1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
|
%
% (c) The GRASP/AQUA Project, Glasgow University, 1992-1998
%
\section[RnExpr]{Renaming of expressions}
Basically dependency analysis.
Handles @Match@, @GRHSs@, @HsExpr@, and @Qualifier@ datatypes. In
general, all of these functions return a renamed thing, and a set of
free variables.
\begin{code}
module RnExpr (
rnMatch, rnGRHSs, rnPat, rnExpr, rnExprs,
checkPrecMatch
) where
#include "HsVersions.h"
import {-# SOURCE #-} RnBinds ( rnBinds )
import {-# SOURCE #-} RnSource ( rnHsTypeFVs )
import HsSyn
import RdrHsSyn
import RnHsSyn
import RnMonad
import RnEnv
import RnHiFiles ( lookupFixityRn )
import CmdLineOpts ( DynFlag(..), opt_IgnoreAsserts )
import Literal ( inIntRange )
import BasicTypes ( Fixity(..), FixityDirection(..), defaultFixity, negateFixity )
import PrelNames ( hasKey, assertIdKey,
eqClass_RDR, foldr_RDR, build_RDR, eqString_RDR,
cCallableClass_RDR, cReturnableClass_RDR,
monadClass_RDR, enumClass_RDR, ordClass_RDR,
ratioDataCon_RDR, negate_RDR, assertErr_RDR,
ioDataCon_RDR, plusInteger_RDR, timesInteger_RDR
)
import TysPrim ( charPrimTyCon, addrPrimTyCon, intPrimTyCon,
floatPrimTyCon, doublePrimTyCon
)
import TysWiredIn ( intTyCon )
import Name ( NamedThing(..), mkSysLocalName, nameSrcLoc )
import NameSet
import UniqFM ( isNullUFM )
import FiniteMap ( elemFM )
import UniqSet ( emptyUniqSet )
import List ( intersectBy )
import ListSetOps ( unionLists, removeDups )
import Maybes ( maybeToBool )
import Outputable
\end{code}
*********************************************************
* *
\subsection{Patterns}
* *
*********************************************************
\begin{code}
rnPat :: RdrNamePat -> RnMS (RenamedPat, FreeVars)
rnPat WildPatIn = returnRn (WildPatIn, emptyFVs)
rnPat (VarPatIn name)
= lookupBndrRn name `thenRn` \ vname ->
returnRn (VarPatIn vname, emptyFVs)
rnPat (SigPatIn pat ty)
= doptRn Opt_GlasgowExts `thenRn` \ glaExts ->
if glaExts
then rnPat pat `thenRn` \ (pat', fvs1) ->
rnHsTypeFVs doc ty `thenRn` \ (ty', fvs2) ->
returnRn (SigPatIn pat' ty', fvs1 `plusFV` fvs2)
else addErrRn (patSigErr ty) `thenRn_`
rnPat pat
where
doc = text "a pattern type-signature"
rnPat (LitPatIn s@(HsString _))
= lookupOrigName eqString_RDR `thenRn` \ eq ->
returnRn (LitPatIn s, unitFV eq)
rnPat (LitPatIn lit)
= litFVs lit `thenRn` \ fvs ->
returnRn (LitPatIn lit, fvs)
rnPat (NPatIn lit)
= rnOverLit lit `thenRn` \ (lit', fvs1) ->
lookupOrigName eqClass_RDR `thenRn` \ eq -> -- Needed to find equality on pattern
returnRn (NPatIn lit', fvs1 `addOneFV` eq)
rnPat (NPlusKPatIn name lit minus)
= rnOverLit lit `thenRn` \ (lit', fvs) ->
lookupOrigName ordClass_RDR `thenRn` \ ord ->
lookupBndrRn name `thenRn` \ name' ->
lookupOccRn minus `thenRn` \ minus' ->
returnRn (NPlusKPatIn name' lit' minus', fvs `addOneFV` ord `addOneFV` minus')
rnPat (LazyPatIn pat)
= rnPat pat `thenRn` \ (pat', fvs) ->
returnRn (LazyPatIn pat', fvs)
rnPat (AsPatIn name pat)
= rnPat pat `thenRn` \ (pat', fvs) ->
lookupBndrRn name `thenRn` \ vname ->
returnRn (AsPatIn vname pat', fvs)
rnPat (ConPatIn con pats)
= lookupOccRn con `thenRn` \ con' ->
mapFvRn rnPat pats `thenRn` \ (patslist, fvs) ->
returnRn (ConPatIn con' patslist, fvs `addOneFV` con')
rnPat (ConOpPatIn pat1 con _ pat2)
= rnPat pat1 `thenRn` \ (pat1', fvs1) ->
lookupOccRn con `thenRn` \ con' ->
rnPat pat2 `thenRn` \ (pat2', fvs2) ->
getModeRn `thenRn` \ mode ->
-- See comments with rnExpr (OpApp ...)
