1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
|
%
% (c) The AQUA Project, Glasgow University, 1996-1998
%
\section[RdrHsSyn]{Specialisations of the @HsSyn@ syntax for the reader}
(Well, really, for specialisations involving @RdrName@s, even if
they are used somewhat later on in the compiler...)
\begin{code}
module RdrHsSyn (
RdrNameArithSeqInfo,
RdrNameBangType,
RdrNameClassOpSig,
RdrNameConDecl,
RdrNameConDetails,
RdrNameContext,
RdrNameDefaultDecl,
RdrNameForeignDecl,
RdrNameGRHS,
RdrNameGRHSs,
RdrNameHsBinds,
RdrNameHsCmd,
RdrNameHsCmdTop,
RdrNameHsDecl,
RdrNameHsExpr,
RdrNameHsModule,
RdrNameIE,
RdrNameImportDecl,
RdrNameInstDecl,
RdrNameMatch,
RdrNameMonoBinds,
RdrNamePat,
RdrNameHsType,
RdrNameHsTyVar,
RdrNameSig,
RdrNameStmt,
RdrNameTyClDecl,
RdrNameRuleDecl,
RdrNameRuleBndr,
RdrNameDeprecation,
RdrNameHsRecordBinds,
RdrNameFixitySig,
RdrBinding(..),
RdrMatch(..),
main_RDR_Unqual,
extractHsTyRdrTyVars,
extractHsRhoRdrTyVars, extractGenericPatTyVars,
mkHsOpApp, mkClassDecl,
mkHsNegApp, mkNPlusKPat, mkHsIntegral, mkHsFractional,
mkHsDo, mkHsSplice, mkSigDecls,
mkTyData, mkPrefixCon, mkRecCon,
mkRecConstrOrUpdate, -- HsExp -> [HsFieldUpdate] -> P HsExp
mkBootIface,
cvBinds,
cvMonoBindsAndSigs,
cvTopDecls,
findSplice, addImpDecls, emptyGroup, mkGroup,
-- Stuff to do with Foreign declarations
, CallConv(..)
, mkImport -- CallConv -> Safety
-- -> (FastString, RdrName, RdrNameHsType)
-- -> SrcLoc
-- -> P RdrNameHsDecl
, mkExport -- CallConv
-- -> (FastString, RdrName, RdrNameHsType)
-- -> SrcLoc
-- -> P RdrNameHsDecl
, mkExtName -- RdrName -> CLabelString
-- Bunch of functions in the parser monad for
-- checking and constructing values
, checkPrecP -- Int -> P Int
, checkContext -- HsType -> P HsContext
, checkPred -- HsType -> P HsPred
, checkTyVars -- [HsTyVar] -> P [HsType]
, checkTyClHdr -- HsType -> (name,[tyvar])
, checkInstType -- HsType -> P HsType
, checkPattern -- HsExp -> P HsPat
, checkPatterns -- SrcLoc -> [HsExp] -> P [HsPat]
, checkDo -- [Stmt] -> P [Stmt]
, checkMDo -- [Stmt] -> P [Stmt]
, checkValDef -- (SrcLoc, HsExp, HsRhs, [HsDecl]) -> P HsDecl
, checkValSig -- (SrcLoc, HsExp, HsRhs, [HsDecl]) -> P HsDecl
, parseError -- String -> Pa
) where
#include "HsVersions.h"
import HsSyn -- Lots of it
import IfaceType
import HscTypes ( ModIface(..), emptyModIface, mkIfaceVerCache )
import IfaceSyn ( IfaceDecl(..), IfaceIdInfo(..) )
import RdrName ( RdrName, isRdrTyVar, mkRdrUnqual, mkUnqual, rdrNameOcc,
isRdrTyVar, isRdrDataCon, isUnqual, getRdrName, isQual,
setRdrNameSpace, rdrNameModule )
import BasicTypes ( RecFlag(..), mapIPName, maxPrecedence, initialVersion )
import Lexer ( P, setSrcLocFor, getSrcLoc, failLocMsgP )
import HscTypes ( GenAvailInfo(..) )
import TysWiredIn ( unitTyCon )
import ForeignCall ( CCallConv, Safety, CCallTarget(..), CExportSpec(..),
DNCallSpec(..), DNKind(..))
