1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
|
%
% (c) The University of Glasgow, 1996-2003
Functions over HsSyn specialised to RdrName.
\begin{code}
module RdrHsSyn (
extractHsTyRdrTyVars,
extractHsRhoRdrTyVars, extractGenericPatTyVars,
mkHsOpApp, mkClassDecl,
mkHsNegApp, mkHsIntegral, mkHsFractional,
mkHsDo, mkHsSplice,
mkTyData, mkPrefixCon, mkRecCon, mkInlineSpec,
mkRecConstrOrUpdate, -- HsExp -> [HsFieldUpdate] -> P HsExp
cvBindGroup,
cvBindsAndSigs,
cvTopDecls,
findSplice, mkGroup,
-- Stuff to do with Foreign declarations
CallConv(..),
mkImport, -- CallConv -> Safety
-- -> (FastString, RdrName, RdrNameHsType)
-- -> P RdrNameHsDecl
mkExport, -- CallConv
-- -> (FastString, RdrName, RdrNameHsType)
-- -> P RdrNameHsDecl
mkExtName, -- RdrName -> CLabelString
mkGadtDecl, -- Located RdrName -> LHsType RdrName -> ConDecl RdrName
-- Bunch of functions in the parser monad for
-- checking and constructing values
checkPrecP, -- Int -> P Int
checkContext, -- HsType -> P HsContext
checkPred, -- HsType -> P HsPred
checkTyClHdr, -- LHsContext RdrName -> LHsType RdrName -> P (LHsContext RdrName, Located RdrName, [LHsTyVarBndr RdrName])
checkSynHdr, -- LHsType RdrName -> P (Located RdrName, [LHsTyVarBndr RdrName])
checkInstType, -- HsType -> P HsType
checkPattern, -- HsExp -> P HsPat
checkPatterns, -- SrcLoc -> [HsExp] -> P [HsPat]
checkDo, -- [Stmt] -> P [Stmt]
checkMDo, -- [Stmt] -> P [Stmt]
checkValDef, -- (SrcLoc, HsExp, HsRhs, [HsDecl]) -> P HsDecl
checkValSig, -- (SrcLoc, HsExp, HsRhs, [HsDecl]) -> P HsDecl
parseError, -- String -> Pa
) where
#include "HsVersions.h"
import HsSyn -- Lots of it
import RdrName ( RdrName, isRdrTyVar, mkUnqual, rdrNameOcc,
isRdrDataCon, isUnqual, getRdrName, isQual,
setRdrNameSpace )
import BasicTypes ( maxPrecedence, Activation, InlineSpec(..), alwaysInlineSpec, neverInlineSpec )
import Lexer ( P, failSpanMsgP, extension, bangPatEnabled )
import TysWiredIn ( unitTyCon )
import ForeignCall ( CCallConv, Safety, CCallTarget(..), CExportSpec(..),
DNCallSpec(..), DNKind(..), CLabelString )
import OccName ( srcDataName, varName, isDataOcc, isTcOcc,
occNameString )
import SrcLoc
import OrdList ( OrdList, fromOL )
import Bag ( Bag, emptyBag, snocBag, consBag, foldrBag )
import Outputable
import FastString
import Panic
import List ( isSuffixOf, nubBy )
\end{code}
%************************************************************************
%* *
\subsection{A few functions over HsSyn at RdrName}
%* *
%************************************************************************
extractHsTyRdrNames finds the free variables of a HsType
It's used when making the for-alls explicit.