(case mode of
InterfaceMode -> returnRn (ConOpPatIn pat1' con' defaultFixity pat2')
SourceMode -> lookupFixityRn con' `thenRn` \ fixity ->
mkConOpPatRn pat1' con' fixity pat2'
) `thenRn` \ pat' ->
returnRn (pat', fvs1 `plusFV` fvs2 `addOneFV` con')
rnPat (ParPatIn pat)
= rnPat pat `thenRn` \ (pat', fvs) ->
returnRn (ParPatIn pat', fvs)
rnPat (ListPatIn pats)
= mapFvRn rnPat pats `thenRn` \ (patslist, fvs) ->
returnRn (ListPatIn patslist, fvs `addOneFV` listTyCon_name)
rnPat (TuplePatIn pats boxed)
= mapFvRn rnPat pats `thenRn` \ (patslist, fvs) ->
returnRn (TuplePatIn patslist boxed, fvs `addOneFV` tycon_name)
where
tycon_name = tupleTyCon_name boxed (length pats)
rnPat (RecPatIn con rpats)
= lookupOccRn con `thenRn` \ con' ->
rnRpats rpats `thenRn` \ (rpats', fvs) ->
returnRn (RecPatIn con' rpats', fvs `addOneFV` con')
rnPat (TypePatIn name) =
(rnHsTypeFVs (text "type pattern") name) `thenRn` \ (name', fvs) ->
returnRn (TypePatIn name', fvs)
\end{code}
************************************************************************
* *
\subsection{Match}
* *
************************************************************************
\begin{code}
rnMatch :: RdrNameMatch -> RnMS (RenamedMatch, FreeVars)
rnMatch match@(Match _ pats maybe_rhs_sig grhss)
= pushSrcLocRn (getMatchLoc match) $
-- Find the universally quantified type variables
-- in the pattern type signatures
getLocalNameEnv `thenRn` \ name_env ->
let
tyvars_in_sigs = rhs_sig_tyvars `unionLists` tyvars_in_pats
rhs_sig_tyvars = case maybe_rhs_sig of
Nothing -> []
Just ty -> extractHsTyRdrTyVars ty
tyvars_in_pats = extractPatsTyVars pats
forall_tyvars = filter (not . (`elemFM` name_env)) tyvars_in_sigs
doc_sig = text "a pattern type-signature"
doc_pats = text "a pattern match"
in
bindNakedTyVarsFVRn doc_sig forall_tyvars $ \ sig_tyvars ->
-- Note that we do a single bindLocalsRn for all the
-- matches together, so that we spot the repeated variable in
-- f x x = 1
bindLocalsFVRn doc_pats (collectPatsBinders pats) $ \ new_binders ->
mapFvRn rnPat pats `thenRn` \ (pats', pat_fvs) ->
rnGRHSs grhss `thenRn` \ (grhss', grhss_fvs) ->
doptRn Opt_GlasgowExts `thenRn` \ opt_GlasgowExts ->
(case maybe_rhs_sig of
Nothing -> returnRn (Nothing, emptyFVs)
Just ty | opt_GlasgowExts -> rnHsTypeFVs doc_sig ty `thenRn` \ (ty', ty_fvs) ->
returnRn (Just ty', ty_fvs)
| otherwise -> addErrRn (patSigErr ty) `thenRn_`
returnRn (Nothing, emptyFVs)
) `thenRn` \ (maybe_rhs_sig', ty_fvs) ->
let
binder_set = mkNameSet new_binders
unused_binders = nameSetToList (binder_set `minusNameSet` grhss_fvs)
all_fvs = grhss_fvs `plusFV` pat_fvs `plusFV` ty_fvs
in
warnUnusedMatches unused_binders `thenRn_`
returnRn (Match sig_tyvars pats' maybe_rhs_sig' grhss', all_fvs)
-- The bindLocals and bindTyVars will remove the bound FVs
\end{code}
%************************************************************************
%* *
\subsubsection{Guarded right-hand sides (GRHSs)}
%* *
%************************************************************************
\begin{code}
rnGRHSs :: RdrNameGRHSs -> RnMS (RenamedGRHSs, FreeVars)
rnGRHSs (GRHSs grhss binds maybe_ty)
= ASSERT( not (maybeToBool maybe_ty) )
rnBinds binds $ \ binds' ->
mapFvRn rnGRHS grhss `thenRn` \ (grhss', fvGRHSs) ->
returnRn (GRHSs grhss' binds' Nothing, fvGRHSs)
rnGRHS (GRHS guarded locn)
= doptRn Opt_GlasgowExts `thenRn` \ opt_GlasgowExts ->
pushSrcLocRn locn $
(if not (opt_GlasgowExts || is_standard_guard guarded) then
addWarnRn (nonStdGuardErr guarded)
else
returnRn ()
) `thenRn_`
rnStmts rnExpr guarded `thenRn` \ ((_, guarded'), fvs) ->
returnRn (GRHS guarded' locn, fvs)
where
-- Standard Haskell 1.4 guards are just a single boolean
-- expression, rather than a list of qualifiers as in the
-- Glasgow extension
is_standard_guard [ExprStmt _ _] = True
is_standard_guard [GuardStmt _ _, ExprStmt _ _] = True
is_standard_guard other = False
\end{code}
%************************************************************************
%* *
\subsubsection{Expressions}
%* *
%************************************************************************
\begin{code}
rnExprs :: [RdrNameHsExpr] -> RnMS ([RenamedHsExpr], FreeVars)
rnExprs ls = rnExprs' ls emptyUniqSet
where
rnExprs' [] acc = returnRn ([], acc)
rnExprs' (expr:exprs) acc
= rnExpr expr `thenRn` \ (expr', fvExpr) ->
-- Now we do a "seq" on the free vars because typically it's small
-- or empty, especially in very long lists of constants
let
acc' = acc `plusFV` fvExpr
in
(grubby_seqNameSet acc' rnExprs') exprs acc' `thenRn` \ (exprs', fvExprs) ->
returnRn (expr':exprs', fvExprs)
-- Grubby little function to do "seq" on namesets; replace by proper seq when GHC can do seq
grubby_seqNameSet ns result | isNullUFM ns = result
| otherwise = result
\end{code}
Variables. We look up the variable and return the resulting name.
