1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
|
%
% (c) The AQUA Project, Glasgow University, 1994-1995
%
\section[LambdaLift]{A STG-code lambda lifter}
\begin{code}
#include "HsVersions.h"
module LambdaLift ( liftProgram ) where
import StgSyn
import AbsUniType ( mkForallTy, splitForalls, glueTyArgs,
UniType, RhoType(..), TauType(..)
)
import Bag
import Id ( mkSysLocal, getIdUniType, addIdArity, Id )
import IdEnv
import Maybes
import SplitUniq
import SrcLoc ( mkUnknownSrcLoc, SrcLoc )
import UniqSet
import Util
\end{code}
This is the lambda lifter. It turns lambda abstractions into
supercombinators on a selective basis:
* Let-no-escaped bindings are never lifted. That's one major reason
why the lambda lifter is done in STG.
* Non-recursive bindings whose RHS is a lambda abstractions are lifted,
provided all the occurrences of the bound variable is in a function
postition. In this example, f will be lifted:
let
f = \x -> e
in
..(f a1)...(f a2)...
thus
$f p q r x = e -- Supercombinator
..($f p q r a1)...($f p q r a2)...
NOTE that the original binding is eliminated.
But in this case, f won't be lifted:
let
f = \x -> e
in
..(g f)...(f a2)...
Why? Because we have to heap-allocate a closure for f thus:
$f p q r x = e -- Supercombinator
let
f = $f p q r
in
..(g f)...($f p q r a2)..
so it might as well be the original lambda abstraction.
We also do not lift if the function has an occurrence with no arguments, e.g.
let
f = \x -> e
in f
as this form is more efficient than if we create a partial application
$f p q r x = e -- Supercombinator
f p q r
* Recursive bindings *all* of whose RHSs are lambda abstractions are
lifted iff
- all the occurrences of all the binders are in a function position
- there aren't ``too many'' free variables.
Same reasoning as before for the function-position stuff. The ``too many
free variable'' part comes from considering the (potentially many)
recursive calls, which may now have lots of free vars.
Recent Observations:
* 2 might be already ``too many'' variables to abstract.
The problem is that the increase in the number of free variables
of closures refering to the lifted function (which is always # of
abstracted args - 1) may increase heap allocation a lot.
Expeiments are being done to check this...
* We do not lambda lift if the function has at least one occurrence
without any arguments. This caused lots of problems. Ex:
h = \ x -> ... let y = ...
in let let f = \x -> ...y...
in f
==>
f = \y x -> ...y...
h = \ x -> ... let y = ...
in f y
now f y is a partial application, so it will be updated, and this
is Bad.
--- NOT RELEVANT FOR STG ----
* All ``lone'' lambda abstractions are lifted. Notably this means lambda
abstractions:
- in a case alternative: case e of True -> (\x->b)
- in the body of a let: let x=e in (\y->b)
-----------------------------
%************************************************************************
%* *
\subsection[Lift-expressions]{The main function: liftExpr}
%* *
%************************************************************************
\begin{code}
liftProgram :: SplitUniqSupply -> [PlainStgBinding] -> [PlainStgBinding]
liftProgram us prog = concat (runLM Nothing us (mapLM liftTopBind prog))
liftTopBind :: PlainStgBinding -> LiftM [PlainStgBinding]
liftTopBind (StgNonRec id rhs)
= dontLiftRhs rhs `thenLM` \ (rhs', rhs_info) ->
returnLM (getScBinds rhs_info ++ [StgNonRec id rhs'])
liftTopBind (StgRec pairs)
= mapAndUnzipLM dontLiftRhs rhss `thenLM` \ (rhss', rhs_infos) ->
returnLM ([co_rec_ify (StgRec (ids `zip` rhss') :
getScBinds (unionLiftInfos rhs_infos))
])
where
(ids, rhss) = unzip pairs
\end{code}
\begin{code}
liftExpr :: PlainStgExpr
-> LiftM (PlainStgExpr, LiftInfo)
liftExpr expr@(StgConApp con args lvs) = returnLM (expr, emptyLiftInfo)
liftExpr expr@(StgPrimApp op args lvs) = returnLM (expr, emptyLiftInfo)
liftExpr expr@(StgApp (StgLitAtom lit) args lvs) = returnLM (expr, emptyLiftInfo)
liftExpr expr@(StgApp (StgVarAtom v) args lvs)
= lookup v `thenLM` \ ~(sc, sc_args) -> -- NB the ~. We don't want to
-- poke these bindings too early!
