1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
|
%
% (c) The GRASP Project, Glasgow University, 1994-1998
%
\section[TysWiredIn]{Wired-in knowledge about {\em non-primitive} types}
This module is about types that can be defined in Haskell, but which
must be wired into the compiler nonetheless.
This module tracks the ``state interface'' document, ``GHC prelude:
types and operations.''
\begin{code}
module TysWiredIn (
wiredInTyCons,
boolTy, boolTyCon, boolTyCon_RDR, boolTyConName,
trueDataCon, trueDataConId, true_RDR,
falseDataCon, falseDataConId, false_RDR,
charTyCon, charDataCon, charTyCon_RDR,
charTy, stringTy, charTyConName,
doubleTyCon, doubleDataCon, doubleTy, doubleTyConName,
floatTyCon, floatDataCon, floatTy, floatTyConName,
intTyCon, intDataCon, intTyCon_RDR, intDataCon_RDR, intTyConName,
intTy,
listTyCon, nilDataCon, consDataCon,
listTyCon_RDR, consDataCon_RDR, listTyConName,
mkListTy,
-- tuples
mkTupleTy,
tupleTyCon, tupleCon,
unitTyCon, unitDataCon, unitDataConId, pairTyCon,
unboxedSingletonTyCon, unboxedSingletonDataCon,
unboxedPairTyCon, unboxedPairDataCon,
unitTy,
voidTy,
-- parallel arrays
mkPArrTy,
parrTyCon, parrFakeCon, isPArrTyCon, isPArrFakeCon,
parrTyCon_RDR, parrTyConName
) where
#include "HsVersions.h"
import {-# SOURCE #-} MkId( mkDataConIds )
-- friends:
import PrelNames
import TysPrim
-- others:
import Constants ( mAX_TUPLE_SIZE )
import Module ( Module )
import RdrName ( nameRdrName )
import Name ( Name, BuiltInSyntax(..), nameUnique, nameOccName,
nameModule, mkWiredInName )
import OccName ( mkOccNameFS, tcName, dataName, mkTupleOcc,
mkDataConWorkerOcc )
import DataCon ( DataCon, mkDataCon, dataConWorkId, dataConSourceArity )
import Var ( TyVar, tyVarKind )
import TyCon ( TyCon, AlgTyConRhs(DataTyCon), tyConDataCons,
mkTupleTyCon, mkAlgTyCon, tyConName )
import BasicTypes ( Arity, RecFlag(..), Boxity(..), isBoxed,
StrictnessMark(..) )
import Type ( Type, mkTyConTy, mkTyConApp, mkTyVarTy, mkTyVarTys,
TyThing(..) )
import Kind ( mkArrowKinds, liftedTypeKind, ubxTupleKind )
import Unique ( incrUnique, mkTupleTyConUnique,
mkTupleDataConUnique, mkPArrDataConUnique )
import Array
import FastString
import Outputable
alpha_tyvar = [alphaTyVar]
alpha_ty = [alphaTy]
\end{code}
%************************************************************************
%* *
\subsection{Wired in type constructors}
%* *
%************************************************************************
If you change which things are wired in, make sure you change their
names in PrelNames, so they use wTcQual, wDataQual, etc
\begin{code}
wiredInTyCons :: [TyCon] -- Excludes tuples
wiredInTyCons = [ unitTyCon -- Not treated like other tuples, because
-- it's defined in GHC.Base, and there's only
-- one of it. We put it in wiredInTyCons so
-- that it'll pre-populate the name cache, so
-- the special case in lookupOrigNameCache
-- doesn't need to look out for it
, boolTyCon
, charTyCon
, doubleTyCon
, floatTyCon
, intTyCon
, listTyCon
, parrTyCon
]
\end{code}
\begin{code}
mkWiredInTyConName :: BuiltInSyntax -> Module -> FastString -> Unique -> TyCon -> Name
mkWiredInTyConName built_in mod fs uniq tycon
= mkWiredInName mod (mkOccNameFS tcName fs) uniq
Nothing -- No parent object
(ATyCon tycon) -- Relevant TyCon