\begin{code}
rnExpr :: RdrNameHsExpr -> RnMS (RenamedHsExpr, FreeVars)
rnExpr (HsVar v)
= lookupOccRn v `thenRn` \ name ->
if name `hasKey` assertIdKey then
-- We expand it to (GHCerr.assert__ location)
mkAssertExpr
else
-- The normal case
returnRn (HsVar name, unitFV name)
rnExpr (HsIPVar v)
= newIPName v `thenRn` \ name ->
returnRn (HsIPVar name, emptyFVs)
rnExpr (HsLit lit)
= litFVs lit `thenRn` \ fvs ->
returnRn (HsLit lit, fvs)
rnExpr (HsOverLit lit)
= rnOverLit lit `thenRn` \ (lit', fvs) ->
returnRn (HsOverLit lit', fvs)
rnExpr (HsLam match)
= rnMatch match `thenRn` \ (match', fvMatch) ->
returnRn (HsLam match', fvMatch)
rnExpr (HsApp fun arg)
= rnExpr fun `thenRn` \ (fun',fvFun) ->
rnExpr arg `thenRn` \ (arg',fvArg) ->
returnRn (HsApp fun' arg', fvFun `plusFV` fvArg)
rnExpr (OpApp e1 op _ e2)
= rnExpr e1 `thenRn` \ (e1', fv_e1) ->
rnExpr e2 `thenRn` \ (e2', fv_e2) ->
rnExpr op `thenRn` \ (op'@(HsVar op_name), fv_op) ->
-- Deal with fixity
-- When renaming code synthesised from "deriving" declarations
-- we're in Interface mode, and we should ignore fixity; assume
-- that the deriving code generator got the association correct
-- Don't even look up the fixity when in interface mode
getModeRn `thenRn` \ mode ->
(case mode of
SourceMode -> lookupFixityRn op_name `thenRn` \ fixity ->
mkOpAppRn e1' op' fixity e2'
InterfaceMode -> returnRn (OpApp e1' op' defaultFixity e2')
) `thenRn` \ final_e ->
returnRn (final_e,
fv_e1 `plusFV` fv_op `plusFV` fv_e2)
rnExpr (NegApp e n)
= rnExpr e `thenRn` \ (e', fv_e) ->
lookupOrigName negate_RDR `thenRn` \ neg ->
mkNegAppRn e' neg `thenRn` \ final_e ->
returnRn (final_e, fv_e `addOneFV` neg)
rnExpr (HsPar e)
= rnExpr e `thenRn` \ (e', fvs_e) ->
returnRn (HsPar e', fvs_e)
rnExpr section@(SectionL expr op)
= rnExpr expr `thenRn` \ (expr', fvs_expr) ->
rnExpr op `thenRn` \ (op', fvs_op) ->
checkSectionPrec "left" section op' expr' `thenRn_`
returnRn (SectionL expr' op', fvs_op `plusFV` fvs_expr)
rnExpr section@(SectionR op expr)
= rnExpr op `thenRn` \ (op', fvs_op) ->
rnExpr expr `thenRn` \ (expr', fvs_expr) ->
checkSectionPrec "right" section op' expr' `thenRn_`
returnRn (SectionR op' expr', fvs_op `plusFV` fvs_expr)
rnExpr (HsCCall fun args may_gc is_casm fake_result_ty)
-- Check out the comment on RnIfaces.getNonWiredDataDecl about ccalls
= lookupOrigNames [cCallableClass_RDR,
cReturnableClass_RDR,
ioDataCon_RDR] `thenRn` \ implicit_fvs ->
rnExprs args `thenRn` \ (args', fvs_args) ->
returnRn (HsCCall fun args' may_gc is_casm fake_result_ty,
fvs_args `plusFV` implicit_fvs)
rnExpr (HsSCC lbl expr)
= rnExpr expr `thenRn` \ (expr', fvs_expr) ->
returnRn (HsSCC lbl expr', fvs_expr)
rnExpr (HsCase expr ms src_loc)
= pushSrcLocRn src_loc $
rnExpr expr `thenRn` \ (new_expr, e_fvs) ->
mapFvRn rnMatch ms `thenRn` \ (new_ms, ms_fvs) ->
returnRn (HsCase new_expr new_ms src_loc, e_fvs `plusFV` ms_fvs)
rnExpr (HsLet binds expr)
= rnBinds binds $ \ binds' ->
rnExpr expr `thenRn` \ (expr',fvExpr) ->
returnRn (HsLet binds' expr', fvExpr)
rnExpr (HsWith expr binds)