\begin{code}
extractHsTyRdrTyVars :: LHsType RdrName -> [Located RdrName]
extractHsTyRdrTyVars ty = nubBy eqLocated (extract_lty ty [])
extractHsRhoRdrTyVars :: LHsContext RdrName -> LHsType RdrName -> [Located RdrName]
-- This one takes the context and tau-part of a
-- sigma type and returns their free type variables
extractHsRhoRdrTyVars ctxt ty
= nubBy eqLocated $ extract_lctxt ctxt (extract_lty ty [])
extract_lctxt ctxt acc = foldr (extract_pred . unLoc) acc (unLoc ctxt)
extract_pred (HsClassP cls tys) acc = foldr extract_lty acc tys
extract_pred (HsIParam n ty) acc = extract_lty ty acc
extract_lty (L loc ty) acc
= case ty of
HsTyVar tv -> extract_tv loc tv acc
HsBangTy _ ty -> extract_lty ty acc
HsAppTy ty1 ty2 -> extract_lty ty1 (extract_lty ty2 acc)
HsListTy ty -> extract_lty ty acc
HsPArrTy ty -> extract_lty ty acc
HsTupleTy _ tys -> foldr extract_lty acc tys
HsFunTy ty1 ty2 -> extract_lty ty1 (extract_lty ty2 acc)
HsPredTy p -> extract_pred p acc
HsOpTy ty1 (L loc tv) ty2 -> extract_tv loc tv (extract_lty ty1 (extract_lty ty2 acc))
HsParTy ty -> extract_lty ty acc
HsNumTy num -> acc
HsSpliceTy _ -> acc -- Type splices mention no type variables
HsKindSig ty k -> extract_lty ty acc
HsForAllTy exp [] cx ty -> extract_lctxt cx (extract_lty ty acc)
HsForAllTy exp tvs cx ty -> acc ++ (filter ((`notElem` locals) . unLoc) $
extract_lctxt cx (extract_lty ty []))
where
locals = hsLTyVarNames tvs
extract_tv :: SrcSpan -> RdrName -> [Located RdrName] -> [Located RdrName]
extract_tv loc tv acc | isRdrTyVar tv = L loc tv : acc
| otherwise = acc
extractGenericPatTyVars :: LHsBinds RdrName -> [Located RdrName]
-- Get the type variables out of the type patterns in a bunch of
-- possibly-generic bindings in a class declaration
extractGenericPatTyVars binds
= nubBy eqLocated (foldrBag get [] binds)
where
get (L _ (FunBind { fun_matches = MatchGroup ms _ })) acc = foldr (get_m.unLoc) acc ms
get other acc = acc
get_m (Match (L _ (TypePat ty) : _) _ _) acc = extract_lty ty acc
get_m other acc = acc
\end{code}
%************************************************************************
%* *
\subsection{Construction functions for Rdr stuff}
%* *
%************************************************************************
mkClassDecl builds a RdrClassDecl, filling in the names for tycon and datacon
by deriving them from the name of the class. We fill in the names for the
tycon and datacon corresponding to the class, by deriving them from the
name of the class itself. This saves recording the names in the interface
file (which would be equally good).
Similarly for mkConDecl, mkClassOpSig and default-method names.
*** See "THE NAMING STORY" in HsDecls ****
\begin{code}
mkClassDecl (cxt, cname, tyvars) fds sigs mbinds
= ClassDecl { tcdCtxt = cxt, tcdLName = cname, tcdTyVars = tyvars,
tcdFDs = fds,
tcdSigs = sigs,
tcdMeths = mbinds
}
mkTyData new_or_data (context, tname, tyvars) ksig data_cons maybe_deriv
= TyData { tcdND = new_or_data, tcdCtxt = context, tcdLName = tname,
tcdTyVars = tyvars, tcdCons = data_cons,
tcdKindSig = ksig, tcdDerivs = maybe_deriv }
\end{code}
\begin{code}
mkHsNegApp :: LHsExpr RdrName -> HsExpr RdrName
-- RdrName If the type checker sees (negate 3#) it will barf, because negate
-- can't take an unboxed arg. But that is exactly what it will see when
-- we write "-3#". So we have to do the negation right now!
mkHsNegApp (L loc e) = f e
where f (HsLit (HsIntPrim i)) = HsLit (HsIntPrim (-i))
f (HsLit (HsFloatPrim i)) = HsLit (HsFloatPrim (-i))
f (HsLit (HsDoublePrim i)) = HsLit (HsDoublePrim (-i))
f expr = NegApp (L loc e) noSyntaxExpr
\end{code}
%************************************************************************
%* *
\subsection[cvBinds-etc]{Converting to @HsBinds@, etc.}
%* *
%************************************************************************
Function definitions are restructured here. Each is assumed to be recursive
initially, and non recursive definitions are discovered by the dependency
analyser.
\begin{code}
-- | Groups together bindings for a single function
cvTopDecls :: OrdList (LHsDecl RdrName) -> [LHsDecl RdrName]
cvTopDecls decls = go (fromOL decls)
where
go :: [LHsDecl RdrName] -> [LHsDecl RdrName]
go [] = []
go (L l (ValD b) : ds) = L l' (ValD b') : go ds'
where (L l' b', ds') = getMonoBind (L l b) ds
go (d : ds) = d : go ds
cvBindGroup :: OrdList (LHsDecl RdrName) -> HsValBinds RdrName
cvBindGroup binding
= case (cvBindsAndSigs binding) of { (mbs, sigs) ->
ValBindsIn mbs sigs
}
cvBindsAndSigs :: OrdList (LHsDecl RdrName)
-> (Bag (LHsBind RdrName), [LSig RdrName])
-- Input decls contain just value bindings and signatures
cvBindsAndSigs fb = go (fromOL fb)
where
go [] = (emptyBag, [])
go (L l (SigD s) : ds) = (bs, L l s : ss)
where (bs,ss) = go ds
go (L l (ValD b) : ds) = (b' `consBag` bs, ss)
where (b',ds') = getMonoBind (L l b) ds
(bs,ss) = go ds'
-----------------------------------------------------------------------------
-- Group function bindings into equation groups
getMonoBind :: LHsBind RdrName -> [LHsDecl RdrName]
-> (LHsBind RdrName, [LHsDecl RdrName])
-- Suppose (b',ds') = getMonoBind b ds
-- ds is a *reversed* list of parsed bindings
-- b is a MonoBinds that has just been read off the front
-- Then b' is the result of grouping more equations from ds that
-- belong with b into a single MonoBinds, and ds' is the depleted
-- list of parsed bindings.