built_in
mkWiredInDataConName :: BuiltInSyntax -> Module -> FastString -> Unique -> DataCon -> Name -> Name
mkWiredInDataConName built_in mod fs uniq datacon parent
= mkWiredInName mod (mkOccNameFS dataName fs) uniq
(Just parent) -- Name of parent TyCon
(ADataCon datacon) -- Relevant DataCon
built_in
charTyConName = mkWiredInTyConName UserSyntax pREL_BASE FSLIT("Char") charTyConKey charTyCon
charDataConName = mkWiredInDataConName UserSyntax pREL_BASE FSLIT("C#") charDataConKey charDataCon charTyConName
intTyConName = mkWiredInTyConName UserSyntax pREL_BASE FSLIT("Int") intTyConKey intTyCon
intDataConName = mkWiredInDataConName UserSyntax pREL_BASE FSLIT("I#") intDataConKey intDataCon intTyConName
boolTyConName = mkWiredInTyConName UserSyntax pREL_BASE FSLIT("Bool") boolTyConKey boolTyCon
falseDataConName = mkWiredInDataConName UserSyntax pREL_BASE FSLIT("False") falseDataConKey falseDataCon boolTyConName
trueDataConName = mkWiredInDataConName UserSyntax pREL_BASE FSLIT("True") trueDataConKey trueDataCon boolTyConName
listTyConName = mkWiredInTyConName BuiltInSyntax pREL_BASE FSLIT("[]") listTyConKey listTyCon
nilDataConName = mkWiredInDataConName BuiltInSyntax pREL_BASE FSLIT("[]") nilDataConKey nilDataCon listTyConName
consDataConName = mkWiredInDataConName BuiltInSyntax pREL_BASE FSLIT(":") consDataConKey consDataCon listTyConName
floatTyConName = mkWiredInTyConName UserSyntax pREL_FLOAT FSLIT("Float") floatTyConKey floatTyCon
floatDataConName = mkWiredInDataConName UserSyntax pREL_FLOAT FSLIT("F#") floatDataConKey floatDataCon floatTyConName
doubleTyConName = mkWiredInTyConName UserSyntax pREL_FLOAT FSLIT("Double") doubleTyConKey doubleTyCon
doubleDataConName = mkWiredInDataConName UserSyntax pREL_FLOAT FSLIT("D#") doubleDataConKey doubleDataCon doubleTyConName
parrTyConName = mkWiredInTyConName BuiltInSyntax pREL_PARR FSLIT("[::]") parrTyConKey parrTyCon
parrDataConName = mkWiredInDataConName UserSyntax pREL_PARR FSLIT("PArr") parrDataConKey parrDataCon parrTyConName
boolTyCon_RDR = nameRdrName boolTyConName
false_RDR = nameRdrName falseDataConName
true_RDR = nameRdrName trueDataConName
intTyCon_RDR = nameRdrName intTyConName
charTyCon_RDR = nameRdrName charTyConName
intDataCon_RDR = nameRdrName intDataConName
listTyCon_RDR = nameRdrName listTyConName
consDataCon_RDR = nameRdrName consDataConName
parrTyCon_RDR = nameRdrName parrTyConName
\end{code}
%************************************************************************
%* *
\subsection{mkWiredInTyCon}
%* *
%************************************************************************
\begin{code}
pcNonRecDataTyCon = pcTyCon False NonRecursive
pcRecDataTyCon = pcTyCon False Recursive
pcTyCon is_enum is_rec name tyvars argvrcs cons
= tycon
where
tycon = mkAlgTyCon name
(mkArrowKinds (map tyVarKind tyvars) liftedTypeKind)
tyvars
argvrcs
[] -- No stupid theta
(DataTyCon cons is_enum)
[] -- No record selectors
is_rec
True -- All the wired-in tycons have generics
pcDataCon :: Name -> [TyVar] -> [Type] -> TyCon -> DataCon
pcDataCon = pcDataConWithFixity False
pcDataConWithFixity :: Bool -> Name -> [TyVar] -> [Type] -> TyCon -> DataCon
-- The Name should be in the DataName name space; it's the name
-- of the DataCon itself.