= rnExpr expr `thenRn` \ (expr',fvExpr) ->
rnIPBinds binds `thenRn` \ (binds',fvBinds) ->
returnRn (HsWith expr' binds', fvExpr `plusFV` fvBinds)
rnExpr e@(HsDo do_or_lc stmts src_loc)
= pushSrcLocRn src_loc $
lookupOrigNames implicit_rdr_names `thenRn` \ implicit_fvs ->
rnStmts rnExpr stmts `thenRn` \ ((_, stmts'), fvs) ->
-- check the statement list ends in an expression
case last stmts' of {
ExprStmt _ _ -> returnRn () ;
ReturnStmt _ -> returnRn () ; -- for list comprehensions
_ -> addErrRn (doStmtListErr e)
} `thenRn_`
returnRn (HsDo do_or_lc stmts' src_loc, fvs `plusFV` implicit_fvs)
where
implicit_rdr_names = [foldr_RDR, build_RDR, monadClass_RDR]
-- Monad stuff should not be necessary for a list comprehension
-- but the typechecker looks up the bind and return Ids anyway
-- Oh well.
rnExpr (ExplicitList exps)
= rnExprs exps `thenRn` \ (exps', fvs) ->
returnRn (ExplicitList exps', fvs `addOneFV` listTyCon_name)
rnExpr (ExplicitTuple exps boxity)
= rnExprs exps `thenRn` \ (exps', fvs) ->
returnRn (ExplicitTuple exps' boxity, fvs `addOneFV` tycon_name)
where
tycon_name = tupleTyCon_name boxity (length exps)
rnExpr (RecordCon con_id rbinds)
= lookupOccRn con_id `thenRn` \ conname ->
rnRbinds "construction" rbinds `thenRn` \ (rbinds', fvRbinds) ->
returnRn (RecordCon conname rbinds', fvRbinds `addOneFV` conname)
rnExpr (RecordUpd expr rbinds)
= rnExpr expr `thenRn` \ (expr', fvExpr) ->
rnRbinds "update" rbinds `thenRn` \ (rbinds', fvRbinds) ->
returnRn (RecordUpd expr' rbinds', fvExpr `plusFV` fvRbinds)
rnExpr (ExprWithTySig expr pty)
= rnExpr expr `thenRn` \ (expr', fvExpr) ->
rnHsTypeFVs (text "an expression type signature") pty `thenRn` \ (pty', fvTy) ->
returnRn (ExprWithTySig expr' pty', fvExpr `plusFV` fvTy)
rnExpr (HsIf p b1 b2 src_loc)
= pushSrcLocRn src_loc $
rnExpr p `thenRn` \ (p', fvP) ->
rnExpr b1 `thenRn` \ (b1', fvB1) ->
rnExpr b2 `thenRn` \ (b2', fvB2) ->
returnRn (HsIf p' b1' b2' src_loc, plusFVs [fvP, fvB1, fvB2])
rnExpr (HsType a)
= rnHsTypeFVs doc a `thenRn` \ (t, fvT) ->
returnRn (HsType t, fvT)
where
doc = text "renaming a type pattern"
rnExpr (ArithSeqIn seq)
= lookupOrigName enumClass_RDR `thenRn` \ enum ->
rn_seq seq `thenRn` \ (new_seq, fvs) ->
returnRn (ArithSeqIn new_seq, fvs `addOneFV` enum)
where
rn_seq (From expr)
= rnExpr expr `thenRn` \ (expr', fvExpr) ->
returnRn (From expr', fvExpr)
rn_seq (FromThen expr1 expr2)
= rnExpr expr1 `thenRn` \ (expr1', fvExpr1) ->
rnExpr expr2 `thenRn` \ (expr2', fvExpr2) ->
returnRn (FromThen expr1' expr2', fvExpr1 `plusFV` fvExpr2)
rn_seq (FromTo expr1 expr2)
= rnExpr expr1 `thenRn` \ (expr1', fvExpr1) ->
rnExpr expr2 `thenRn` \ (expr2', fvExpr2) ->
returnRn (FromTo expr1' expr2', fvExpr1 `plusFV` fvExpr2)
rn_seq (FromThenTo expr1 expr2 expr3)
= rnExpr expr1 `thenRn` \ (expr1', fvExpr1) ->
rnExpr expr2 `thenRn` \ (expr2', fvExpr2) ->
rnExpr expr3 `thenRn` \ (expr3', fvExpr3) ->
returnRn (FromThenTo expr1' expr2' expr3',
plusFVs [fvExpr1, fvExpr2, fvExpr3])
\end{code}
These three are pattern syntax appearing in expressions.