--
-- No AndMonoBinds or EmptyMonoBinds here; just single equations
getMonoBind (L loc bind@(FunBind { fun_id = L _ f, fun_matches = MatchGroup mtchs _ })) binds
| has_args mtchs
= go mtchs loc binds
where
go mtchs1 loc1 (L loc2 (ValD (FunBind { fun_id = L _ f2, fun_matches = MatchGroup mtchs2 _ })) : binds)
| f == f2 = go (mtchs2++mtchs1) loc binds
where loc = combineSrcSpans loc1 loc2
go mtchs1 loc binds
= (L loc (bind { fun_matches = mkMatchGroup (reverse mtchs1) }), binds)
-- Reverse the final matches, to get it back in the right order
getMonoBind bind binds = (bind, binds)
has_args ((L _ (Match args _ _)) : _) = not (null args)
-- Don't group together FunBinds if they have
-- no arguments. This is necessary now that variable bindings
-- with no arguments are now treated as FunBinds rather
-- than pattern bindings (tests/rename/should_fail/rnfail002).
\end{code}
\begin{code}
findSplice :: [LHsDecl a] -> (HsGroup a, Maybe (SpliceDecl a, [LHsDecl a]))
findSplice ds = addl emptyRdrGroup ds
mkGroup :: [LHsDecl a] -> HsGroup a
mkGroup ds = addImpDecls emptyRdrGroup ds
addImpDecls :: HsGroup a -> [LHsDecl a] -> HsGroup a
-- The decls are imported, and should not have a splice
addImpDecls group decls = case addl group decls of
(group', Nothing) -> group'
other -> panic "addImpDecls"
addl :: HsGroup a -> [LHsDecl a] -> (HsGroup a, Maybe (SpliceDecl a, [LHsDecl a]))
-- This stuff reverses the declarations (again) but it doesn't matter
-- Base cases
addl gp [] = (gp, Nothing)
addl gp (L l d : ds) = add gp l d ds
add :: HsGroup a -> SrcSpan -> HsDecl a -> [LHsDecl a]
-> (HsGroup a, Maybe (SpliceDecl a, [LHsDecl a]))
add gp l (SpliceD e) ds = (gp, Just (e, ds))
-- Class declarations: pull out the fixity signatures to the top
add gp@(HsGroup {hs_tyclds = ts, hs_fixds = fs}) l (TyClD d) ds
| isClassDecl d =
let fsigs = [ L l f | L l (FixSig f) <- tcdSigs d ] in
addl (gp { hs_tyclds = L l d : ts, hs_fixds = fsigs ++ fs }) ds
| otherwise =
addl (gp { hs_tyclds = L l d : ts }) ds
-- Signatures: fixity sigs go a different place than all others
add gp@(HsGroup {hs_fixds = ts}) l (SigD (FixSig f)) ds
= addl (gp {hs_fixds = L l f : ts}) ds
add gp@(HsGroup {hs_valds = ts}) l (SigD d) ds
= addl (gp {hs_valds = add_sig (L l d) ts}) ds
-- Value declarations: use add_bind
add gp@(HsGroup {hs_valds = ts}) l (ValD d) ds
= addl (gp { hs_valds = add_bind (L l d) ts }) ds
-- The rest are routine
add gp@(HsGroup {hs_instds = ts}) l (InstD d) ds
= addl (gp { hs_instds = L l d : ts }) ds
add gp@(HsGroup {hs_defds = ts}) l (DefD d) ds
= addl (gp { hs_defds = L l d : ts }) ds
add gp@(HsGroup {hs_fords = ts}) l (ForD d) ds
= addl (gp { hs_fords = L l d : ts }) ds
add gp@(HsGroup {hs_depds = ts}) l (DeprecD d) ds
= addl (gp { hs_depds = L l d : ts }) ds
add gp@(HsGroup {hs_ruleds = ts}) l (RuleD d) ds
= addl (gp { hs_ruleds = L l d : ts }) ds
add_bind b (ValBindsIn bs sigs) = ValBindsIn (bs `snocBag` b) sigs
add_sig s (ValBindsIn bs sigs) = ValBindsIn bs (s:sigs)
\end{code}
%************************************************************************
%* *
\subsection[PrefixToHS-utils]{Utilities for conversion}
%* *
%************************************************************************
\begin{code}
-----------------------------------------------------------------------------
-- mkPrefixCon
-- When parsing data declarations, we sometimes inadvertently parse
-- a constructor application as a type (eg. in data T a b = C a b `D` E a b)
-- This function splits up the type application, adds any pending
-- arguments, and converts the type constructor back into a data constructor.
