1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
|
%
% (c) The GRASP/AQUA Project, Glasgow University, 1992-1998
%
\section[RnExpr]{Renaming of expressions}
Basically dependency analysis.
Handles @Match@, @GRHSs@, @HsExpr@, and @Qualifier@ datatypes. In
general, all of these functions return a renamed thing, and a set of
free variables.
\begin{code}
module RnExpr (
rnLExpr, rnExpr, rnStmts
) where
#include "HsVersions.h"
import RnSource ( rnSrcDecls, rnSplice, checkTH )
import RnBinds ( rnLocalBindsAndThen, rnValBinds,
rnMatchGroup, trimWith )
import HsSyn
import RnHsSyn
import TcRnMonad
import RnEnv
import OccName ( plusOccEnv )
import RnNames ( getLocalDeclBinders, extendRdrEnvRn )
import RnTypes ( rnHsTypeFVs, rnLPat, rnOverLit, rnPatsAndThen, rnLit,
mkOpFormRn, mkOpAppRn, mkNegAppRn, checkSectionPrec,
dupFieldErr, checkTupSize )
import DynFlags ( DynFlag(..) )
import BasicTypes ( FixityDirection(..) )
import PrelNames ( thFAKE, hasKey, assertIdKey, assertErrorName,
loopAName, choiceAName, appAName, arrAName, composeAName, firstAName,
negateName, thenMName, bindMName, failMName )
#if defined(GHCI) && defined(BREAKPOINT)
import PrelNames ( breakpointJumpName, undefined_RDR, breakpointIdKey )
import UniqFM ( eltsUFM )
import DynFlags ( GhcMode(..) )
import SrcLoc ( srcSpanFile, srcSpanStartLine )
import Name ( isTyVarName )
#endif
import Name ( Name, nameOccName, nameIsLocalOrFrom )
import NameSet
import RdrName ( RdrName, emptyGlobalRdrEnv, extendLocalRdrEnv, lookupLocalRdrEnv )
import LoadIface ( loadHomeInterface )
import UniqFM ( isNullUFM )
import UniqSet ( emptyUniqSet )
import List ( nub )
import Util ( isSingleton )
import ListSetOps ( removeDups )
import Maybes ( expectJust )
import Outputable
import SrcLoc ( Located(..), unLoc, getLoc, cmpLocated )
import FastString
import List ( unzip4 )
\end{code}
%************************************************************************
%* *
\subsubsection{Expressions}
%* *
%************************************************************************
\begin{code}
rnExprs :: [LHsExpr RdrName] -> RnM ([LHsExpr Name], FreeVars)
rnExprs ls = rnExprs' ls emptyUniqSet
where
rnExprs' [] acc = returnM ([], acc)
rnExprs' (expr:exprs) acc
= rnLExpr expr `thenM` \ (expr', fvExpr) ->
-- Now we do a "seq" on the free vars because typically it's small
-- or empty, especially in very long lists of constants
let
acc' = acc `plusFV` fvExpr
in
(grubby_seqNameSet acc' rnExprs') exprs acc' `thenM` \ (exprs', fvExprs) ->
returnM (expr':exprs', fvExprs)
-- Grubby little function to do "seq" on namesets; replace by proper seq when GHC can do seq
grubby_seqNameSet ns result | isNullUFM ns = result
| otherwise = result
\end{code}
Variables. We look up the variable and return the resulting name.
\begin{code}
rnLExpr :: LHsExpr RdrName -> RnM (LHsExpr Name, FreeVars)
rnLExpr = wrapLocFstM rnExpr
rnExpr :: HsExpr RdrName -> RnM (HsExpr Name, FreeVars)
rnExpr (HsVar v)
= do name <- lookupOccRn v
localRdrEnv <- getLocalRdrEnv
lclEnv <- getLclEnv
ignore_asserts <- doptM Opt_IgnoreAsserts
ignore_breakpoints <- doptM Opt_IgnoreBreakpoints
let conds = [ (name `hasKey` assertIdKey
&& not ignore_asserts,
do (e, fvs) <- mkAssertErrorExpr
return (e, fvs `addOneFV` name))
#if defined(GHCI) && defined(BREAKPOINT)
, (name `hasKey` breakpointIdKey
&& not ignore_breakpoints,
do ghcMode <- getGhcMode
case ghcMode of
Interactive
-> do let isWantedName = not.isTyVarName
(e, fvs) <- mkBreakPointExpr (filter isWantedName (eltsUFM localRdrEnv))
return (e, fvs `addOneFV` name)
_ -> return (HsVar name, unitFV name)
)
#endif
]
case lookup True conds of
Just action -> action
Nothing -> return (HsVar name, unitFV name)
rnExpr (HsIPVar v)
= newIPNameRn v `thenM` \ name ->
returnM (HsIPVar name, emptyFVs)
rnExpr (HsLit lit)
= rnLit lit `thenM_`
returnM (HsLit lit, emptyFVs)
rnExpr (HsOverLit lit)
= rnOverLit lit `thenM` \ (lit', fvs) ->
returnM (HsOverLit lit', fvs)
rnExpr (HsApp fun arg)
= rnLExpr fun `thenM` \ (fun',fvFun) ->
rnLExpr arg `thenM` \ (arg',fvArg) ->
returnM (HsApp fun' arg', fvFun `plusFV` fvArg)
rnExpr (OpApp e1 op _ e2)
= rnLExpr e1 `thenM` \ (e1', fv_e1) ->
rnLExpr e2 `thenM` \ (e2', fv_e2) ->
rnLExpr op `thenM` \ (op'@(L _ (HsVar op_name)), fv_op) ->
-- Deal with fixity
-- When renaming code synthesised from "deriving" declarations
-- we used to avoid fixity stuff, but we can't easily tell any
-- more, so I've removed the test. Adding HsPars in TcGenDeriv
-- should prevent bad things happening.