Since all the symbols are reservedops we can simply reject them.
We return a (bogus) EWildPat in each case.
\begin{code}
rnExpr e@EWildPat = addErrRn (patSynErr e) `thenRn_`
returnRn (EWildPat, emptyFVs)
rnExpr e@(EAsPat _ _) = addErrRn (patSynErr e) `thenRn_`
returnRn (EWildPat, emptyFVs)
rnExpr e@(ELazyPat _) = addErrRn (patSynErr e) `thenRn_`
returnRn (EWildPat, emptyFVs)
\end{code}
%************************************************************************
%* *
\subsubsection{@Rbinds@s and @Rpats@s: in record expressions}
%* *
%************************************************************************
\begin{code}
rnRbinds str rbinds
= mapRn_ field_dup_err dup_fields `thenRn_`
mapFvRn rn_rbind rbinds `thenRn` \ (rbinds', fvRbind) ->
returnRn (rbinds', fvRbind)
where
(_, dup_fields) = removeDups compare [ f | (f,_,_) <- rbinds ]
field_dup_err dups = addErrRn (dupFieldErr str dups)
rn_rbind (field, expr, pun)
= lookupGlobalOccRn field `thenRn` \ fieldname ->
rnExpr expr `thenRn` \ (expr', fvExpr) ->
returnRn ((fieldname, expr', pun), fvExpr `addOneFV` fieldname)
rnRpats rpats
= mapRn_ field_dup_err dup_fields `thenRn_`
mapFvRn rn_rpat rpats `thenRn` \ (rpats', fvs) ->
returnRn (rpats', fvs)
where
(_, dup_fields) = removeDups compare [ f | (f,_,_) <- rpats ]
field_dup_err dups = addErrRn (dupFieldErr "pattern" dups)
rn_rpat (field, pat, pun)
= lookupGlobalOccRn field `thenRn` \ fieldname ->
rnPat pat `thenRn` \ (pat', fvs) ->
returnRn ((fieldname, pat', pun), fvs `addOneFV` fieldname)
\end{code}
%************************************************************************
%* *
\subsubsection{@rnIPBinds@s: in implicit parameter bindings} *
%* *
%************************************************************************
\begin{code}
rnIPBinds [] = returnRn ([], emptyFVs)
rnIPBinds ((n, expr) : binds)
= newIPName n `thenRn` \ name ->
rnExpr expr `thenRn` \ (expr',fvExpr) ->
rnIPBinds binds `thenRn` \ (binds',fvBinds) ->
returnRn ((name, expr') : binds', fvExpr `plusFV` fvBinds)
\end{code}
%************************************************************************
%* *
\subsubsection{@Stmt@s: in @do@ expressions}
%* *
%************************************************************************
Note that although some bound vars may appear in the free var set for
the first qual, these will eventually be removed by the caller. For
example, if we have @[p | r <- s, q <- r, p <- q]@, when doing
@[q <- r, p <- q]@, the free var set for @q <- r@ will
be @{r}@, and the free var set for the entire Quals will be @{r}@. This
@r@ will be removed only when we finally return from examining all the
Quals.
\begin{code}
type RnExprTy = RdrNameHsExpr -> RnMS (RenamedHsExpr, FreeVars)
rnStmts :: RnExprTy
-> [RdrNameStmt]
-> RnMS (([Name], [RenamedStmt]), FreeVars)
rnStmts rn_expr []
= returnRn (([], []), emptyFVs)
rnStmts rn_expr (stmt:stmts)
= getLocalNameEnv `thenRn` \ name_env ->
rnStmt rn_expr stmt $ \ stmt' ->
rnStmts rn_expr stmts `thenRn` \ ((binders, stmts'), fvs) ->
returnRn ((binders, stmt' : stmts'), fvs)
rnStmt :: RnExprTy -> RdrNameStmt
-> (RenamedStmt -> RnMS (([Name], a), FreeVars))
-> RnMS (([Name], a), FreeVars)
-- Because of mutual recursion we have to pass in rnExpr.