mkPrefixCon :: LHsType RdrName -> [LBangType RdrName]
-> P (Located RdrName, HsConDetails RdrName (LBangType RdrName))
mkPrefixCon ty tys
= split ty tys
where
split (L _ (HsAppTy t u)) ts = split t (u : ts)
split (L l (HsTyVar tc)) ts = do data_con <- tyConToDataCon l tc
return (data_con, PrefixCon ts)
split (L l _) _ = parseError l "parse error in data/newtype declaration"
mkRecCon :: Located RdrName -> [([Located RdrName], LBangType RdrName)]
-> P (Located RdrName, HsConDetails RdrName (LBangType RdrName))
mkRecCon (L loc con) fields
= do data_con <- tyConToDataCon loc con
return (data_con, RecCon [ (l,t) | (ls,t) <- fields, l <- ls ])
tyConToDataCon :: SrcSpan -> RdrName -> P (Located RdrName)
tyConToDataCon loc tc
| isTcOcc (rdrNameOcc tc)
= return (L loc (setRdrNameSpace tc srcDataName))
| otherwise
= parseError loc (showSDoc (text "Not a constructor:" <+> quotes (ppr tc)))
----------------------------------------------------------------------------
-- Various Syntactic Checks
checkInstType :: LHsType RdrName -> P (LHsType RdrName)
checkInstType (L l t)
= case t of
HsForAllTy exp tvs ctxt ty -> do
dict_ty <- checkDictTy ty
return (L l (HsForAllTy exp tvs ctxt dict_ty))
HsParTy ty -> checkInstType ty
ty -> do dict_ty <- checkDictTy (L l ty)
return (L l (HsForAllTy Implicit [] (noLoc []) dict_ty))
checkTyVars :: [LHsType RdrName] -> P [LHsTyVarBndr RdrName]
checkTyVars tvs
= mapM chk tvs
where
-- Check that the name space is correct!
chk (L l (HsKindSig (L _ (HsTyVar tv)) k))
| isRdrTyVar tv = return (L l (KindedTyVar tv k))
chk (L l (HsTyVar tv))
| isRdrTyVar tv = return (L l (UserTyVar tv))
chk (L l other)
= parseError l "Type found where type variable expected"
checkSynHdr :: LHsType RdrName -> P (Located RdrName, [LHsTyVarBndr RdrName])
checkSynHdr ty = do { (_, tc, tvs) <- checkTyClHdr (noLoc []) ty
; return (tc, tvs) }
checkTyClHdr :: LHsContext RdrName -> LHsType RdrName
-> P (LHsContext RdrName, Located RdrName, [LHsTyVarBndr RdrName])
-- The header of a type or class decl should look like
-- (C a, D b) => T a b
-- or T a b
-- or a + b
-- etc
checkTyClHdr (L l cxt) ty
= do (tc, tvs) <- gol ty []
mapM_ chk_pred cxt
return (L l cxt, tc, tvs)
where
gol (L l ty) acc = go l ty acc
go l (HsTyVar tc) acc
| not (isRdrTyVar tc) = checkTyVars acc >>= \ tvs ->
return (L l tc, tvs)
go l (HsOpTy t1 tc t2) acc = checkTyVars (t1:t2:acc) >>= \ tvs ->
return (tc, tvs)
go l (HsParTy ty) acc = gol ty acc
go l (HsAppTy t1 t2) acc = gol t1 (t2:acc)
go l other acc = parseError l "Malformed LHS to type of class declaration"
-- The predicates in a type or class decl must all
-- be HsClassPs. They need not all be type variables,
-- even in Haskell 98. E.g. class (Monad m, Monad (t m)) => MonadT t m
chk_pred (L l (HsClassP _ args)) = return ()
chk_pred (L l _)
= parseError l "Malformed context in type or class declaration"
checkContext :: LHsType RdrName -> P (LHsContext RdrName)
checkContext (L l t)
= check t
where
check (HsTupleTy _ ts) -- (Eq a, Ord b) shows up as a tuple type
= do ctx <- mapM checkPred ts
return (L l ctx)
check (HsParTy ty) -- to be sure HsParTy doesn't get into the way
= check (unLoc ty)
check (HsTyVar t) -- Empty context shows up as a unit type ()
| t == getRdrName unitTyCon = return (L l [])
check t
= do p <- checkPred (L l t)
return (L l [p])
checkPred :: LHsType RdrName -> P (LHsPred RdrName)
-- Watch out.. in ...deriving( Show )... we use checkPred on
-- the list of partially applied predicates in the deriving,
-- so there can be zero args.