lookupFixityRn op_name `thenM` \ fixity ->
mkOpAppRn e1' op' fixity e2' `thenM` \ final_e ->
returnM (final_e,
fv_e1 `plusFV` fv_op `plusFV` fv_e2)
rnExpr (NegApp e _)
= rnLExpr e `thenM` \ (e', fv_e) ->
lookupSyntaxName negateName `thenM` \ (neg_name, fv_neg) ->
mkNegAppRn e' neg_name `thenM` \ final_e ->
returnM (final_e, fv_e `plusFV` fv_neg)
rnExpr (HsPar e)
= rnLExpr e `thenM` \ (e', fvs_e) ->
returnM (HsPar e', fvs_e)
-- Template Haskell extensions
-- Don't ifdef-GHCI them because we want to fail gracefully
-- (not with an rnExpr crash) in a stage-1 compiler.
rnExpr e@(HsBracket br_body)
= checkTH e "bracket" `thenM_`
rnBracket br_body `thenM` \ (body', fvs_e) ->
returnM (HsBracket body', fvs_e)
rnExpr e@(HsSpliceE splice)
= rnSplice splice `thenM` \ (splice', fvs) ->
returnM (HsSpliceE splice', fvs)
rnExpr section@(SectionL expr op)
= rnLExpr expr `thenM` \ (expr', fvs_expr) ->
rnLExpr op `thenM` \ (op', fvs_op) ->
checkSectionPrec InfixL section op' expr' `thenM_`
returnM (SectionL expr' op', fvs_op `plusFV` fvs_expr)
rnExpr section@(SectionR op expr)
= rnLExpr op `thenM` \ (op', fvs_op) ->
rnLExpr expr `thenM` \ (expr', fvs_expr) ->
checkSectionPrec InfixR section op' expr' `thenM_`
returnM (SectionR op' expr', fvs_op `plusFV` fvs_expr)
rnExpr (HsCoreAnn ann expr)
= rnLExpr expr `thenM` \ (expr', fvs_expr) ->
returnM (HsCoreAnn ann expr', fvs_expr)
rnExpr (HsSCC lbl expr)
= rnLExpr expr `thenM` \ (expr', fvs_expr) ->
returnM (HsSCC lbl expr', fvs_expr)
rnExpr (HsLam matches)
= rnMatchGroup LambdaExpr matches `thenM` \ (matches', fvMatch) ->
returnM (HsLam matches', fvMatch)
rnExpr (HsCase expr matches)
= rnLExpr expr `thenM` \ (new_expr, e_fvs) ->
rnMatchGroup CaseAlt matches `thenM` \ (new_matches, ms_fvs) ->
returnM (HsCase new_expr new_matches, e_fvs `plusFV` ms_fvs)
rnExpr (HsLet binds expr)
= rnLocalBindsAndThen binds $ \ binds' ->
rnLExpr expr `thenM` \ (expr',fvExpr) ->
returnM (HsLet binds' expr', fvExpr)
rnExpr e@(HsDo do_or_lc stmts body _)
= do { ((stmts', body'), fvs) <- rnStmts do_or_lc stmts $
rnLExpr body
; return (HsDo do_or_lc stmts' body' placeHolderType, fvs) }
rnExpr (ExplicitList _ exps)
= rnExprs exps `thenM` \ (exps', fvs) ->
returnM (ExplicitList placeHolderType exps', fvs `addOneFV` listTyCon_name)
rnExpr (ExplicitPArr _ exps)
= rnExprs exps `thenM` \ (exps', fvs) ->
returnM (ExplicitPArr placeHolderType exps', fvs)
rnExpr e@(ExplicitTuple exps boxity)
= checkTupSize tup_size `thenM_`
rnExprs exps `thenM` \ (exps', fvs) ->
returnM (ExplicitTuple exps' boxity, fvs `addOneFV` tycon_name)
where
tup_size = length exps
tycon_name = tupleTyCon_name boxity tup_size
rnExpr (RecordCon con_id _ rbinds)
= lookupLocatedOccRn con_id `thenM` \ conname ->
rnRbinds "construction" rbinds `thenM` \ (rbinds', fvRbinds) ->
returnM (RecordCon conname noPostTcExpr rbinds',
fvRbinds `addOneFV` unLoc conname)
rnExpr (RecordUpd expr rbinds _ _)
= rnLExpr expr `thenM` \ (expr', fvExpr) ->
rnRbinds "update" rbinds `thenM` \ (rbinds', fvRbinds) ->
returnM (RecordUpd expr' rbinds' placeHolderType placeHolderType,
fvExpr `plusFV` fvRbinds)
rnExpr (ExprWithTySig expr pty)
= rnLExpr expr `thenM` \ (expr', fvExpr) ->
rnHsTypeFVs doc pty `thenM` \ (pty', fvTy) ->
returnM (ExprWithTySig expr' pty', fvExpr `plusFV` fvTy)
where
doc = text "In an expression type signature"
rnExpr (HsIf p b1 b2)
= rnLExpr p `thenM` \ (p', fvP) ->
rnLExpr b1 `thenM` \ (b1', fvB1) ->
rnLExpr b2 `thenM` \ (b2', fvB2) ->
returnM (HsIf p' b1' b2', plusFVs [fvP, fvB1, fvB2])
rnExpr (HsType a)
= rnHsTypeFVs doc a `thenM` \ (t, fvT) ->
returnM (HsType t, fvT)
where
doc = text "In a type argument"
rnExpr (ArithSeq _ seq)
= rnArithSeq seq `thenM` \ (new_seq, fvs) ->
returnM (ArithSeq noPostTcExpr new_seq, fvs)
rnExpr (PArrSeq _ seq)
= rnArithSeq seq `thenM` \ (new_seq, fvs) ->
returnM (PArrSeq noPostTcExpr new_seq, fvs)
\end{code}
These three are pattern syntax appearing in expressions.