rnStmt rn_expr (ParStmt stmtss) thing_inside
= mapFvRn (rnStmts rn_expr) stmtss `thenRn` \ (bndrstmtss, fv_stmtss) ->
let binderss = map fst bndrstmtss
checkBndrs all_bndrs bndrs
= checkRn (null (intersectBy eqOcc all_bndrs bndrs)) err `thenRn_`
returnRn (bndrs ++ all_bndrs)
eqOcc n1 n2 = nameOccName n1 == nameOccName n2
err = text "duplicate binding in parallel list comprehension"
in
foldlRn checkBndrs [] binderss `thenRn` \ binders ->
bindLocalNamesFV binders $
thing_inside (ParStmtOut bndrstmtss)`thenRn` \ ((rest_bndrs, result), fv_rest) ->
returnRn ((rest_bndrs ++ binders, result), fv_stmtss `plusFV` fv_rest)
rnStmt rn_expr (BindStmt pat expr src_loc) thing_inside
= pushSrcLocRn src_loc $
rn_expr expr `thenRn` \ (expr', fv_expr) ->
bindLocalsFVRn doc binders $ \ new_binders ->
rnPat pat `thenRn` \ (pat', fv_pat) ->
thing_inside (BindStmt pat' expr' src_loc) `thenRn` \ ((rest_binders, result), fvs) ->
-- ZZ is shadowing handled correctly?
returnRn ((rest_binders ++ new_binders, result),
fv_expr `plusFV` fvs `plusFV` fv_pat)
where
binders = collectPatBinders pat
doc = text "a pattern in do binding"
rnStmt rn_expr (ExprStmt expr src_loc) thing_inside
= pushSrcLocRn src_loc $
rn_expr expr `thenRn` \ (expr', fv_expr) ->
thing_inside (ExprStmt expr' src_loc) `thenRn` \ (result, fvs) ->
returnRn (result, fv_expr `plusFV` fvs)
rnStmt rn_expr (GuardStmt expr src_loc) thing_inside
= pushSrcLocRn src_loc $
rn_expr expr `thenRn` \ (expr', fv_expr) ->
thing_inside (GuardStmt expr' src_loc) `thenRn` \ (result, fvs) ->
returnRn (result, fv_expr `plusFV` fvs)
rnStmt rn_expr (ReturnStmt expr) thing_inside
= rn_expr expr `thenRn` \ (expr', fv_expr) ->
thing_inside (ReturnStmt expr') `thenRn` \ (result, fvs) ->
returnRn (result, fv_expr `plusFV` fvs)
rnStmt rn_expr (LetStmt binds) thing_inside
= rnBinds binds $ \ binds' ->
thing_inside (LetStmt binds')
\end{code}
%************************************************************************
%* *
\subsubsection{Precedence Parsing}
%* *
%************************************************************************
@mkOpAppRn@ deals with operator fixities. The argument expressions
are assumed to be already correctly arranged. It needs the fixities
recorded in the OpApp nodes, because fixity info applies to the things
the programmer actually wrote, so you can't find it out from the Name.
Furthermore, the second argument is guaranteed not to be another
operator application. Why? Because the parser parses all
operator appications left-associatively, EXCEPT negation, which
we need to handle specially.
\begin{code}
mkOpAppRn :: RenamedHsExpr -- Left operand; already rearranged
-> RenamedHsExpr -> Fixity -- Operator and fixity
-> RenamedHsExpr -- Right operand (not an OpApp, but might
-- be a NegApp)
-> RnMS RenamedHsExpr
---------------------------
-- (e11 `op1` e12) `op2` e2
mkOpAppRn e1@(OpApp e11 op1 fix1 e12) op2 fix2 e2
| nofix_error
= addErrRn (precParseErr (ppr_op op1,fix1) (ppr_op op2,fix2)) `thenRn_`
returnRn (OpApp e1 op2 fix2 e2)
| associate_right
= mkOpAppRn e12 op2 fix2 e2 `thenRn` \ new_e ->
returnRn (OpApp e11 op1 fix1 new_e)
where
(nofix_error, associate_right) = compareFixity fix1 fix2
---------------------------
-- (- neg_arg) `op` e2
mkOpAppRn e1@(NegApp neg_arg neg_op) op2 fix2 e2
| nofix_error
= addErrRn (precParseErr (pp_prefix_minus,negateFixity) (ppr_op op2,fix2)) `thenRn_`
returnRn (OpApp e1 op2 fix2 e2)
| associate_right
= mkOpAppRn neg_arg op2 fix2 e2 `thenRn` \ new_e ->
returnRn (NegApp new_e neg_op)
where
(nofix_error, associate_right) = compareFixity negateFixity fix2
---------------------------
-- e1 `op` - neg_arg
mkOpAppRn e1 op1 fix1 e2@(NegApp neg_arg neg_op) -- NegApp can occur on the right
| not associate_right -- We *want* right association
= addErrRn (precParseErr (ppr_op op1, fix1) (pp_prefix_minus, negateFixity)) `thenRn_`
returnRn (OpApp e1 op1 fix1 e2)
where
(_, associate_right) = compareFixity fix1 negateFixity