checkPred (L spn (HsPredTy (HsIParam n ty)))
= return (L spn (HsIParam n ty))
checkPred (L spn ty)
= check spn ty []
where
checkl (L l ty) args = check l ty args
check _loc (HsTyVar t) args | not (isRdrTyVar t)
= return (L spn (HsClassP t args))
check _loc (HsAppTy l r) args = checkl l (r:args)
check _loc (HsOpTy l (L loc tc) r) args = check loc (HsTyVar tc) (l:r:args)
check _loc (HsParTy t) args = checkl t args
check loc _ _ = parseError loc "malformed class assertion"
checkDictTy :: LHsType RdrName -> P (LHsType RdrName)
checkDictTy (L spn ty) = check ty []
where
check (HsTyVar t) args | not (isRdrTyVar t)
= return (L spn (HsPredTy (HsClassP t args)))
check (HsAppTy l r) args = check (unLoc l) (r:args)
check (HsParTy t) args = check (unLoc t) args
check _ _ = parseError spn "Malformed context in instance header"
---------------------------------------------------------------------------
-- Checking statements in a do-expression
-- We parse do { e1 ; e2 ; }
-- as [ExprStmt e1, ExprStmt e2]
-- checkDo (a) checks that the last thing is an ExprStmt
-- (b) returns it separately
-- same comments apply for mdo as well
checkDo = checkDoMDo "a " "'do'"
checkMDo = checkDoMDo "an " "'mdo'"
checkDoMDo :: String -> String -> SrcSpan -> [LStmt RdrName] -> P ([LStmt RdrName], LHsExpr RdrName)
checkDoMDo pre nm loc [] = parseError loc ("Empty " ++ nm ++ " construct")
checkDoMDo pre nm loc ss = do
check ss
where
check [L l (ExprStmt e _ _)] = return ([], e)
check [L l _] = parseError l ("The last statement in " ++ pre ++ nm ++
" construct must be an expression")
check (s:ss) = do
(ss',e') <- check ss
return ((s:ss'),e')
-- -------------------------------------------------------------------------
-- Checking Patterns.
-- We parse patterns as expressions and check for valid patterns below,
-- converting the expression into a pattern at the same time.
checkPattern :: LHsExpr RdrName -> P (LPat RdrName)
checkPattern e = checkLPat e
checkPatterns :: [LHsExpr RdrName] -> P [LPat RdrName]
checkPatterns es = mapM checkPattern es
checkLPat :: LHsExpr RdrName -> P (LPat RdrName)
checkLPat e@(L l _) = checkPat l e []
checkPat :: SrcSpan -> LHsExpr RdrName -> [LPat RdrName] -> P (LPat RdrName)
checkPat loc (L l (HsVar c)) args
| isRdrDataCon c = return (L loc (ConPatIn (L l c) (PrefixCon args)))
checkPat loc e args -- OK to let this happen even if bang-patterns
-- are not enabled, because there is no valid
-- non-bang-pattern parse of (C ! e)
| Just (e', args') <- splitBang e
= do { args'' <- checkPatterns args'
; checkPat loc e' (args'' ++ args) }
checkPat loc (L _ (HsApp f x)) args
= do { x <- checkLPat x; checkPat loc f (x:args) }
checkPat loc (L _ e) []
= do { p <- checkAPat loc e; return (L loc p) }
checkPat loc pat _some_args
= patFail loc
checkAPat loc e = case e of
EWildPat -> return (WildPat placeHolderType)
HsVar x | isQual x -> parseError loc ("Qualified variable in pattern: "
++ showRdrName x)
| otherwise -> return (VarPat x)
HsLit l -> return (LitPat l)
-- Overloaded numeric patterns (e.g. f 0 x = x)
-- Negation is recorded separately, so that the literal is zero or +ve
-- NB. Negative *primitive* literals are already handled by
-- RdrHsSyn.mkHsNegApp
HsOverLit pos_lit -> return (mkNPat pos_lit Nothing)
NegApp (L _ (HsOverLit pos_lit)) _
-> return (mkNPat pos_lit (Just noSyntaxExpr))
SectionR (L _ (HsVar bang)) e
| bang == bang_RDR -> checkLPat e >>= (return . BangPat)
ELazyPat e -> checkLPat e >>= (return . LazyPat)
EAsPat n e -> checkLPat e >>= (return . AsPat n)
ExprWithTySig e t -> checkLPat e >>= \e ->
-- Pattern signatures are parsed as sigtypes,
-- but they aren't explicit forall points. Hence
-- we have to remove the implicit forall here.