import OccName ( OccName, srcDataName, varName, isDataOcc, isTcOcc,
occNameUserString, mkVarOcc, isValOcc )
import BasicTypes ( initialVersion )
import TyCon ( DataConDetails(..) )
import Module ( ModuleName )
import SrcLoc
import CStrings ( CLabelString )
import CmdLineOpts ( opt_InPackage )
import List ( isSuffixOf, nub )
import Outputable
import FastString
import Panic
\end{code}
%************************************************************************
%* *
\subsection{Type synonyms}
%* *
%************************************************************************
\begin{code}
type RdrNameArithSeqInfo = ArithSeqInfo RdrName
type RdrNameBangType = BangType RdrName
type RdrNameClassOpSig = Sig RdrName
type RdrNameConDecl = ConDecl RdrName
type RdrNameConDetails = HsConDetails RdrName RdrNameBangType
type RdrNameContext = HsContext RdrName
type RdrNameHsDecl = HsDecl RdrName
type RdrNameDefaultDecl = DefaultDecl RdrName
type RdrNameForeignDecl = ForeignDecl RdrName
type RdrNameGRHS = GRHS RdrName
type RdrNameGRHSs = GRHSs RdrName
type RdrNameHsBinds = HsBinds RdrName
type RdrNameHsExpr = HsExpr RdrName
type RdrNameHsCmd = HsCmd RdrName
type RdrNameHsCmdTop = HsCmdTop RdrName
type RdrNameHsModule = HsModule RdrName
type RdrNameIE = IE RdrName
type RdrNameImportDecl = ImportDecl RdrName
type RdrNameInstDecl = InstDecl RdrName
type RdrNameMatch = Match RdrName
type RdrNameMonoBinds = MonoBinds RdrName
type RdrNamePat = InPat RdrName
type RdrNameHsType = HsType RdrName
type RdrNameHsTyVar = HsTyVarBndr RdrName
type RdrNameSig = Sig RdrName
type RdrNameStmt = Stmt RdrName
type RdrNameTyClDecl = TyClDecl RdrName
type RdrNameRuleBndr = RuleBndr RdrName
type RdrNameRuleDecl = RuleDecl RdrName
type RdrNameDeprecation = DeprecDecl RdrName
type RdrNameFixitySig = FixitySig RdrName
type RdrNameHsRecordBinds = HsRecordBinds RdrName
\end{code}
\begin{code}
main_RDR_Unqual :: RdrName
main_RDR_Unqual = mkUnqual varName FSLIT("main")
-- We definitely don't want an Orig RdrName, because
-- main might, in principle, be imported into module Main
\end{code}
%************************************************************************
%* *
\subsection{A few functions over HsSyn at RdrName}
%* *
%************************************************************************
@extractHsTyRdrNames@ finds the free variables of a HsType
It's used when making the for-alls explicit.
\begin{code}
extractHsTyRdrTyVars :: RdrNameHsType -> [RdrName]
extractHsTyRdrTyVars ty = nub (filter isRdrTyVar (extract_ty ty []))
extractHsRhoRdrTyVars :: HsContext RdrName -> RdrNameHsType -> [RdrName]
-- This one takes the context and tau-part of a
-- sigma type and returns their free type variables
extractHsRhoRdrTyVars ctxt ty = nub $ filter isRdrTyVar $
extract_ctxt ctxt (extract_ty ty [])
extract_ctxt ctxt acc = foldr extract_pred acc ctxt
extract_pred (HsClassP cls tys) acc = foldr extract_ty (cls : acc) tys
extract_pred (HsIParam n ty) acc = extract_ty ty acc
extract_ty (HsAppTy ty1 ty2) acc = extract_ty ty1 (extract_ty ty2 acc)
extract_ty (HsListTy ty) acc = extract_ty ty acc
extract_ty (HsPArrTy ty) acc = extract_ty ty acc
extract_ty (HsTupleTy _ tys) acc = foldr extract_ty acc tys
extract_ty (HsFunTy ty1 ty2) acc = extract_ty ty1 (extract_ty ty2 acc)
extract_ty (HsPredTy p) acc = extract_pred p acc
extract_ty (HsTyVar tv) acc = tv : acc
extract_ty (HsForAllTy Nothing cx ty) acc = extract_ctxt cx (extract_ty ty acc)
extract_ty (HsOpTy ty1 nam ty2) acc = extract_ty ty1 (extract_ty ty2 acc)
extract_ty (HsParTy ty) acc = extract_ty ty acc
-- Generics
extract_ty (HsNumTy num) acc = acc
extract_ty (HsKindSig ty k) acc = extract_ty ty acc
extract_ty (HsForAllTy (Just tvs) ctxt ty)
acc = acc ++
(filter (`notElem` locals) $
extract_ctxt ctxt (extract_ty ty []))
where
locals = hsTyVarNames tvs
extractGenericPatTyVars :: RdrNameMonoBinds -> [RdrName]
-- Get the type variables out of the type patterns in a bunch of
-- possibly-generic bindings in a class declaration
extractGenericPatTyVars binds
= filter isRdrTyVar (nub (get binds []))
where
get (AndMonoBinds b1 b2) acc = get b1 (get b2 acc)
get (FunMonoBind _ _ ms _) acc = foldr get_m acc ms
get other acc = acc
get_m (Match (TypePat ty : _) _ _) acc = extract_ty ty acc
get_m other acc = acc
\end{code}
%************************************************************************
%* *
\subsection{Construction functions for Rdr stuff}
%* *
%************************************************************************
mkClassDecl builds a RdrClassDecl, filling in the names for tycon and datacon
by deriving them from the name of the class. We fill in the names for the
tycon and datacon corresponding to the class, by deriving them from the
name of the class itself. This saves recording the names in the interface
file (which would be equally good).
Similarly for mkConDecl, mkClassOpSig and default-method names.
*** See "THE NAMING STORY" in HsDecls ****
\begin{code}
mkClassDecl (cxt, cname, tyvars) fds sigs mbinds loc
= ClassDecl { tcdCtxt = cxt, tcdName = cname, tcdTyVars = tyvars,
tcdFDs = fds,
tcdSigs = sigs,
tcdMeths = mbinds,
tcdLoc = loc }
mkTyData new_or_data (context, tname, tyvars) data_cons maybe src
= TyData { tcdND = new_or_data, tcdCtxt = context, tcdName = tname,
tcdTyVars = tyvars, tcdCons = data_cons,
tcdDerivs = maybe, tcdLoc = src }
\end{code}
\begin{code}
mkHsNegApp :: RdrNameHsExpr -> RdrNameHsExpr
-- If the type checker sees (negate 3#) it will barf, because negate
-- can't take an unboxed arg. But that is exactly what it will see when
-- we write "-3#". So we have to do the negation right now!