---------------------------
-- Default case
mkOpAppRn e1 op fix e2 -- Default case, no rearrangment
= ASSERT2( right_op_ok fix e2,
ppr e1 $$ text "---" $$ ppr op $$ text "---" $$ ppr fix $$ text "---" $$ ppr e2
)
returnRn (OpApp e1 op fix e2)
-- Parser left-associates everything, but
-- derived instances may have correctly-associated things to
-- in the right operarand. So we just check that the right operand is OK
right_op_ok fix1 (OpApp _ _ fix2 _)
= not error_please && associate_right
where
(error_please, associate_right) = compareFixity fix1 fix2
right_op_ok fix1 other
= True
-- Parser initially makes negation bind more tightly than any other operator
mkNegAppRn neg_arg neg_op
=
#ifdef DEBUG
getModeRn `thenRn` \ mode ->
ASSERT( not_op_app mode neg_arg )
#endif
returnRn (NegApp neg_arg neg_op)
not_op_app SourceMode (OpApp _ _ _ _) = False
not_op_app mode other = True
\end{code}
\begin{code}
mkConOpPatRn :: RenamedPat -> Name -> Fixity -> RenamedPat
-> RnMS RenamedPat
mkConOpPatRn p1@(ConOpPatIn p11 op1 fix1 p12)
op2 fix2 p2
| nofix_error
= addErrRn (precParseErr (ppr_op op1,fix1) (ppr_op op2,fix2)) `thenRn_`
returnRn (ConOpPatIn p1 op2 fix2 p2)
| associate_right
= mkConOpPatRn p12 op2 fix2 p2 `thenRn` \ new_p ->
returnRn (ConOpPatIn p11 op1 fix1 new_p)
where
(nofix_error, associate_right) = compareFixity fix1 fix2
mkConOpPatRn p1 op fix p2 -- Default case, no rearrangment
= ASSERT( not_op_pat p2 )
returnRn (ConOpPatIn p1 op fix p2)
not_op_pat (ConOpPatIn _ _ _ _) = False
not_op_pat other = True
\end{code}
\begin{code}
checkPrecMatch :: Bool -> Name -> RenamedMatch -> RnMS ()
checkPrecMatch False fn match
= returnRn ()
checkPrecMatch True op (Match _ (p1:p2:_) _ _)
-- True indicates an infix lhs
= getModeRn `thenRn` \ mode ->
-- See comments with rnExpr (OpApp ...)
case mode of
InterfaceMode -> returnRn ()
SourceMode -> checkPrec op p1 False `thenRn_`
checkPrec op p2 True
checkPrecMatch True op _ = panic "checkPrecMatch"
checkPrec op (ConOpPatIn _ op1 _ _) right
= lookupFixityRn op `thenRn` \ op_fix@(Fixity op_prec op_dir) ->
lookupFixityRn op1 `thenRn` \ op1_fix@(Fixity op1_prec op1_dir) ->
let
inf_ok = op1_prec > op_prec ||
(op1_prec == op_prec &&
(op1_dir == InfixR && op_dir == InfixR && right ||
op1_dir == InfixL && op_dir == InfixL && not right))
info = (ppr_op op, op_fix)
info1 = (ppr_op op1, op1_fix)
(infol, infor) = if right then (info, info1) else (info1, info)
in
checkRn inf_ok (precParseErr infol infor)
checkPrec op pat right
= returnRn ()
-- Check precedence of (arg op) or (op arg) respectively
-- If arg is itself an operator application, its precedence should
-- be higher than that of op
checkSectionPrec left_or_right section op arg
= case arg of
OpApp _ op fix _ -> go_for_it (ppr_op op) fix
NegApp _ _ -> go_for_it pp_prefix_minus negateFixity
other -> returnRn ()
where
HsVar op_name = op
go_for_it pp_arg_op arg_fix@(Fixity arg_prec _)
= lookupFixityRn op_name `thenRn` \ op_fix@(Fixity op_prec _) ->
checkRn (op_prec < arg_prec)
(sectionPrecErr (ppr_op op_name, op_fix) (pp_arg_op, arg_fix) section)
\end{code}
Consider
\begin{verbatim}
a `op1` b `op2` c
\end{verbatim}
@(compareFixity op1 op2)@ tells which way to arrange appication, or
whether there's an error.
\begin{code}
compareFixity :: Fixity -> Fixity
-> (Bool, -- Error please
Bool) -- Associate to the right: a op1 (b op2 c)
compareFixity (Fixity prec1 dir1) (Fixity prec2 dir2)
= case prec1 `compare` prec2 of
GT -> left
LT -> right
EQ -> case (dir1, dir2) of
(InfixR, InfixR) -> right
(InfixL, InfixL) -> left
_ -> error_please
where
right = (False, True)
left = (False, False)
error_please = (True, False)
\end{code}
%************************************************************************
%* *
\subsubsection{Literals}
%* *
%************************************************************************
When literals occur we have to make sure
that the types and classes they involve
are made available.
