otherwise
= case isFunLhs l es of
Just (op', True, j : k : es') ->
Just (op', True, j : OpApp k (HsVar op) fix r : es')
_ -> Nothing
isFunLhs (HsVar f) es | not (isRdrDataCon f)
= Just (f,False,es)
isFunLhs (HsApp f e) es = isFunLhs f (e:es)
isFunLhs (HsPar e) es = isFunLhs e es
isFunLhs _ _ = Nothing
---------------------------------------------------------------------------
-- Miscellaneous utilities
checkPrec :: Integer -> P ()
checkPrec i | 0 <= i && i <= 9 = returnP ()
| otherwise = parseError "precedence out of range"
mkRecConstrOrUpdate
:: RdrNameHsExpr
-> RdrNameHsRecordBinds
-> P RdrNameHsExpr
mkRecConstrOrUpdate (HsVar c) fs | isRdrDataCon c
= returnP (RecordCon c fs)
mkRecConstrOrUpdate exp fs@(_:_)
= returnP (RecordUpd exp fs)
mkRecConstrOrUpdate _ _
= parseError "Empty record update"
-- Supplying the ext_name in a foreign decl is optional ; if it
-- isn't there, the Haskell name is assumed. Note that no transformation
-- of the Haskell name is then performed, so if you foreign export (++),
-- it's external name will be "++". Too bad; it's important because we don't
-- want z-encoding (e.g. names with z's in them shouldn't be doubled)
-- (This is why we use occNameUserString.)
mkExtName :: RdrName -> CLabelString
mkExtName rdrNm = _PK_ (occNameUserString (rdrNameOcc rdrNm))
-----------------------------------------------------------------------------
-- group function bindings into equation groups
-- we assume the bindings are coming in reverse order, so we take the srcloc
-- from the *last* binding in the group as the srcloc for the whole group.
groupBindings :: [RdrBinding] -> RdrBinding
groupBindings binds = group Nothing binds
where group :: Maybe RdrNameMonoBinds -> [RdrBinding] -> RdrBinding
group (Just bind) [] = RdrValBinding bind
group Nothing [] = RdrNullBind
-- don't group together FunMonoBinds if they have
-- no arguments. This is necessary now that variable bindings
-- with no arguments are now treated as FunMonoBinds rather
-- than pattern bindings (tests/rename/should_fail/rnfail002).
group (Just (FunMonoBind f inf1 mtchs ignore_srcloc))
(RdrValBinding (FunMonoBind f' _
[mtch@(Match _ (_:_) _ _)] loc)
: binds)
| f == f' = group (Just (FunMonoBind f inf1 (mtch:mtchs) loc)) binds
group (Just so_far) binds
= RdrValBinding so_far `RdrAndBindings` group Nothing binds
group Nothing (bind:binds)
= case bind of
RdrValBinding b@(FunMonoBind _ _ _ _) -> group (Just b) binds
other -> bind `RdrAndBindings` group Nothing binds
\end{code}
|