mkHsNegApp (HsLit (HsIntPrim i)) = HsLit (HsIntPrim (-i))
mkHsNegApp (HsLit (HsFloatPrim i)) = HsLit (HsFloatPrim (-i))
mkHsNegApp (HsLit (HsDoublePrim i)) = HsLit (HsDoublePrim (-i))
mkHsNegApp expr = NegApp expr placeHolderName
\end{code}
A useful function for building @OpApps@. The operator is always a
variable, and we don't know the fixity yet.
\begin{code}
mkHsOpApp e1 op e2 = OpApp e1 (HsVar op) (error "mkOpApp:fixity") e2
\end{code}
These are the bits of syntax that contain rebindable names
See RnEnv.lookupSyntaxName
\begin{code}
mkHsIntegral i = HsIntegral i placeHolderName
mkHsFractional f = HsFractional f placeHolderName
mkNPlusKPat n k = NPlusKPatIn n k placeHolderName
mkHsDo ctxt stmts loc = HsDo ctxt stmts [] placeHolderType loc
\end{code}
\begin{code}
mkHsSplice e loc = HsSplice unqualSplice e loc
unqualSplice = mkRdrUnqual (mkVarOcc FSLIT("splice"))
-- A name (uniquified later) to
-- identify the splice
\end{code}
%************************************************************************
%* *
Hi-boot files
%* *
%************************************************************************
mkBootIface, and its boring helper functions, have two purposes:
a) HsSyn to IfaceSyn. The parser parses the former, but we're reading
an hi-boot file, and interfaces consist of the latter
b) Convert unqualifed names from the "current module" to qualified Orig
names. E.g.
module This where
foo :: GHC.Base.Int -> GHC.Base.Int
becomes
This.foo :: GHC.Base.Int -> GHC.Base.Int
It assumes that everything is well kinded, of course.
\begin{code}
mkBootIface :: ModuleName -> [HsDecl RdrName] -> ModIface
-- Make the ModIface for a hi-boot file
-- The decls are of very limited form
mkBootIface mod decls
= (emptyModIface opt_InPackage mod) {
mi_boot = True,
mi_exports = [(mod, map mk_export decls')],
mi_decls = decls_w_vers,
mi_ver_fn = mkIfaceVerCache decls_w_vers }
where
decls' = map hsIfaceDecl decls
decls_w_vers = repeat initialVersion `zip` decls'
-- hi-boot declarations don't (currently)
-- expose constructors or class methods
mk_export decl | isValOcc occ = Avail occ
| otherwise = AvailTC occ [occ]
where
occ = ifName decl
hsIfaceDecl :: HsDecl RdrName -> IfaceDecl
-- Change to Iface syntax, and replace unqualified names with
-- qualified Orig names from this module. Reason: normal
-- iface files have everything fully qualified, so it's convenient
-- for hi-boot files to look the same
--
-- NB: no constructors or class ops to worry about
hsIfaceDecl (SigD (Sig name ty _))
= IfaceId { ifName = rdrNameOcc name,
ifType = hsIfaceType ty,
ifIdInfo = NoInfo }
hsIfaceDecl (TyClD decl@(TySynonym {}))
= IfaceSyn { ifName = rdrNameOcc (tcdName decl),
ifTyVars = hsIfaceTvs (tcdTyVars decl),
ifSynRhs = hsIfaceType (tcdSynRhs decl),
ifVrcs = [] }
hsIfaceDecl (TyClD decl@(TyData {}))
= IfaceData { ifND = tcdND decl,
ifName = rdrNameOcc (tcdName decl),
ifTyVars = hsIfaceTvs (tcdTyVars decl),
ifCtxt = hsIfaceCtxt (tcdCtxt decl),
ifCons = Unknown, ifRec = NonRecursive,
ifVrcs = [], ifGeneric = False }
hsIfaceDecl (TyClD decl@(ClassDecl {}))
= IfaceClass { ifName = rdrNameOcc (tcdName decl),
ifTyVars = hsIfaceTvs (tcdTyVars decl),
ifCtxt = hsIfaceCtxt (tcdCtxt decl),
ifFDs = hsIfaceFDs (tcdFDs decl),
ifSigs = [], -- Is this right??