let t' = case t of
L _ (HsForAllTy Implicit _ (L _ []) ty) -> ty
other -> other
in
return (SigPatIn e t')
-- n+k patterns
OpApp (L nloc (HsVar n)) (L _ (HsVar plus)) _
(L _ (HsOverLit lit@(HsIntegral _ _)))
| plus == plus_RDR
-> return (mkNPlusKPat (L nloc n) lit)
OpApp l op fix r -> checkLPat l >>= \l ->
checkLPat r >>= \r ->
case op of
L cl (HsVar c) | isDataOcc (rdrNameOcc c)
-> return (ConPatIn (L cl c) (InfixCon l r))
_ -> patFail loc
HsPar e -> checkLPat e >>= (return . ParPat)
ExplicitList _ es -> mapM (\e -> checkLPat e) es >>= \ps ->
return (ListPat ps placeHolderType)
ExplicitPArr _ es -> mapM (\e -> checkLPat e) es >>= \ps ->
return (PArrPat ps placeHolderType)
ExplicitTuple es b -> mapM (\e -> checkLPat e) es >>= \ps ->
return (TuplePat ps b placeHolderType)
RecordCon c _ fs -> mapM checkPatField fs >>= \fs ->
return (ConPatIn c (RecCon fs))
-- Generics
HsType ty -> return (TypePat ty)
_ -> patFail loc
plus_RDR, bang_RDR :: RdrName
plus_RDR = mkUnqual varName FSLIT("+") -- Hack
bang_RDR = mkUnqual varName FSLIT("!") -- Hack
checkPatField :: (Located RdrName, LHsExpr RdrName) -> P (Located RdrName, LPat RdrName)
checkPatField (n,e) = do
p <- checkLPat e
return (n,p)
patFail loc = parseError loc "Parse error in pattern"
---------------------------------------------------------------------------
-- Check Equation Syntax
checkValDef :: LHsExpr RdrName
-> Maybe (LHsType RdrName)
-> Located (GRHSs RdrName)
-> P (HsBind RdrName)
checkValDef lhs opt_sig grhss
= do { mb_fun <- isFunLhs lhs
; case mb_fun of
Just (fun, is_infix, pats) -> checkFunBind (getLoc lhs)
fun is_infix pats opt_sig grhss
Nothing -> checkPatBind lhs grhss }
checkFunBind lhs_loc fun is_infix pats opt_sig (L rhs_span grhss)
| isQual (unLoc fun)
= parseError (getLoc fun) ("Qualified name in function definition: " ++
showRdrName (unLoc fun))
| otherwise
= do ps <- checkPatterns pats
let match_span = combineSrcSpans lhs_loc rhs_span
matches = mkMatchGroup [L match_span (Match ps opt_sig grhss)]
return (FunBind { fun_id = fun, fun_infix = is_infix, fun_matches = matches,
fun_co_fn = idCoercion, bind_fvs = placeHolderNames })
-- The span of the match covers the entire equation.
-- That isn't quite right, but it'll do for now.
checkPatBind lhs (L _ grhss)
= do { lhs <- checkPattern lhs
; return (PatBind lhs grhss placeHolderType placeHolderNames) }
checkValSig
:: LHsExpr RdrName
-> LHsType RdrName
-> P (Sig RdrName)
checkValSig (L l (HsVar v)) ty
| isUnqual v && not (isDataOcc (rdrNameOcc v))
= return (TypeSig (L l v) ty)
checkValSig (L l other) ty
= parseError l "Invalid type signature"
mkGadtDecl
:: Located RdrName
-> LHsType RdrName -- assuming HsType
-> ConDecl RdrName
mkGadtDecl name (L _ (HsForAllTy _ qvars cxt ty)) = ConDecl
{ con_name = name
, con_explicit = Implicit
, con_qvars = qvars
, con_cxt = cxt
, con_details = PrefixCon args
, con_res = ResTyGADT res
}
where
(args, res) = splitHsFunType ty
mkGadtDecl name ty = ConDecl
{ con_name = name
, con_explicit = Implicit
, con_qvars = []
, con_cxt = noLoc []
, con_details = PrefixCon args
, con_res = ResTyGADT res
}
where
(args, res) = splitHsFunType ty
-- A variable binding is parsed as a FunBind.