Since all the symbols are reservedops we can simply reject them.
We return a (bogus) EWildPat in each case.
\begin{code}
rnExpr e@EWildPat = patSynErr e
rnExpr e@(EAsPat {}) = patSynErr e
rnExpr e@(ELazyPat {}) = patSynErr e
\end{code}
%************************************************************************
%* *
Arrow notation
%* *
%************************************************************************
\begin{code}
rnExpr (HsProc pat body)
= newArrowScope $
rnPatsAndThen ProcExpr [pat] $ \ [pat'] ->
rnCmdTop body `thenM` \ (body',fvBody) ->
returnM (HsProc pat' body', fvBody)
rnExpr (HsArrApp arrow arg _ ho rtl)
= select_arrow_scope (rnLExpr arrow) `thenM` \ (arrow',fvArrow) ->
rnLExpr arg `thenM` \ (arg',fvArg) ->
returnM (HsArrApp arrow' arg' placeHolderType ho rtl,
fvArrow `plusFV` fvArg)
where
select_arrow_scope tc = case ho of
HsHigherOrderApp -> tc
HsFirstOrderApp -> escapeArrowScope tc
-- infix form
rnExpr (HsArrForm op (Just _) [arg1, arg2])
= escapeArrowScope (rnLExpr op)
`thenM` \ (op'@(L _ (HsVar op_name)),fv_op) ->
rnCmdTop arg1 `thenM` \ (arg1',fv_arg1) ->
rnCmdTop arg2 `thenM` \ (arg2',fv_arg2) ->
-- Deal with fixity
lookupFixityRn op_name `thenM` \ fixity ->
mkOpFormRn arg1' op' fixity arg2' `thenM` \ final_e ->
returnM (final_e,
fv_arg1 `plusFV` fv_op `plusFV` fv_arg2)
rnExpr (HsArrForm op fixity cmds)
= escapeArrowScope (rnLExpr op) `thenM` \ (op',fvOp) ->
rnCmdArgs cmds `thenM` \ (cmds',fvCmds) ->
returnM (HsArrForm op' fixity cmds', fvOp `plusFV` fvCmds)
rnExpr other = pprPanic "rnExpr: unexpected expression" (ppr other)
-- DictApp, DictLam, TyApp, TyLam
\end{code}
%************************************************************************
%* *
Arrow commands
%* *
%************************************************************************
\begin{code}
rnCmdArgs [] = returnM ([], emptyFVs)
rnCmdArgs (arg:args)
= rnCmdTop arg `thenM` \ (arg',fvArg) ->
rnCmdArgs args `thenM` \ (args',fvArgs) ->
returnM (arg':args', fvArg `plusFV` fvArgs)
rnCmdTop = wrapLocFstM rnCmdTop'
where
rnCmdTop' (HsCmdTop cmd _ _ _)
= rnLExpr (convertOpFormsLCmd cmd) `thenM` \ (cmd', fvCmd) ->
let
cmd_names = [arrAName, composeAName, firstAName] ++
nameSetToList (methodNamesCmd (unLoc cmd'))
in
-- Generate the rebindable syntax for the monad
lookupSyntaxTable cmd_names `thenM` \ (cmd_names', cmd_fvs) ->
returnM (HsCmdTop cmd' [] placeHolderType cmd_names',
fvCmd `plusFV` cmd_fvs)
---------------------------------------------------
-- convert OpApp's in a command context to HsArrForm's
convertOpFormsLCmd :: LHsCmd id -> LHsCmd id
convertOpFormsLCmd = fmap convertOpFormsCmd
convertOpFormsCmd :: HsCmd id -> HsCmd id
convertOpFormsCmd (HsApp c e) = HsApp (convertOpFormsLCmd c) e
convertOpFormsCmd (HsLam match) = HsLam (convertOpFormsMatch match)
convertOpFormsCmd (OpApp c1 op fixity c2)
= let
arg1 = L (getLoc c1) $ HsCmdTop (convertOpFormsLCmd c1) [] placeHolderType []
arg2 = L (getLoc c2) $ HsCmdTop (convertOpFormsLCmd c2) [] placeHolderType []
in
HsArrForm op (Just fixity) [arg1, arg2]
convertOpFormsCmd (HsPar c) = HsPar (convertOpFormsLCmd c)
-- gaw 2004
convertOpFormsCmd (HsCase exp matches)
= HsCase exp (convertOpFormsMatch matches)
convertOpFormsCmd (HsIf exp c1 c2)
= HsIf exp (convertOpFormsLCmd c1) (convertOpFormsLCmd c2)
convertOpFormsCmd (HsLet binds cmd)
= HsLet binds (convertOpFormsLCmd cmd)
convertOpFormsCmd (HsDo ctxt stmts body ty)
= HsDo ctxt (map (fmap convertOpFormsStmt) stmts)
(convertOpFormsLCmd body) ty
-- Anything else is unchanged. This includes HsArrForm (already done),
-- things with no sub-commands, and illegal commands (which will be
-- caught by the type checker)
convertOpFormsCmd c = c
convertOpFormsStmt (BindStmt pat cmd _ _)
= BindStmt pat (convertOpFormsLCmd cmd) noSyntaxExpr noSyntaxExpr
convertOpFormsStmt (ExprStmt cmd _ _)
= ExprStmt (convertOpFormsLCmd cmd) noSyntaxExpr placeHolderType
convertOpFormsStmt (RecStmt stmts lvs rvs es binds)
= RecStmt (map (fmap convertOpFormsStmt) stmts) lvs rvs es binds
convertOpFormsStmt stmt = stmt
convertOpFormsMatch (MatchGroup ms ty)
= MatchGroup (map (fmap convert) ms) ty
where convert (Match pat mty grhss)
= Match pat mty (convertOpFormsGRHSs grhss)
convertOpFormsGRHSs (GRHSs grhss binds)
= GRHSs (map convertOpFormsGRHS grhss) binds
convertOpFormsGRHS = fmap convert
where
convert (GRHS stmts cmd) = GRHS stmts (convertOpFormsLCmd cmd)
---------------------------------------------------
type CmdNeeds = FreeVars -- Only inhabitants are
-- appAName, choiceAName, loopAName
-- find what methods the Cmd needs (loop, choice, apply)
methodNamesLCmd :: LHsCmd Name -> CmdNeeds
methodNamesLCmd = methodNamesCmd . unLoc
methodNamesCmd :: HsCmd Name -> CmdNeeds
methodNamesCmd cmd@(HsArrApp _arrow _arg _ HsFirstOrderApp _rtl)
= emptyFVs
methodNamesCmd cmd@(HsArrApp _arrow _arg _ HsHigherOrderApp _rtl)
= unitFV appAName
methodNamesCmd cmd@(HsArrForm {}) = emptyFVs
methodNamesCmd (HsPar c) = methodNamesLCmd c
methodNamesCmd (HsIf p c1 c2)
= methodNamesLCmd c1 `plusFV` methodNamesLCmd c2 `addOneFV` choiceAName