ifRec = NonRecursive, ifVrcs = [] }
hsIfaceDecl decl = pprPanic "hsIfaceDecl" (ppr decl)
hsIfaceName rdr_name -- Qualify unqualifed occurrences
-- with the module name
| isUnqual rdr_name = LocalTop (rdrNameOcc rdr_name)
| otherwise = ExtPkg (rdrNameModule rdr_name) (rdrNameOcc rdr_name)
hsIfaceType :: HsType RdrName -> IfaceType
hsIfaceType (HsForAllTy mb_tvs cxt ty)
= foldr (IfaceForAllTy . hsIfaceTv) rho tvs
where
rho = foldr (IfaceFunTy . IfacePredTy . hsIfacePred) tau cxt
tau = hsIfaceType ty
tvs = case mb_tvs of
Just tvs -> tvs
Nothing -> map UserTyVar (extractHsRhoRdrTyVars cxt ty)
hsIfaceType ty@(HsTyVar _) = hs_tc_app ty []
hsIfaceType ty@(HsAppTy t1 t2) = hs_tc_app ty []
hsIfaceType (HsFunTy t1 t2) = IfaceFunTy (hsIfaceType t1) (hsIfaceType t2)
hsIfaceType (HsListTy t) = IfaceTyConApp IfaceListTc [hsIfaceType t]
hsIfaceType (HsPArrTy t) = IfaceTyConApp IfacePArrTc [hsIfaceType t]
hsIfaceType (HsTupleTy bx ts) = IfaceTyConApp (IfaceTupTc bx (length ts)) (hsIfaceTypes ts)
hsIfaceType (HsOpTy t1 tc t2) = hs_tc_app (HsTyVar tc) (hsIfaceTypes [t1, t2])
hsIfaceType (HsParTy t) = hsIfaceType t
hsIfaceType (HsNumTy n) = panic "hsIfaceType:HsNum"
hsIfaceType (HsPredTy p) = IfacePredTy (hsIfacePred p)
hsIfaceType (HsKindSig t _) = hsIfaceType t
-----------
hsIfaceTypes tys = map hsIfaceType tys
-----------
hsIfaceCtxt :: [HsPred RdrName] -> [IfacePredType]
hsIfaceCtxt ctxt = map hsIfacePred ctxt
-----------
hsIfacePred :: HsPred RdrName -> IfacePredType
hsIfacePred (HsClassP cls ts) = IfaceClassP (hsIfaceName cls) (hsIfaceTypes ts)
hsIfacePred (HsIParam ip t) = IfaceIParam (mapIPName rdrNameOcc ip) (hsIfaceType t)
-----------
hs_tc_app :: HsType RdrName -> [IfaceType] -> IfaceType
hs_tc_app (HsAppTy t1 t2) args = hs_tc_app t1 (hsIfaceType t2 : args)
hs_tc_app (HsTyVar n) args
| isTcOcc (rdrNameOcc n) = IfaceTyConApp (IfaceTc (hsIfaceName n)) args
| otherwise = foldl IfaceAppTy (IfaceTyVar (rdrNameOcc n)) args
hs_tc_app ty args = foldl IfaceAppTy (hsIfaceType ty) args
-----------
hsIfaceTvs tvs = map hsIfaceTv tvs
-----------
hsIfaceTv (UserTyVar n) = (rdrNameOcc n, IfaceLiftedTypeKind)
hsIfaceTv (KindedTyVar n k) = (rdrNameOcc n, toIfaceKind k)
-----------
hsIfaceFDs :: [([RdrName], [RdrName])] -> [([OccName], [OccName])]
hsIfaceFDs fds = [ (map rdrNameOcc xs, map rdrNameOcc ys)
| (xs,ys) <- fds ]
\end{code}
%************************************************************************
%* *
\subsection[rdrBinding]{Bindings straight out of the parser}
%* *
%************************************************************************
\begin{code}
data RdrBinding
= -- Value bindings havn't been united with their
-- signatures yet
RdrBindings [RdrBinding] -- Convenience for parsing
| RdrValBinding RdrNameMonoBinds
-- The remainder all fit into the main HsDecl form
| RdrHsDecl RdrNameHsDecl
\end{code}
\begin{code}
data RdrMatch
= RdrMatch
[RdrNamePat]
(Maybe RdrNameHsType)
RdrNameGRHSs
\end{code}
%************************************************************************
%* *
\subsection[cvBinds-etc]{Converting to @HsBinds@, @MonoBinds@, etc.}
%* *
%************************************************************************
Function definitions are restructured here. Each is assumed to be recursive
initially, and non recursive definitions are discovered by the dependency
analyser.
\begin{code}
cvTopDecls :: [RdrBinding] -> [RdrNameHsDecl]
-- Incoming bindings are in reverse order; result is in ordinary order
-- (a) flatten RdrBindings
-- (b) Group together bindings for a single function
cvTopDecls decls
= go [] decls
where
go :: [RdrNameHsDecl] -> [RdrBinding] -> [RdrNameHsDecl]
go acc [] = acc
go acc (RdrBindings ds1 : ds2) = go (go acc ds1) ds2
go acc (RdrHsDecl d : ds) = go (d : acc) ds
go acc (RdrValBinding b : ds) = go (ValD b' : acc) ds'
where
(b', ds') = getMonoBind b ds
cvBinds :: [RdrBinding] -> RdrNameHsBinds
cvBinds binding
= case (cvMonoBindsAndSigs binding) of { (mbs, sigs) ->
MonoBind mbs sigs Recursive
}
cvMonoBindsAndSigs :: [RdrBinding] -> (RdrNameMonoBinds, [RdrNameSig])
-- Input bindings are in *reverse* order,
-- and contain just value bindings and signatuers
cvMonoBindsAndSigs fb
= go (EmptyMonoBinds, []) fb
where
go acc [] = acc
go acc (RdrBindings ds1 : ds2) = go (go acc ds1) ds2
go (bs, ss) (RdrHsDecl (SigD s) : ds) = go (bs, s : ss) ds
go (bs, ss) (RdrValBinding b : ds) = go (b' `AndMonoBinds` bs, ss) ds'
where
(b',ds') = getMonoBind b ds
-----------------------------------------------------------------------------
-- Group function bindings into equation groups
getMonoBind :: RdrNameMonoBinds -> [RdrBinding] -> (RdrNameMonoBinds, [RdrBinding])
-- Suppose (b',ds') = getMonoBind b ds
-- ds is a *reversed* list of parsed bindings
-- b is a MonoBinds that has just been read off the front
-- Then b' is the result of grouping more equations from ds that
-- belong with b into a single MonoBinds, and ds' is the depleted
-- list of parsed bindings.