-- The parser left-associates, so there should
-- not be any OpApps inside the e's
splitBang :: LHsExpr RdrName -> Maybe (LHsExpr RdrName, [LHsExpr RdrName])
-- Splits (f ! g a b) into (f, [(! g), a, g])
splitBang (L loc (OpApp l_arg bang@(L loc' (HsVar op)) _ r_arg))
| op == bang_RDR = Just (l_arg, L loc (SectionR bang arg1) : argns)
where
(arg1,argns) = split_bang r_arg []
split_bang (L _ (HsApp f e)) es = split_bang f (e:es)
split_bang e es = (e,es)
splitBang other = Nothing
isFunLhs :: LHsExpr RdrName
-> P (Maybe (Located RdrName, Bool, [LHsExpr RdrName]))
-- Just (fun, is_infix, arg_pats) if e is a function LHS
isFunLhs e = go e []
where
go (L loc (HsVar f)) es
| not (isRdrDataCon f) = return (Just (L loc f, False, es))
go (L _ (HsApp f e)) es = go f (e:es)
go (L _ (HsPar e)) es@(_:_) = go e es
go e@(L loc (OpApp l (L loc' (HsVar op)) fix r)) es
| Just (e',es') <- splitBang e
= do { bang_on <- extension bangPatEnabled
; if bang_on then go e' (es' ++ es)
else return (Just (L loc' op, True, (l:r:es))) }
-- No bangs; behave just like the next case
| not (isRdrDataCon op)
= return (Just (L loc' op, True, (l:r:es)))
| otherwise
= do { mb_l <- go l es
; case mb_l of
Just (op', True, j : k : es')
-> return (Just (op', True, j : op_app : es'))
where
op_app = L loc (OpApp k (L loc' (HsVar op)) fix r)
_ -> return Nothing }
go _ _ = return Nothing
---------------------------------------------------------------------------
-- Miscellaneous utilities
checkPrecP :: Located Int -> P Int
checkPrecP (L l i)
| 0 <= i && i <= maxPrecedence = return i
| otherwise = parseError l "Precedence out of range"
mkRecConstrOrUpdate
:: LHsExpr RdrName
-> SrcSpan
-> HsRecordBinds RdrName
-> P (HsExpr RdrName)
mkRecConstrOrUpdate (L l (HsVar c)) loc fs | isRdrDataCon c
= return (RecordCon (L l c) noPostTcExpr fs)
mkRecConstrOrUpdate exp loc fs@(_:_)
= return (RecordUpd exp fs placeHolderType placeHolderType)
mkRecConstrOrUpdate _ loc []
= parseError loc "Empty record update"
mkInlineSpec :: Maybe Activation -> Bool -> InlineSpec
-- The Maybe is becuase the user can omit the activation spec (and usually does)
mkInlineSpec Nothing True = alwaysInlineSpec -- INLINE
mkInlineSpec Nothing False = neverInlineSpec -- NOINLINE
mkInlineSpec (Just act) inl = Inline act inl
-----------------------------------------------------------------------------
-- utilities for foreign declarations
-- supported calling conventions
--
data CallConv = CCall CCallConv -- ccall or stdcall
| DNCall -- .NET
-- construct a foreign import declaration
--
mkImport :: CallConv
-> Safety
-> (Located FastString, Located RdrName, LHsType RdrName)
-> P (HsDecl RdrName)
mkImport (CCall cconv) safety (entity, v, ty) = do
importSpec <- parseCImport entity cconv safety v
return (ForD (ForeignImport v ty importSpec False))
mkImport (DNCall ) _ (entity, v, ty) = do
spec <- parseDImport entity
return $ ForD (ForeignImport v ty (DNImport spec) False)
-- parse the entity string of a foreign import declaration for the `ccall' or
-- `stdcall' calling convention'
--
parseCImport :: Located FastString
-> CCallConv
-> Safety
-> Located RdrName
-> P ForeignImport
parseCImport (L loc entity) cconv safety v
-- FIXME: we should allow white space around `dynamic' and `wrapper' -=chak
| entity == FSLIT ("dynamic") =
return $ CImport cconv safety nilFS nilFS (CFunction DynamicTarget)
| entity == FSLIT ("wrapper") =
return $ CImport cconv safety nilFS nilFS CWrapper
| otherwise = parse0 (unpackFS entity)
where
-- using the static keyword?