methodNamesCmd (HsLet b c) = methodNamesLCmd c
methodNamesCmd (HsDo sc stmts body ty)
= methodNamesStmts stmts `plusFV` methodNamesLCmd body
methodNamesCmd (HsApp c e) = methodNamesLCmd c
methodNamesCmd (HsLam match) = methodNamesMatch match
methodNamesCmd (HsCase scrut matches)
= methodNamesMatch matches `addOneFV` choiceAName
methodNamesCmd other = emptyFVs
-- Other forms can't occur in commands, but it's not convenient
-- to error here so we just do what's convenient.
-- The type checker will complain later
---------------------------------------------------
methodNamesMatch (MatchGroup ms ty)
= plusFVs (map do_one ms)
where
do_one (L _ (Match pats sig_ty grhss)) = methodNamesGRHSs grhss
-------------------------------------------------
-- gaw 2004
methodNamesGRHSs (GRHSs grhss binds) = plusFVs (map methodNamesGRHS grhss)
-------------------------------------------------
methodNamesGRHS (L _ (GRHS stmts rhs)) = methodNamesLCmd rhs
---------------------------------------------------
methodNamesStmts stmts = plusFVs (map methodNamesLStmt stmts)
---------------------------------------------------
methodNamesLStmt = methodNamesStmt . unLoc
methodNamesStmt (ExprStmt cmd _ _) = methodNamesLCmd cmd
methodNamesStmt (BindStmt pat cmd _ _) = methodNamesLCmd cmd
methodNamesStmt (RecStmt stmts _ _ _ _)
= methodNamesStmts stmts `addOneFV` loopAName
methodNamesStmt (LetStmt b) = emptyFVs
methodNamesStmt (ParStmt ss) = emptyFVs
-- ParStmt can't occur in commands, but it's not convenient to error
-- here so we just do what's convenient
\end{code}
%************************************************************************
%* *
Arithmetic sequences
%* *
%************************************************************************
\begin{code}
rnArithSeq (From expr)
= rnLExpr expr `thenM` \ (expr', fvExpr) ->
returnM (From expr', fvExpr)
rnArithSeq (FromThen expr1 expr2)
= rnLExpr expr1 `thenM` \ (expr1', fvExpr1) ->
rnLExpr expr2 `thenM` \ (expr2', fvExpr2) ->
returnM (FromThen expr1' expr2', fvExpr1 `plusFV` fvExpr2)
rnArithSeq (FromTo expr1 expr2)
= rnLExpr expr1 `thenM` \ (expr1', fvExpr1) ->
rnLExpr expr2 `thenM` \ (expr2', fvExpr2) ->
returnM (FromTo expr1' expr2', fvExpr1 `plusFV` fvExpr2)
rnArithSeq (FromThenTo expr1 expr2 expr3)
= rnLExpr expr1 `thenM` \ (expr1', fvExpr1) ->
rnLExpr expr2 `thenM` \ (expr2', fvExpr2) ->
rnLExpr expr3 `thenM` \ (expr3', fvExpr3) ->
returnM (FromThenTo expr1' expr2' expr3',
plusFVs [fvExpr1, fvExpr2, fvExpr3])
\end{code}
%************************************************************************
%* *
\subsubsection{@Rbinds@s and @Rpats@s: in record expressions}
%* *
%************************************************************************
\begin{code}
rnRbinds str rbinds
= mappM_ field_dup_err dup_fields `thenM_`
mapFvRn rn_rbind rbinds `thenM` \ (rbinds', fvRbind) ->
returnM (rbinds', fvRbind)
where
(_, dup_fields) = removeDups cmpLocated [ f | (f,_) <- rbinds ]
field_dup_err dups = mappM_ (\f -> addLocErr f (dupFieldErr str)) dups
rn_rbind (field, expr)
= lookupLocatedGlobalOccRn field `thenM` \ fieldname ->
rnLExpr expr `thenM` \ (expr', fvExpr) ->
returnM ((fieldname, expr'), fvExpr `addOneFV` unLoc fieldname)
\end{code}
%************************************************************************
%* *
Template Haskell brackets
%* *
%************************************************************************
\begin{code}
rnBracket (VarBr n) = do { name <- lookupOccRn n
; this_mod <- getModule
; checkM (nameIsLocalOrFrom this_mod name) $ -- Reason: deprecation checking asumes the
do { loadHomeInterface msg name -- home interface is loaded, and this is the
; return () } -- only way that is going to happen
; returnM (VarBr name, unitFV name) }
where
msg = ptext SLIT("Need interface for Template Haskell quoted Name")
rnBracket (ExpBr e) = do { (e', fvs) <- rnLExpr e
; return (ExpBr e', fvs) }
rnBracket (PatBr p) = do { (p', fvs) <- rnLPat p
; return (PatBr p', fvs) }
rnBracket (TypBr t) = do { (t', fvs) <- rnHsTypeFVs doc t
; return (TypBr t', fvs) }
where
doc = ptext SLIT("In a Template-Haskell quoted type")
rnBracket (DecBr group)
= do { gbl_env <- getGblEnv
; let gbl_env1 = gbl_env { tcg_mod = thFAKE }
-- Note the thFAKE. The top-level names from the bracketed
-- declarations will go into the name cache, and we don't want them to
-- confuse the Names for the current module.
-- By using a pretend module, thFAKE, we keep them safely out of the way.
; names <- getLocalDeclBinders gbl_env1 group
; rdr_env' <- extendRdrEnvRn emptyGlobalRdrEnv names
-- Furthermore, the names in the bracket shouldn't conflict with
-- existing top-level names E.g.
-- foo = 1
-- bar = [d| foo = 1|]
-- But both 'foo's get a LocalDef provenance, so we'd get a complaint unless
-- we start with an emptyGlobalRdrEnv
; setGblEnv (gbl_env { tcg_rdr_env = tcg_rdr_env gbl_env1 `plusOccEnv` rdr_env',
tcg_dus = emptyDUs }) $ do
-- Notice plusOccEnv, not plusGlobalRdrEnv. In this situation we want
-- to *shadow* top-level bindings. (See the 'foo' example above.)