--
-- No AndMonoBinds or EmptyMonoBinds here; just single equations
getMonoBind (FunMonoBind f inf mtchs loc) binds
| has_args mtchs
= go mtchs loc binds
where
go mtchs1 loc1 (RdrValBinding (FunMonoBind f2 inf2 mtchs2 loc2) : binds)
| f == f2 = go (mtchs2 ++ mtchs1) loc2 binds
-- Remember binds is reversed, so glue mtchs2 on the front
-- and use loc2 as the final location
go mtchs1 loc1 binds = (FunMonoBind f inf mtchs1 loc1, binds)
getMonoBind bind binds = (bind, binds)
has_args ((Match args _ _) : _) = not (null args)
-- Don't group together FunMonoBinds if they have
-- no arguments. This is necessary now that variable bindings
-- with no arguments are now treated as FunMonoBinds rather
-- than pattern bindings (tests/rename/should_fail/rnfail002).
\end{code}
\begin{code}
emptyGroup = HsGroup { hs_valds = MonoBind EmptyMonoBinds [] Recursive,
-- The renamer adds structure to the bindings;
-- they start life as a single giant MonoBinds
hs_tyclds = [], hs_instds = [],
hs_fixds = [], hs_defds = [], hs_fords = [],
hs_depds = [] ,hs_ruleds = [] }
findSplice :: [HsDecl a] -> (HsGroup a, Maybe (SpliceDecl a, [HsDecl a]))
findSplice ds = add emptyGroup ds
mkGroup :: [HsDecl a] -> HsGroup a
mkGroup ds = addImpDecls emptyGroup ds
addImpDecls :: HsGroup a -> [HsDecl a] -> HsGroup a
-- The decls are imported, and should not have a splice
addImpDecls group decls = case add group decls of
(group', Nothing) -> group'
other -> panic "addImpDecls"
add :: HsGroup a -> [HsDecl a] -> (HsGroup a, Maybe (SpliceDecl a, [HsDecl a]))
-- This stuff reverses the declarations (again) but it doesn't matter
-- Base cases
add gp [] = (gp, Nothing)
add gp (SpliceD e : ds) = (gp, Just (e, ds))
-- Class declarations: pull out the fixity signatures to the top
add gp@(HsGroup {hs_tyclds = ts, hs_fixds = fs}) (TyClD d : ds)
| isClassDecl d = add (gp { hs_tyclds = d : ts,
hs_fixds = [f | FixSig f <- tcdSigs d] ++ fs }) ds
| otherwise = add (gp { hs_tyclds = d : ts }) ds
-- Signatures: fixity sigs go a different place than all others
add gp@(HsGroup {hs_fixds = ts}) (SigD (FixSig f) : ds) = add (gp {hs_fixds = f : ts}) ds
add gp@(HsGroup {hs_valds = ts}) (SigD d : ds) = add (gp {hs_valds = add_sig d ts}) ds
-- Value declarations: use add_bind
add gp@(HsGroup {hs_valds = ts}) (ValD d : ds) = add (gp { hs_valds = add_bind d ts }) ds
-- The rest are routine
add gp@(HsGroup {hs_instds = ts}) (InstD d : ds) = add (gp { hs_instds = d : ts }) ds
add gp@(HsGroup {hs_defds = ts}) (DefD d : ds) = add (gp { hs_defds = d : ts }) ds
add gp@(HsGroup {hs_fords = ts}) (ForD d : ds) = add (gp { hs_fords = d : ts }) ds
add gp@(HsGroup {hs_depds = ts}) (DeprecD d : ds) = add (gp { hs_depds = d : ts }) ds
add gp@(HsGroup {hs_ruleds = ts})(RuleD d : ds) = add (gp { hs_ruleds = d : ts }) ds
add_bind b (MonoBind bs sigs r) = MonoBind (bs `AndMonoBinds` b) sigs r
add_sig s (MonoBind bs sigs r) = MonoBind bs (s:sigs) r
\end{code}
%************************************************************************
%* *
\subsection[PrefixToHS-utils]{Utilities for conversion}
%* *
%************************************************************************
\begin{code}
-----------------------------------------------------------------------------
-- mkPrefixCon
-- When parsing data declarations, we sometimes inadvertently parse
-- a constructor application as a type (eg. in data T a b = C a b `D` E a b)
-- This function splits up the type application, adds any pending
-- arguments, and converts the type constructor back into a data constructor.
mkPrefixCon :: RdrNameHsType -> [RdrNameBangType] -> P (RdrName, RdrNameConDetails)
mkPrefixCon ty tys
= split ty tys
where
split (HsAppTy t u) ts = split t (unbangedType u : ts)
split (HsTyVar tc) ts = tyConToDataCon tc >>= \ data_con ->
return (data_con, PrefixCon ts)
split _ _ = parseError "Illegal data/newtype declaration"
mkRecCon :: RdrName -> [([RdrName],RdrNameBangType)] -> P (RdrName, RdrNameConDetails)
mkRecCon con fields
= tyConToDataCon con >>= \ data_con ->
return (data_con, RecCon [ (l,t) | (ls,t) <- fields, l <- ls ])
tyConToDataCon :: RdrName -> P RdrName
tyConToDataCon tc
| isTcOcc (rdrNameOcc tc)
= return (setRdrNameSpace tc srcDataName)
| otherwise
= parseError (showSDoc (text "Not a constructor:" <+> quotes (ppr tc)))
----------------------------------------------------------------------------
-- Various Syntactic Checks
checkInstType :: RdrNameHsType -> P RdrNameHsType
checkInstType t
= case t of
HsForAllTy tvs ctxt ty ->
checkDictTy ty [] >>= \ dict_ty ->
return (HsForAllTy tvs ctxt dict_ty)
HsParTy ty -> checkInstType ty
ty -> checkDictTy ty [] >>= \ dict_ty->
return (HsForAllTy Nothing [] dict_ty)
checkTyVars :: [RdrNameHsType] -> P [RdrNameHsTyVar]
checkTyVars tvs
= mapM chk tvs
where
-- Check that the name space is correct!