parse0 (' ': rest) = parse0 rest
parse0 ('s':'t':'a':'t':'i':'c':rest) = parse1 rest
parse0 rest = parse1 rest
-- check for header file name
parse1 "" = parse4 "" nilFS False nilFS
parse1 (' ':rest) = parse1 rest
parse1 str@('&':_ ) = parse2 str nilFS
parse1 str@('[':_ ) = parse3 str nilFS False
parse1 str
| ".h" `isSuffixOf` first = parse2 rest (mkFastString first)
| otherwise = parse4 str nilFS False nilFS
where
(first, rest) = break (\c -> c == ' ' || c == '&' || c == '[') str
-- check for address operator (indicating a label import)
parse2 "" header = parse4 "" header False nilFS
parse2 (' ':rest) header = parse2 rest header
parse2 ('&':rest) header = parse3 rest header True
parse2 str@('[':_ ) header = parse3 str header False
parse2 str header = parse4 str header False nilFS
-- check for library object name
parse3 (' ':rest) header isLbl = parse3 rest header isLbl
parse3 ('[':rest) header isLbl =
case break (== ']') rest of
(lib, ']':rest) -> parse4 rest header isLbl (mkFastString lib)
_ -> parseError loc "Missing ']' in entity"
parse3 str header isLbl = parse4 str header isLbl nilFS
-- check for name of C function
parse4 "" header isLbl lib = build (mkExtName (unLoc v)) header isLbl lib
parse4 (' ':rest) header isLbl lib = parse4 rest header isLbl lib
parse4 str header isLbl lib
| all (== ' ') rest = build (mkFastString first) header isLbl lib
| otherwise = parseError loc "Malformed entity string"
where
(first, rest) = break (== ' ') str
--
build cid header False lib = return $
CImport cconv safety header lib (CFunction (StaticTarget cid))
build cid header True lib = return $
CImport cconv safety header lib (CLabel cid )
--
-- Unravel a dotnet spec string.
--
parseDImport :: Located FastString -> P DNCallSpec
parseDImport (L loc entity) = parse0 comps
where
comps = words (unpackFS entity)
parse0 [] = d'oh
parse0 (x : xs)
| x == "static" = parse1 True xs
| otherwise = parse1 False (x:xs)
parse1 _ [] = d'oh
parse1 isStatic (x:xs)
| x == "method" = parse2 isStatic DNMethod xs
| x == "field" = parse2 isStatic DNField xs
| x == "ctor" = parse2 isStatic DNConstructor xs
parse1 isStatic xs = parse2 isStatic DNMethod xs
parse2 _ _ [] = d'oh
parse2 isStatic kind (('[':x):xs) =
case x of
[] -> d'oh
vs | last vs == ']' -> parse3 isStatic kind (init vs) xs
parse2 isStatic kind xs = parse3 isStatic kind "" xs
parse3 isStatic kind assem [x] =
return (DNCallSpec isStatic kind assem x
-- these will be filled in once known.
(error "FFI-dotnet-args")
(error "FFI-dotnet-result"))
parse3 _ _ _ _ = d'oh
d'oh = parseError loc "Malformed entity string"
-- construct a foreign export declaration
--
mkExport :: CallConv
-> (Located FastString, Located RdrName, LHsType RdrName)
-> P (HsDecl RdrName)
mkExport (CCall cconv) (L loc entity, v, ty) = return $
ForD (ForeignExport v ty (CExport (CExportStatic entity' cconv)) False)
where
entity' | nullFS entity = mkExtName (unLoc v)
| otherwise = entity
mkExport DNCall (L loc entity, v, ty) =
parseError (getLoc v){-TODO: not quite right-}
"Foreign export is not yet supported for .NET"
-- Supplying the ext_name in a foreign decl is optional; if it
-- isn't there, the Haskell name is assumed. Note that no transformation
-- of the Haskell name is then performed, so if you foreign export (++),
-- it's external name will be "++". Too bad; it's important because we don't
-- want z-encoding (e.g. names with z's in them shouldn't be doubled)
--
mkExtName :: RdrName -> CLabelString
mkExtName rdrNm = mkFastString (occNameString (rdrNameOcc rdrNm))
\end{code}
-----------------------------------------------------------------------------
-- Misc utils
\begin{code}
showRdrName :: RdrName -> String
showRdrName r = showSDoc (ppr r)
parseError :: SrcSpan -> String -> P a
parseError span s = failSpanMsgP span s
\end{code}
|