\begin{code}
litFVs (HsChar c) = returnRn (unitFV charTyCon_name)
litFVs (HsCharPrim c) = returnRn (unitFV (getName charPrimTyCon))
litFVs (HsString s) = returnRn (mkFVs [listTyCon_name, charTyCon_name])
litFVs (HsStringPrim s) = returnRn (unitFV (getName addrPrimTyCon))
litFVs (HsInt i) = returnRn (unitFV (getName intTyCon))
litFVs (HsIntPrim i) = returnRn (unitFV (getName intPrimTyCon))
litFVs (HsFloatPrim f) = returnRn (unitFV (getName floatPrimTyCon))
litFVs (HsDoublePrim d) = returnRn (unitFV (getName doublePrimTyCon))
litFVs (HsLitLit l bogus_ty) = lookupOrigName cCallableClass_RDR `thenRn` \ cc ->
returnRn (unitFV cc)
litFVs lit = pprPanic "RnExpr.litFVs" (ppr lit) -- HsInteger and HsRat only appear
-- in post-typechecker translations
rnOverLit (HsIntegral i from_integer)
= lookupOccRn from_integer `thenRn` \ from_integer' ->
(if inIntRange i then
returnRn emptyFVs
else
lookupOrigNames [plusInteger_RDR, timesInteger_RDR]
) `thenRn` \ ns ->
returnRn (HsIntegral i from_integer', ns `addOneFV` from_integer')
rnOverLit (HsFractional i n)
= lookupOccRn n `thenRn` \ n' ->
lookupOrigNames [ratioDataCon_RDR, plusInteger_RDR, timesInteger_RDR] `thenRn` \ ns' ->
-- We have to make sure that the Ratio type is imported with
-- its constructor, because literals of type Ratio t are
-- built with that constructor.
-- The Rational type is needed too, but that will come in
-- when fractionalClass does.
-- The plus/times integer operations may be needed to construct the numerator
-- and denominator (see DsUtils.mkIntegerLit)
returnRn (HsFractional i n', ns' `addOneFV` n')
\end{code}
%************************************************************************
%* *
\subsubsection{Assertion utils}
%* *
%************************************************************************
\begin{code}
mkAssertExpr :: RnMS (RenamedHsExpr, FreeVars)
mkAssertExpr =
lookupOrigName assertErr_RDR `thenRn` \ name ->
getSrcLocRn `thenRn` \ sloc ->
-- if we're ignoring asserts, return (\ _ e -> e)
-- if not, return (assertError "src-loc")
if opt_IgnoreAsserts then
getUniqRn `thenRn` \ uniq ->
let
vname = mkSysLocalName uniq SLIT("v")
expr = HsLam ignorePredMatch
loc = nameSrcLoc vname
ignorePredMatch = Match [] [WildPatIn, VarPatIn vname] Nothing
(GRHSs [GRHS [ExprStmt (HsVar vname) loc] loc]
EmptyBinds Nothing)
in
returnRn (expr, unitFV name)
else
let
expr =
HsApp (HsVar name)
(HsLit (HsString (_PK_ (showSDoc (ppr sloc)))))
in
returnRn (expr, unitFV name)
\end{code}
%************************************************************************
%* *
\subsubsection{Errors}
%* *
%************************************************************************
\begin{code}
ppr_op op = quotes (ppr op) -- Here, op can be a Name or a (Var n), where n is a Name
ppr_opfix (pp_op, fixity) = pp_op <+> brackets (ppr fixity)
pp_prefix_minus = ptext SLIT("prefix `-'")
dupFieldErr str (dup:rest)
= hsep [ptext SLIT("duplicate field name"),
quotes (ppr dup),
ptext SLIT("in record"), text str]
precParseErr op1 op2
= hang (ptext SLIT("precedence parsing error"))
4 (hsep [ptext SLIT("cannot mix"), ppr_opfix op1, ptext SLIT("and"),
ppr_opfix op2,
ptext SLIT("in the same infix expression")])
sectionPrecErr op arg_op section
= vcat [ptext SLIT("The operator") <+> ppr_opfix op <+> ptext SLIT("of a section"),
nest 4 (ptext SLIT("must have lower precedence than the operand") <+> ppr_opfix arg_op),
nest 4 (ptext SLIT("In the section:") <+> quotes (ppr section))]
nonStdGuardErr guard
= hang (ptext
SLIT("accepting non-standard pattern guards (-fglasgow-exts to suppress this message)")
) 4 (ppr guard)
patSigErr ty
= (ptext SLIT("Illegal signature in pattern:") <+> ppr ty)
$$ nest 4 (ptext SLIT("Use -fglasgow-exts to permit it"))
patSynErr e
= sep [ptext SLIT("Pattern syntax in expression context:"),
nest 4 (ppr e)]
doStmtListErr e
= sep [ptext SLIT("`do' statements must end in expression:"),
nest 4 (ppr e)]
\end{code}
|