chk (HsKindSig (HsTyVar tv) k) | isRdrTyVar tv = return (KindedTyVar tv k)
chk (HsTyVar tv) | isRdrTyVar tv = return (UserTyVar tv)
chk other = parseError "Type found where type variable expected"
checkTyClHdr :: RdrNameContext -> RdrNameHsType -> P (RdrNameContext, RdrName, [RdrNameHsTyVar])
-- The header of a type or class decl should look like
-- (C a, D b) => T a b
-- or T a b
-- or a + b
-- etc
checkTyClHdr cxt ty
= go ty [] >>= \ (tc, tvs) ->
mapM chk_pred cxt >>= \ _ ->
return (cxt, tc, tvs)
where
go (HsTyVar tc) acc
| not (isRdrTyVar tc) = checkTyVars acc >>= \ tvs ->
return (tc, tvs)
go (HsOpTy t1 tc t2) acc = checkTyVars (t1:t2:acc) >>= \ tvs ->
return (tc, tvs)
go (HsParTy ty) acc = go ty acc
go (HsAppTy t1 t2) acc = go t1 (t2:acc)
go other acc = parseError "Malformed LHS to type of class declaration"
-- The predicates in a type or class decl must all
-- be HsClassPs. They need not all be type variables,
-- even in Haskell 98. E.g. class (Monad m, Monad (t m)) => MonadT t m
chk_pred (HsClassP _ args) = return ()
chk_pred pred = parseError "Malformed context in type or class declaration"
checkContext :: RdrNameHsType -> P RdrNameContext
checkContext (HsTupleTy _ ts) -- (Eq a, Ord b) shows up as a tuple type
= mapM checkPred ts
checkContext (HsParTy ty) -- to be sure HsParTy doesn't get into the way
= checkContext ty
checkContext (HsTyVar t) -- Empty context shows up as a unit type ()
| t == getRdrName unitTyCon = return []
checkContext t
= checkPred t >>= \p ->
return [p]
checkPred :: RdrNameHsType -> P (HsPred RdrName)
-- Watch out.. in ...deriving( Show )... we use checkPred on
-- the list of partially applied predicates in the deriving,
-- so there can be zero args.
checkPred (HsPredTy (HsIParam n ty)) = return (HsIParam n ty)
checkPred ty
= go ty []
where
go (HsTyVar t) args | not (isRdrTyVar t)
= return (HsClassP t args)
go (HsAppTy l r) args = go l (r:args)
go (HsParTy t) args = go t args
go _ _ = parseError "Illegal class assertion"
checkDictTy :: RdrNameHsType -> [RdrNameHsType] -> P RdrNameHsType
checkDictTy (HsTyVar t) args@(_:_) | not (isRdrTyVar t)
= return (mkHsDictTy t args)
checkDictTy (HsAppTy l r) args = checkDictTy l (r:args)
checkDictTy (HsParTy t) args = checkDictTy t args
checkDictTy _ _ = parseError "Malformed context in instance header"
---------------------------------------------------------------------------
-- Checking statements in a do-expression
-- We parse do { e1 ; e2 ; }
-- as [ExprStmt e1, ExprStmt e2]
-- checkDo (a) checks that the last thing is an ExprStmt
-- (b) transforms it to a ResultStmt
-- same comments apply for mdo as well
checkDo = checkDoMDo "a " "'do'"
checkMDo = checkDoMDo "an " "'mdo'"
checkDoMDo _ nm [] = parseError $ "Empty " ++ nm ++ " construct"
checkDoMDo _ _ [ExprStmt e _ l] = return [ResultStmt e l]
checkDoMDo pre nm [s] = parseError $ "The last statement in " ++ pre ++ nm ++ " construct must be an expression"
checkDoMDo pre nm (s:ss) = checkDoMDo pre nm ss >>= \ ss' ->
return (s:ss')
-- -------------------------------------------------------------------------
-- Checking Patterns.
-- We parse patterns as expressions and check for valid patterns below,
-- converting the expression into a pattern at the same time.