-- If we don't shadow, we'll get an ambiguity complaint when we do
-- a lookupTopBndrRn (which uses lookupGreLocalRn) on the binder of the 'foo'
--
-- Furthermore, arguably if the splice does define foo, that should hide
-- any foo's further out
--
-- The emptyDUs is so that we just collect uses for this group alone
{ (tcg_env, group') <- rnSrcDecls group
-- Discard the tcg_env; it contains only extra info about fixity
; return (DecBr group', allUses (tcg_dus tcg_env)) } }
\end{code}
%************************************************************************
%* *
\subsubsection{@Stmt@s: in @do@ expressions}
%* *
%************************************************************************
\begin{code}
rnStmts :: HsStmtContext Name -> [LStmt RdrName]
-> RnM (thing, FreeVars)
-> RnM (([LStmt Name], thing), FreeVars)
rnStmts (MDoExpr _) = rnMDoStmts
rnStmts ctxt = rnNormalStmts ctxt
rnNormalStmts :: HsStmtContext Name -> [LStmt RdrName]
-> RnM (thing, FreeVars)
-> RnM (([LStmt Name], thing), FreeVars)
-- Used for cases *other* than recursive mdo
-- Implements nested scopes
rnNormalStmts ctxt [] thing_inside
= do { (thing, fvs) <- thing_inside
; return (([],thing), fvs) }
rnNormalStmts ctxt (L loc stmt : stmts) thing_inside
= do { ((stmt', (stmts', thing)), fvs)
<- rnStmt ctxt stmt $
rnNormalStmts ctxt stmts thing_inside
; return (((L loc stmt' : stmts'), thing), fvs) }
rnStmt :: HsStmtContext Name -> Stmt RdrName
-> RnM (thing, FreeVars)
-> RnM ((Stmt Name, thing), FreeVars)
rnStmt ctxt (ExprStmt expr _ _) thing_inside
= do { (expr', fv_expr) <- rnLExpr expr
; (then_op, fvs1) <- lookupSyntaxName thenMName
; (thing, fvs2) <- thing_inside
; return ((ExprStmt expr' then_op placeHolderType, thing),
fv_expr `plusFV` fvs1 `plusFV` fvs2) }
rnStmt ctxt (BindStmt pat expr _ _) thing_inside
= do { (expr', fv_expr) <- rnLExpr expr
-- The binders do not scope over the expression
; (bind_op, fvs1) <- lookupSyntaxName bindMName
; (fail_op, fvs2) <- lookupSyntaxName failMName
; rnPatsAndThen (StmtCtxt ctxt) [pat] $ \ [pat'] -> do
{ (thing, fvs3) <- thing_inside
; return ((BindStmt pat' expr' bind_op fail_op, thing),
fv_expr `plusFV` fvs1 `plusFV` fvs2 `plusFV` fvs3) }}
-- fv_expr shouldn't really be filtered by the rnPatsAndThen
-- but it does not matter because the names are unique
rnStmt ctxt (LetStmt binds) thing_inside
= do { checkErr (ok ctxt binds)
(badIpBinds (ptext SLIT("a parallel list comprehension:")) binds)
; rnLocalBindsAndThen binds $ \ binds' -> do
{ (thing, fvs) <- thing_inside
; return ((LetStmt binds', thing), fvs) }}
where
-- We do not allow implicit-parameter bindings in a parallel
-- list comprehension. I'm not sure what it might mean.
ok (ParStmtCtxt _) (HsIPBinds _) = False
ok _ _ = True
rnStmt ctxt (RecStmt rec_stmts _ _ _ _) thing_inside
= bindLocatedLocalsRn doc (collectLStmtsBinders rec_stmts) $ \ bndrs ->
rn_rec_stmts bndrs rec_stmts `thenM` \ segs ->
thing_inside `thenM` \ (thing, fvs) ->
let
segs_w_fwd_refs = addFwdRefs segs
(ds, us, fs, rec_stmts') = unzip4 segs_w_fwd_refs
later_vars = nameSetToList (plusFVs ds `intersectNameSet` fvs)
fwd_vars = nameSetToList (plusFVs fs)