--
-- The unique is the first of two free uniques;
-- the first is used for the datacon itself,
-- the second is used for the "worker name"
pcDataConWithFixity declared_infix dc_name tyvars arg_tys tycon
= data_con
where
data_con = mkDataCon dc_name declared_infix True {- Vanilla -}
(map (const NotMarkedStrict) arg_tys)
[{- No labelled fields -}]
tyvars [] [] arg_tys tycon (mkTyVarTys tyvars)
(mkDataConIds bogus_wrap_name wrk_name data_con)
mod = nameModule dc_name
wrk_occ = mkDataConWorkerOcc (nameOccName dc_name)
wrk_key = incrUnique (nameUnique dc_name)
wrk_name = mkWiredInName mod wrk_occ wrk_key
(Just (tyConName tycon))
(AnId (dataConWorkId data_con)) UserSyntax
bogus_wrap_name = pprPanic "Wired-in data wrapper id" (ppr dc_name)
-- Wired-in types are too simple to need wrappers
\end{code}
%************************************************************************
%* *
\subsection[TysWiredIn-tuples]{The tuple types}
%* *
%************************************************************************
\begin{code}
tupleTyCon :: Boxity -> Arity -> TyCon
tupleTyCon boxity i | i > mAX_TUPLE_SIZE = fst (mk_tuple boxity i) -- Build one specially
tupleTyCon Boxed i = fst (boxedTupleArr ! i)
tupleTyCon Unboxed i = fst (unboxedTupleArr ! i)
tupleCon :: Boxity -> Arity -> DataCon
tupleCon boxity i | i > mAX_TUPLE_SIZE = snd (mk_tuple boxity i) -- Build one specially
tupleCon Boxed i = snd (boxedTupleArr ! i)
tupleCon Unboxed i = snd (unboxedTupleArr ! i)
boxedTupleArr, unboxedTupleArr :: Array Int (TyCon,DataCon)
boxedTupleArr = listArray (0,mAX_TUPLE_SIZE) [mk_tuple Boxed i | i <- [0..mAX_TUPLE_SIZE]]
unboxedTupleArr = listArray (0,mAX_TUPLE_SIZE) [mk_tuple Unboxed i | i <- [0..mAX_TUPLE_SIZE]]
mk_tuple :: Boxity -> Int -> (TyCon,DataCon)
mk_tuple boxity arity = (tycon, tuple_con)
where
tycon = mkTupleTyCon tc_name tc_kind arity tyvars tuple_con boxity gen_info
mod = mkTupleModule boxity arity
tc_name = mkWiredInName mod (mkTupleOcc tcName boxity arity) tc_uniq
Nothing (ATyCon tycon) BuiltInSyntax
tc_kind = mkArrowKinds (map tyVarKind tyvars) res_kind
res_kind | isBoxed boxity = liftedTypeKind
| otherwise = ubxTupleKind
tyvars | isBoxed boxity = take arity alphaTyVars
| otherwise = take arity openAlphaTyVars
tuple_con = pcDataCon dc_name tyvars tyvar_tys tycon
tyvar_tys = mkTyVarTys tyvars
dc_name = mkWiredInName mod (mkTupleOcc dataName boxity arity) dc_uniq
(Just tc_name) (ADataCon tuple_con) BuiltInSyntax
tc_uniq = mkTupleTyConUnique boxity arity
dc_uniq = mkTupleDataConUnique boxity arity
gen_info = True -- Tuples all have generics..
-- hmm: that's a *lot* of code
unitTyCon = tupleTyCon Boxed 0
unitDataCon = head (tyConDataCons unitTyCon)
unitDataConId = dataConWorkId unitDataCon
pairTyCon = tupleTyCon Boxed 2
unboxedSingletonTyCon = tupleTyCon Unboxed 1
unboxedSingletonDataCon = tupleCon Unboxed 1
unboxedPairTyCon = tupleTyCon Unboxed 2
unboxedPairDataCon = tupleCon Unboxed 2
\end{code}
%************************************************************************
%* *
\subsection[TysWiredIn-boxed-prim]{The ``boxed primitive'' types (@Char@, @Int@, etc)}
%* *
%************************************************************************
\begin{code}
-- The Void type is represented as a data type with no constructors
-- It's a built in type (i.e. there's no way to define it in Haskell;
-- the nearest would be
--
-- data Void = -- No constructors!
--
-- ) It's lifted; there is only one value of this
-- type, namely "void", whose semantics is just bottom.