checkPattern :: SrcLoc -> RdrNameHsExpr -> P RdrNamePat
checkPattern loc e = setSrcLocFor loc (checkPat e [])
checkPatterns :: SrcLoc -> [RdrNameHsExpr] -> P [RdrNamePat]
checkPatterns loc es = mapM (checkPattern loc) es
checkPat :: RdrNameHsExpr -> [RdrNamePat] -> P RdrNamePat
checkPat (HsVar c) args | isRdrDataCon c = return (ConPatIn c (PrefixCon args))
checkPat (HsApp f x) args =
checkPat x [] >>= \x ->
checkPat f (x:args)
checkPat e [] = case e of
EWildPat -> return (WildPat placeHolderType)
HsVar x | isQual x -> parseError ("Qualified variable in pattern: " ++ showRdrName x)
| otherwise -> return (VarPat x)
HsLit l -> return (LitPat l)
-- Overloaded numeric patterns (e.g. f 0 x = x)
-- Negation is recorded separately, so that the literal is zero or +ve
-- NB. Negative *primitive* literals are already handled by
-- RdrHsSyn.mkHsNegApp
HsOverLit pos_lit -> return (NPatIn pos_lit Nothing)
NegApp (HsOverLit pos_lit) _ -> return (NPatIn pos_lit (Just placeHolderName))
ELazyPat e -> checkPat e [] >>= (return . LazyPat)
EAsPat n e -> checkPat e [] >>= (return . AsPat n)
ExprWithTySig e t -> checkPat e [] >>= \e ->
-- Pattern signatures are parsed as sigtypes,
-- but they aren't explicit forall points. Hence
-- we have to remove the implicit forall here.
let t' = case t of
HsForAllTy Nothing [] ty -> ty
other -> other
in
return (SigPatIn e t')
-- n+k patterns
OpApp (HsVar n) (HsVar plus) _ (HsOverLit lit@(HsIntegral _ _))
| plus == plus_RDR
-> return (mkNPlusKPat n lit)
where
plus_RDR = mkUnqual varName FSLIT("+") -- Hack
OpApp l op fix r -> checkPat l [] >>= \l ->
checkPat r [] >>= \r ->
case op of
HsVar c | isDataOcc (rdrNameOcc c)
-> return (ConPatIn c (InfixCon l r))
_ -> patFail
HsPar e -> checkPat e [] >>= (return . ParPat)
ExplicitList _ es -> mapM (\e -> checkPat e []) es >>= \ps ->
return (ListPat ps placeHolderType)
ExplicitPArr _ es -> mapM (\e -> checkPat e []) es >>= \ps ->
return (PArrPat ps placeHolderType)
ExplicitTuple es b -> mapM (\e -> checkPat e []) es >>= \ps ->
return (TuplePat ps b)
RecordCon c fs -> mapM checkPatField fs >>= \fs ->
return (ConPatIn c (RecCon fs))
-- Generics
HsType ty -> return (TypePat ty)
_ -> patFail
checkPat _ _ = patFail
checkPatField :: (RdrName, RdrNameHsExpr) -> P (RdrName, RdrNamePat)
checkPatField (n,e) = checkPat e [] >>= \p ->
return (n,p)
patFail = parseError "Parse error in pattern"
---------------------------------------------------------------------------
-- Check Equation Syntax
checkValDef
:: RdrNameHsExpr
-> Maybe RdrNameHsType
-> RdrNameGRHSs
-> SrcLoc
-> P RdrBinding
checkValDef lhs opt_sig grhss loc
= case isFunLhs lhs [] of
Just (f,inf,es)
| isQual f
-> parseError ("Qualified name in function definition: " ++ showRdrName f)
| otherwise
-> checkPatterns loc es >>= \ps ->
return (RdrValBinding (FunMonoBind f inf [Match ps opt_sig grhss] loc))
Nothing ->
checkPattern loc lhs >>= \lhs ->
return (RdrValBinding (PatMonoBind lhs grhss loc))
checkValSig
:: RdrNameHsExpr
-> RdrNameHsType
-> SrcLoc
-> P RdrBinding
checkValSig (HsVar v) ty loc | isUnqual v = return (RdrHsDecl (SigD (Sig v ty loc)))
checkValSig other ty loc = parseError "Type signature given for an expression"
mkSigDecls :: [Sig RdrName] -> RdrBinding
mkSigDecls sigs = RdrBindings [RdrHsDecl (SigD sig) | sig <- sigs]
-- A variable binding is parsed as an RdrNameFunMonoBind.
-- See comments with HsBinds.MonoBinds
isFunLhs :: RdrNameHsExpr -> [RdrNameHsExpr] -> Maybe (RdrName, Bool, [RdrNameHsExpr])
isFunLhs (OpApp l (HsVar op) fix r) es | not (isRdrDataCon op)
= Just (op, True, (l:r:es))
| otherwise
= case isFunLhs l es of
Just (op', True, j : k : es') ->
Just (op', True, j : OpApp k (HsVar op) fix r : es')
_ -> Nothing
isFunLhs (HsVar f) es | not (isRdrDataCon f)
= Just (f,False,es)
isFunLhs (HsApp f e) es = isFunLhs f (e:es)
isFunLhs (HsPar e) es@(_:_) = isFunLhs e es
isFunLhs _ _ = Nothing
---------------------------------------------------------------------------
-- Miscellaneous utilities
checkPrecP :: Int -> P Int
checkPrecP i | 0 <= i && i <= maxPrecedence = return i
| otherwise = parseError "Precedence out of range"
mkRecConstrOrUpdate
:: RdrNameHsExpr
-> RdrNameHsRecordBinds
-> P RdrNameHsExpr
mkRecConstrOrUpdate (HsVar c) fs | isRdrDataCon c
= return (RecordCon c fs)
mkRecConstrOrUpdate exp fs@(_:_)
= return (RecordUpd exp fs)
mkRecConstrOrUpdate _ _
= parseError "Empty record update"
-----------------------------------------------------------------------------
-- utilities for foreign declarations
-- supported calling conventions
--
data CallConv = CCall CCallConv -- ccall or stdcall
| DNCall -- .NET
-- construct a foreign import declaration
--
mkImport :: CallConv
-> Safety
-> (FastString, RdrName, RdrNameHsType)
-> SrcLoc
-> P RdrNameHsDecl
mkImport (CCall cconv) safety (entity, v, ty) loc =
parseCImport entity cconv safety v >>= \importSpec ->
return $ ForD (ForeignImport v ty importSpec False loc)
mkImport (DNCall ) _ (entity, v, ty) loc =
parseDImport entity >>= \ spec ->
return $ ForD (ForeignImport v ty (DNImport spec) False loc)
-- parse the entity string of a foreign import declaration for the `ccall' or
-- `stdcall' calling convention'
--
parseCImport :: FastString
-> CCallConv
-> Safety
-> RdrName
-> P ForeignImport
parseCImport entity cconv safety v
-- FIXME: we should allow white space around `dynamic' and `wrapper' -=chak
| entity == FSLIT ("dynamic") =
return $ CImport cconv safety nilFS nilFS (CFunction DynamicTarget)
| entity == FSLIT ("wrapper") =
return $ CImport cconv safety nilFS nilFS CWrapper
| otherwise = parse0 (unpackFS entity)
where
-- using the static keyword?