uses = plusFVs us
rec_stmt = RecStmt rec_stmts' later_vars fwd_vars [] emptyLHsBinds
in
returnM ((rec_stmt, thing), uses `plusFV` fvs)
where
doc = text "In a recursive do statement"
rnStmt ctxt (ParStmt segs) thing_inside
= do { opt_GlasgowExts <- doptM Opt_GlasgowExts
; checkM opt_GlasgowExts parStmtErr
; orig_lcl_env <- getLocalRdrEnv
; ((segs',thing), fvs) <- go orig_lcl_env [] segs
; return ((ParStmt segs', thing), fvs) }
where
-- type ParSeg id = [([LStmt id], [id])]
-- go :: NameSet -> [ParSeg RdrName]
-- -> RnM (([ParSeg Name], thing), FreeVars)
go orig_lcl_env bndrs []
= do { let { (bndrs', dups) = removeDups cmpByOcc bndrs
; inner_env = extendLocalRdrEnv orig_lcl_env bndrs' }
; mappM dupErr dups
; (thing, fvs) <- setLocalRdrEnv inner_env thing_inside
; return (([], thing), fvs) }
go orig_lcl_env bndrs_so_far ((stmts, _) : segs)
= do { ((stmts', (bndrs, segs', thing)), fvs)
<- rnNormalStmts par_ctxt stmts $ do
{ -- Find the Names that are bound by stmts
lcl_env <- getLocalRdrEnv
; let { rdr_bndrs = collectLStmtsBinders stmts
; bndrs = map ( expectJust "rnStmt"
. lookupLocalRdrEnv lcl_env
. unLoc) rdr_bndrs
; new_bndrs = nub bndrs ++ bndrs_so_far
-- The nub is because there might be shadowing
-- x <- e1; x <- e2
-- So we'll look up (Unqual x) twice, getting
-- the second binding both times, which is the
} -- one we want
-- Typecheck the thing inside, passing on all
-- the Names bound, but separately; revert the envt
; ((segs', thing), fvs) <- setLocalRdrEnv orig_lcl_env $
go orig_lcl_env new_bndrs segs
-- Figure out which of the bound names are used
; let used_bndrs = filter (`elemNameSet` fvs) bndrs
; return ((used_bndrs, segs', thing), fvs) }
; let seg' = (stmts', bndrs)
; return (((seg':segs'), thing),
delListFromNameSet fvs bndrs) }
par_ctxt = ParStmtCtxt ctxt
cmpByOcc n1 n2 = nameOccName n1 `compare` nameOccName n2
dupErr vs = addErr (ptext SLIT("Duplicate binding in parallel list comprehension for:")
<+> quotes (ppr (head vs)))
\end{code}
%************************************************************************
%* *
\subsubsection{mdo expressions}
%* *
%************************************************************************
\begin{code}
type FwdRefs = NameSet
type Segment stmts = (Defs,
Uses, -- May include defs
FwdRefs, -- A subset of uses that are
-- (a) used before they are bound in this segment, or
-- (b) used here, and bound in subsequent segments
stmts) -- Either Stmt or [Stmt]
----------------------------------------------------
rnMDoStmts :: [LStmt RdrName]
-> RnM (thing, FreeVars)
-> RnM (([LStmt Name], thing), FreeVars)
rnMDoStmts stmts thing_inside
= -- Step1: bring all the binders of the mdo into scope
-- Remember that this also removes the binders from the
-- finally-returned free-vars
bindLocatedLocalsRn doc (collectLStmtsBinders stmts) $ \ bndrs ->
do {
-- Step 2: Rename each individual stmt, making a
-- singleton segment. At this stage the FwdRefs field
-- isn't finished: it's empty for all except a BindStmt
-- for which it's the fwd refs within the bind itself
-- (This set may not be empty, because we're in a recursive
-- context.)