--
-- Haskell 98 drops the definition of a Void type, so we just 'simulate'
-- voidTy using ().
voidTy = unitTy
\end{code}
\begin{code}
charTy = mkTyConTy charTyCon
charTyCon = pcNonRecDataTyCon charTyConName [] [] [charDataCon]
charDataCon = pcDataCon charDataConName [] [charPrimTy] charTyCon
stringTy = mkListTy charTy -- convenience only
\end{code}
\begin{code}
intTy = mkTyConTy intTyCon
intTyCon = pcNonRecDataTyCon intTyConName [] [] [intDataCon]
intDataCon = pcDataCon intDataConName [] [intPrimTy] intTyCon
\end{code}
\begin{code}
floatTy = mkTyConTy floatTyCon
floatTyCon = pcNonRecDataTyCon floatTyConName [] [] [floatDataCon]
floatDataCon = pcDataCon floatDataConName [] [floatPrimTy] floatTyCon
\end{code}
\begin{code}
doubleTy = mkTyConTy doubleTyCon
doubleTyCon = pcNonRecDataTyCon doubleTyConName [] [] [doubleDataCon]
doubleDataCon = pcDataCon doubleDataConName [] [doublePrimTy] doubleTyCon
\end{code}
%************************************************************************
%* *
\subsection[TysWiredIn-Bool]{The @Bool@ type}
%* *
%************************************************************************
An ordinary enumeration type, but deeply wired in. There are no
magical operations on @Bool@ (just the regular Prelude code).
{\em BEGIN IDLE SPECULATION BY SIMON}
This is not the only way to encode @Bool@. A more obvious coding makes
@Bool@ just a boxed up version of @Bool#@, like this:
\begin{verbatim}
type Bool# = Int#
data Bool = MkBool Bool#
\end{verbatim}
Unfortunately, this doesn't correspond to what the Report says @Bool@
looks like! Furthermore, we get slightly less efficient code (I
think) with this coding. @gtInt@ would look like this:
\begin{verbatim}
gtInt :: Int -> Int -> Bool
gtInt x y = case x of I# x# ->
case y of I# y# ->
case (gtIntPrim x# y#) of
b# -> MkBool b#
\end{verbatim}
Notice that the result of the @gtIntPrim@ comparison has to be turned
into an integer (here called @b#@), and returned in a @MkBool@ box.
The @if@ expression would compile to this:
\begin{verbatim}
case (gtInt x y) of
MkBool b# -> case b# of { 1# -> e1; 0# -> e2 }
\end{verbatim}
I think this code is a little less efficient than the previous code,
but I'm not certain. At all events, corresponding with the Report is
important. The interesting thing is that the language is expressive
enough to describe more than one alternative; and that a type doesn't
necessarily need to be a straightforwardly boxed version of its
primitive counterpart.
{\em END IDLE SPECULATION BY SIMON}
\begin{code}
boolTy = mkTyConTy boolTyCon
boolTyCon = pcTyCon True NonRecursive boolTyConName
[] [] [falseDataCon, trueDataCon]
falseDataCon = pcDataCon falseDataConName [] [] boolTyCon
trueDataCon = pcDataCon trueDataConName [] [] boolTyCon
falseDataConId = dataConWorkId falseDataCon
trueDataConId = dataConWorkId trueDataCon
\end{code}
%************************************************************************
%* *
\subsection[TysWiredIn-List]{The @List@ type (incl ``build'' magic)}
%* *
%************************************************************************
Special syntax, deeply wired in, but otherwise an ordinary algebraic
data types:
\begin{verbatim}
data [] a = [] | a : (List a)
data () = ()
data (,) a b = (,,) a b
...
\end{verbatim}
\begin{code}
mkListTy :: Type -> Type
mkListTy ty = mkTyConApp listTyCon [ty]
listTyCon = pcRecDataTyCon listTyConName
alpha_tyvar [(True,False)] [nilDataCon, consDataCon]
nilDataCon = pcDataCon nilDataConName alpha_tyvar [] listTyCon
consDataCon = pcDataConWithFixity True {- Declared infix -}
consDataConName
alpha_tyvar [alphaTy, mkTyConApp listTyCon alpha_ty] listTyCon
-- Interesting: polymorphic recursion would help here.