parse0 (' ': rest) = parse0 rest
parse0 ('s':'t':'a':'t':'i':'c':rest) = parse1 rest
parse0 rest = parse1 rest
-- check for header file name
parse1 "" = parse4 "" nilFS False nilFS
parse1 (' ':rest) = parse1 rest
parse1 str@('&':_ ) = parse2 str nilFS
parse1 str@('[':_ ) = parse3 str nilFS False
parse1 str
| ".h" `isSuffixOf` first = parse2 rest (mkFastString first)
| otherwise = parse4 str nilFS False nilFS
where
(first, rest) = break (\c -> c == ' ' || c == '&' || c == '[') str
-- check for address operator (indicating a label import)
parse2 "" header = parse4 "" header False nilFS
parse2 (' ':rest) header = parse2 rest header
parse2 ('&':rest) header = parse3 rest header True
parse2 str@('[':_ ) header = parse3 str header False
parse2 str header = parse4 str header False nilFS
-- check for library object name
parse3 (' ':rest) header isLbl = parse3 rest header isLbl
parse3 ('[':rest) header isLbl =
case break (== ']') rest of
(lib, ']':rest) -> parse4 rest header isLbl (mkFastString lib)
_ -> parseError "Missing ']' in entity"
parse3 str header isLbl = parse4 str header isLbl nilFS
-- check for name of C function
parse4 "" header isLbl lib = build (mkExtName v) header isLbl lib
parse4 (' ':rest) header isLbl lib = parse4 rest header isLbl lib
parse4 str header isLbl lib
| all (== ' ') rest = build (mkFastString first) header isLbl lib
| otherwise = parseError "Malformed entity string"
where
(first, rest) = break (== ' ') str
--
build cid header False lib = return $
CImport cconv safety header lib (CFunction (StaticTarget cid))
build cid header True lib = return $
CImport cconv safety header lib (CLabel cid )
--
-- Unravel a dotnet spec string.
--
parseDImport :: FastString -> P DNCallSpec
parseDImport entity = parse0 comps
where
comps = words (unpackFS entity)
parse0 [] = d'oh
parse0 (x : xs)
| x == "static" = parse1 True xs
| otherwise = parse1 False (x:xs)
parse1 _ [] = d'oh
parse1 isStatic (x:xs)
| x == "method" = parse2 isStatic DNMethod xs
| x == "field" = parse2 isStatic DNField xs
| x == "ctor" = parse2 isStatic DNConstructor xs
parse1 isStatic xs = parse2 isStatic DNMethod xs
parse2 _ _ [] = d'oh
parse2 isStatic kind (('[':x):xs) =
case x of
[] -> d'oh
vs | last vs == ']' -> parse3 isStatic kind (init vs) xs
parse2 isStatic kind xs = parse3 isStatic kind "" xs
parse3 isStatic kind assem [x] =
return (DNCallSpec isStatic kind assem x
-- these will be filled in once known.
(error "FFI-dotnet-args")
(error "FFI-dotnet-result"))
parse3 _ _ _ _ = d'oh
d'oh = parseError "Malformed entity string"
-- construct a foreign export declaration
--
mkExport :: CallConv
-> (FastString, RdrName, RdrNameHsType)
-> SrcLoc
-> P RdrNameHsDecl
mkExport (CCall cconv) (entity, v, ty) loc = return $
ForD (ForeignExport v ty (CExport (CExportStatic entity' cconv)) False loc)
where
entity' | nullFastString entity = mkExtName v
| otherwise = entity
mkExport DNCall (entity, v, ty) loc =
parseError "Foreign export is not yet supported for .NET"
-- Supplying the ext_name in a foreign decl is optional; if it
-- isn't there, the Haskell name is assumed. Note that no transformation
-- of the Haskell name is then performed, so if you foreign export (++),
-- it's external name will be "++". Too bad; it's important because we don't
-- want z-encoding (e.g. names with z's in them shouldn't be doubled)
-- (This is why we use occNameUserString.)
--
mkExtName :: RdrName -> CLabelString
mkExtName rdrNm = mkFastString (occNameUserString (rdrNameOcc rdrNm))
\end{code}
-----------------------------------------------------------------------------
-- Misc utils
\begin{code}
showRdrName :: RdrName -> String
showRdrName r = showSDoc (ppr r)
parseError :: String -> P a
parseError s =
getSrcLoc >>= \ loc ->
failLocMsgP loc loc s
\end{code}
|