segs <- rn_rec_stmts bndrs stmts
; (thing, fvs_later) <- thing_inside
; let
-- Step 3: Fill in the fwd refs.
-- The segments are all singletons, but their fwd-ref
-- field mentions all the things used by the segment
-- that are bound after their use
segs_w_fwd_refs = addFwdRefs segs
-- Step 4: Group together the segments to make bigger segments
-- Invariant: in the result, no segment uses a variable
-- bound in a later segment
grouped_segs = glomSegments segs_w_fwd_refs
-- Step 5: Turn the segments into Stmts
-- Use RecStmt when and only when there are fwd refs
-- Also gather up the uses from the end towards the
-- start, so we can tell the RecStmt which things are
-- used 'after' the RecStmt
(stmts', fvs) = segsToStmts grouped_segs fvs_later
; return ((stmts', thing), fvs) }
where
doc = text "In a recursive mdo-expression"
---------------------------------------------
rn_rec_stmts :: [Name] -> [LStmt RdrName] -> RnM [Segment (LStmt Name)]
rn_rec_stmts bndrs stmts = mappM (rn_rec_stmt bndrs) stmts `thenM` \ segs_s ->
returnM (concat segs_s)
----------------------------------------------------
rn_rec_stmt :: [Name] -> LStmt RdrName -> RnM [Segment (LStmt Name)]
-- Rename a Stmt that is inside a RecStmt (or mdo)
-- Assumes all binders are already in scope
-- Turns each stmt into a singleton Stmt
rn_rec_stmt all_bndrs (L loc (ExprStmt expr _ _))
= rnLExpr expr `thenM` \ (expr', fvs) ->
lookupSyntaxName thenMName `thenM` \ (then_op, fvs1) ->
returnM [(emptyNameSet, fvs `plusFV` fvs1, emptyNameSet,
L loc (ExprStmt expr' then_op placeHolderType))]
rn_rec_stmt all_bndrs (L loc (BindStmt pat expr _ _))
= rnLExpr expr `thenM` \ (expr', fv_expr) ->
rnLPat pat `thenM` \ (pat', fv_pat) ->
lookupSyntaxName bindMName `thenM` \ (bind_op, fvs1) ->
lookupSyntaxName failMName `thenM` \ (fail_op, fvs2) ->
let
bndrs = mkNameSet (collectPatBinders pat')
fvs = fv_expr `plusFV` fv_pat `plusFV` fvs1 `plusFV` fvs2
in
returnM [(bndrs, fvs, bndrs `intersectNameSet` fvs,
L loc (BindStmt pat' expr' bind_op fail_op))]
rn_rec_stmt all_bndrs (L loc (LetStmt binds@(HsIPBinds _)))
= do { addErr (badIpBinds (ptext SLIT("an mdo expression")) binds)
; failM }
rn_rec_stmt all_bndrs (L loc (LetStmt (HsValBinds binds)))
= rnValBinds (trimWith all_bndrs) binds `thenM` \ (binds', du_binds) ->
returnM [(duDefs du_binds, duUses du_binds,
emptyNameSet, L loc (LetStmt (HsValBinds binds')))]
rn_rec_stmt all_bndrs (L loc (RecStmt stmts _ _ _ _)) -- Flatten Rec inside Rec
= rn_rec_stmts all_bndrs stmts
rn_rec_stmt all_bndrs stmt@(L _ (ParStmt _)) -- Syntactically illegal in mdo
= pprPanic "rn_rec_stmt" (ppr stmt)
---------------------------------------------
addFwdRefs :: [Segment a] -> [Segment a]
-- So far the segments only have forward refs *within* the Stmt
-- (which happens for bind: x <- ...x...)
-- This function adds the cross-seg fwd ref info
addFwdRefs pairs
= fst (foldr mk_seg ([], emptyNameSet) pairs)
where
mk_seg (defs, uses, fwds, stmts) (segs, later_defs)
= (new_seg : segs, all_defs)
where
new_seg = (defs, uses, new_fwds, stmts)
all_defs = later_defs `unionNameSets` defs
new_fwds = fwds `unionNameSets` (uses `intersectNameSet` later_defs)
-- Add the downstream fwd refs here
----------------------------------------------------
-- Glomming the singleton segments of an mdo into
-- minimal recursive groups.