-- We can't use (mkListTy alphaTy) in the defn of consDataCon, else mkListTy
-- gets the over-specific type (Type -> Type)
\end{code}
%************************************************************************
%* *
\subsection[TysWiredIn-Tuples]{The @Tuple@ types}
%* *
%************************************************************************
The tuple types are definitely magic, because they form an infinite
family.
\begin{itemize}
\item
They have a special family of type constructors, of type @TyCon@
These contain the tycon arity, but don't require a Unique.
\item
They have a special family of constructors, of type
@Id@. Again these contain their arity but don't need a Unique.
\item
There should be a magic way of generating the info tables and
entry code for all tuples.
But at the moment we just compile a Haskell source
file\srcloc{lib/prelude/...} containing declarations like:
\begin{verbatim}
data Tuple0 = Tup0
data Tuple2 a b = Tup2 a b
data Tuple3 a b c = Tup3 a b c
data Tuple4 a b c d = Tup4 a b c d
...
\end{verbatim}
The print-names associated with the magic @Id@s for tuple constructors
``just happen'' to be the same as those generated by these
declarations.
\item
The instance environment should have a magic way to know
that each tuple type is an instances of classes @Eq@, @Ix@, @Ord@ and
so on. \ToDo{Not implemented yet.}
\item
There should also be a way to generate the appropriate code for each
of these instances, but (like the info tables and entry code) it is
done by enumeration\srcloc{lib/prelude/InTup?.hs}.
\end{itemize}
\begin{code}
mkTupleTy :: Boxity -> Int -> [Type] -> Type
mkTupleTy boxity arity tys = mkTyConApp (tupleTyCon boxity arity) tys
unitTy = mkTupleTy Boxed 0 []
\end{code}
%************************************************************************
%* *
\subsection[TysWiredIn-PArr]{The @[::]@ type}
%* *
%************************************************************************
Special syntax for parallel arrays needs some wired in definitions.
\begin{code}
-- construct a type representing the application of the parallel array
-- constructor
--
mkPArrTy :: Type -> Type
mkPArrTy ty = mkTyConApp parrTyCon [ty]
-- represents the type constructor of parallel arrays
--
-- * this must match the definition in `PrelPArr'
--
-- NB: Although the constructor is given here, it will not be accessible in
-- user code as it is not in the environment of any compiled module except
-- `PrelPArr'.
--
parrTyCon :: TyCon
parrTyCon = pcNonRecDataTyCon parrTyConName alpha_tyvar [(True, False)] [parrDataCon]
parrDataCon :: DataCon
parrDataCon = pcDataCon
parrDataConName
alpha_tyvar -- forall'ed type variables
[intPrimTy, -- 1st argument: Int#
mkTyConApp -- 2nd argument: Array# a
arrayPrimTyCon
alpha_ty]
parrTyCon
-- check whether a type constructor is the constructor for parallel arrays
--
isPArrTyCon :: TyCon -> Bool
isPArrTyCon tc = tyConName tc == parrTyConName
-- fake array constructors
--
-- * these constructors are never really used to represent array values;
-- however, they are very convenient during desugaring (and, in particular,
-- in the pattern matching compiler) to treat array pattern just like
-- yet another constructor pattern
--
parrFakeCon :: Arity -> DataCon
parrFakeCon i | i > mAX_TUPLE_SIZE = mkPArrFakeCon i -- build one specially
parrFakeCon i = parrFakeConArr!i
-- pre-defined set of constructors
--
parrFakeConArr :: Array Int DataCon
parrFakeConArr = array (0, mAX_TUPLE_SIZE) [(i, mkPArrFakeCon i)
| i <- [0..mAX_TUPLE_SIZE]]
-- build a fake parallel array constructor for the given arity
--
mkPArrFakeCon :: Int -> DataCon
mkPArrFakeCon arity = data_con
where
data_con = pcDataCon name [tyvar] tyvarTys parrTyCon
tyvar = head alphaTyVars
tyvarTys = replicate arity $ mkTyVarTy tyvar
nameStr = mkFastString ("MkPArr" ++ show arity)
name = mkWiredInName pREL_PARR (mkOccNameFS dataName nameStr) uniq
Nothing (ADataCon data_con) UserSyntax
uniq = mkPArrDataConUnique arity
-- checks whether a data constructor is a fake constructor for parallel arrays
--
isPArrFakeCon :: DataCon -> Bool
isPArrFakeCon dcon = dcon == parrFakeCon (dataConSourceArity dcon)
\end{code}
|