--
-- At first I thought this was just strongly connected components, but
-- there's an important constraint: the order of the stmts must not change.
--
-- Consider
-- mdo { x <- ...y...
-- p <- z
-- y <- ...x...
-- q <- x
-- z <- y
-- r <- x }
--
-- Here, the first stmt mention 'y', which is bound in the third.
-- But that means that the innocent second stmt (p <- z) gets caught
-- up in the recursion. And that in turn means that the binding for
-- 'z' has to be included... and so on.
--
-- Start at the tail { r <- x }
-- Now add the next one { z <- y ; r <- x }
-- Now add one more { q <- x ; z <- y ; r <- x }
-- Now one more... but this time we have to group a bunch into rec
-- { rec { y <- ...x... ; q <- x ; z <- y } ; r <- x }
-- Now one more, which we can add on without a rec
-- { p <- z ;
-- rec { y <- ...x... ; q <- x ; z <- y } ;
-- r <- x }
-- Finally we add the last one; since it mentions y we have to
-- glom it togeher with the first two groups
-- { rec { x <- ...y...; p <- z ; y <- ...x... ;
-- q <- x ; z <- y } ;
-- r <- x }
glomSegments :: [Segment (LStmt Name)] -> [Segment [LStmt Name]]
glomSegments [] = []
glomSegments ((defs,uses,fwds,stmt) : segs)
-- Actually stmts will always be a singleton
= (seg_defs, seg_uses, seg_fwds, seg_stmts) : others
where
segs' = glomSegments segs
(extras, others) = grab uses segs'
(ds, us, fs, ss) = unzip4 extras
seg_defs = plusFVs ds `plusFV` defs
seg_uses = plusFVs us `plusFV` uses
seg_fwds = plusFVs fs `plusFV` fwds
seg_stmts = stmt : concat ss
grab :: NameSet -- The client
-> [Segment a]
-> ([Segment a], -- Needed by the 'client'
[Segment a]) -- Not needed by the client
-- The result is simply a split of the input
grab uses dus
= (reverse yeses, reverse noes)
where
(noes, yeses) = span not_needed (reverse dus)
not_needed (defs,_,_,_) = not (intersectsNameSet defs uses)
----------------------------------------------------
segsToStmts :: [Segment [LStmt Name]]
-> FreeVars -- Free vars used 'later'
-> ([LStmt Name], FreeVars)
segsToStmts [] fvs_later = ([], fvs_later)
segsToStmts ((defs, uses, fwds, ss) : segs) fvs_later
= ASSERT( not (null ss) )
(new_stmt : later_stmts, later_uses `plusFV` uses)
where
(later_stmts, later_uses) = segsToStmts segs fvs_later
new_stmt | non_rec = head ss
| otherwise = L (getLoc (head ss)) $
RecStmt ss (nameSetToList used_later) (nameSetToList fwds)
[] emptyLHsBinds
where
non_rec = isSingleton ss && isEmptyNameSet fwds
used_later = defs `intersectNameSet` later_uses
-- The ones needed after the RecStmt
\end{code}
%************************************************************************
%* *
\subsubsection{breakpoint utils}
%* *
%************************************************************************
\begin{code}
#if defined(GHCI) && defined(BREAKPOINT)
mkBreakPointExpr :: [Name] -> RnM (HsExpr Name, FreeVars)
mkBreakPointExpr scope
= do sloc <- getSrcSpanM
undef <- lookupOccRn undefined_RDR
let inLoc = L sloc
lHsApp x y = inLoc (HsApp x y)
mkExpr fnName args = mkExpr' fnName (reverse args)
mkExpr' fnName [] = inLoc (HsVar fnName)
mkExpr' fnName (arg:args)
= lHsApp (mkExpr' fnName args) (inLoc arg)
expr = unLoc $ mkExpr breakpointJumpName [mkScopeArg scope, HsVar undef, HsLit msg]
mkScopeArg args
= unLoc $ mkExpr undef (map HsVar args)
msg = HsString (mkFastString (unpackFS (srcSpanFile sloc) ++ ":" ++ show (srcSpanStartLine sloc)))
return (expr, emptyFVs)
#endif
\end{code}
%************************************************************************
%* *
\subsubsection{Assertion utils}
%* *
%************************************************************************
\begin{code}
mkAssertErrorExpr :: RnM (HsExpr Name, FreeVars)
-- Return an expression for (assertError "Foo.hs:27")
mkAssertErrorExpr
= getSrcSpanM `thenM` \ sloc ->
let
expr = HsApp (L sloc (HsVar assertErrorName)) (L sloc (HsLit msg))
msg = HsStringPrim (mkFastString (showSDoc (ppr sloc)))
in
returnM (expr, emptyFVs)
\end{code}
%************************************************************************
%* *
\subsubsection{Errors}
%* *
%************************************************************************
\begin{code}
patSynErr e = do { addErr (sep [ptext SLIT("Pattern syntax in expression context:"),
nest 4 (ppr e)])
; return (EWildPat, emptyFVs) }
parStmtErr = addErr (ptext SLIT("Illegal parallel list comprehension: use -fglasgow-exts"))
badIpBinds what binds
= hang (ptext SLIT("Implicit-parameter bindings illegal in") <+> what)
2 (ppr binds)
\end{code}
|