returnLM (StgApp (StgVarAtom sc) (map StgVarAtom sc_args ++ args) lvs,
emptyLiftInfo)
-- The lvs field is probably wrong, but we reconstruct it
-- anyway following lambda lifting
liftExpr (StgCase scrut lv1 lv2 uniq alts)
= liftExpr scrut `thenLM` \ (scrut', scrut_info) ->
lift_alts alts `thenLM` \ (alts', alts_info) ->
returnLM (StgCase scrut' lv1 lv2 uniq alts', scrut_info `unionLiftInfo` alts_info)
where
lift_alts (StgAlgAlts ty alg_alts deflt)
= mapAndUnzipLM lift_alg_alt alg_alts `thenLM` \ (alg_alts', alt_infos) ->
lift_deflt deflt `thenLM` \ (deflt', deflt_info) ->
returnLM (StgAlgAlts ty alg_alts' deflt', foldr unionLiftInfo deflt_info alt_infos)
lift_alts (StgPrimAlts ty prim_alts deflt)
= mapAndUnzipLM lift_prim_alt prim_alts `thenLM` \ (prim_alts', alt_infos) ->
lift_deflt deflt `thenLM` \ (deflt', deflt_info) ->
returnLM (StgPrimAlts ty prim_alts' deflt', foldr unionLiftInfo deflt_info alt_infos)
lift_alg_alt (con, args, use_mask, rhs)
= liftExpr rhs `thenLM` \ (rhs', rhs_info) ->
returnLM ((con, args, use_mask, rhs'), rhs_info)
lift_prim_alt (lit, rhs)
= liftExpr rhs `thenLM` \ (rhs', rhs_info) ->
returnLM ((lit, rhs'), rhs_info)
lift_deflt StgNoDefault = returnLM (StgNoDefault, emptyLiftInfo)
lift_deflt (StgBindDefault var used rhs)
= liftExpr rhs `thenLM` \ (rhs', rhs_info) ->
returnLM (StgBindDefault var used rhs', rhs_info)
\end{code}
Now the interesting cases. Let no escape isn't lifted. We turn it
back into a let, to play safe, because we have to redo that pass after
lambda anyway.
\begin{code}
liftExpr (StgLetNoEscape _ _ (StgNonRec binder rhs) body)
= dontLiftRhs rhs `thenLM` \ (rhs', rhs_info) ->
liftExpr body `thenLM` \ (body', body_info) ->
returnLM (StgLet (StgNonRec binder rhs') body',
rhs_info `unionLiftInfo` body_info)
liftExpr (StgLetNoEscape _ _ (StgRec pairs) body)
= liftExpr body `thenLM` \ (body', body_info) ->
mapAndUnzipLM dontLiftRhs rhss `thenLM` \ (rhss', rhs_infos) ->
returnLM (StgLet (StgRec (binders `zipEqual` rhss')) body',
foldr unionLiftInfo body_info rhs_infos)
where
(binders,rhss) = unzip pairs
\end{code}
\begin{code}
liftExpr (StgLet (StgNonRec binder rhs) body)
| not (isLiftable rhs)
= dontLiftRhs rhs `thenLM` \ (rhs', rhs_info) ->
liftExpr body `thenLM` \ (body', body_info) ->
returnLM (StgLet (StgNonRec binder rhs') body',
rhs_info `unionLiftInfo` body_info)
| otherwise -- It's a lambda
= -- Do the body of the let
fixLM (\ ~(sc_inline, _, _) ->
addScInlines [binder] [sc_inline] (
liftExpr body
) `thenLM` \ (body', body_info) ->
-- Deal with the RHS
dontLiftRhs rhs `thenLM` \ (rhs', rhs_info) ->
-- All occurrences in function position, so lambda lift
getFinalFreeVars (rhsFreeVars rhs) `thenLM` \ final_free_vars ->
mkScPieces final_free_vars (binder,rhs') `thenLM` \ (sc_inline, sc_bind) ->
returnLM (sc_inline,
body',
nonRecScBind rhs_info sc_bind `unionLiftInfo` body_info)
) `thenLM` \ (_, expr', final_info) ->
returnLM (expr', final_info)
liftExpr (StgLet (StgRec pairs) body)
--[Andre-testing]
| not (all isLiftableRec rhss)
= liftExpr body `thenLM` \ (body', body_info) ->
mapAndUnzipLM dontLiftRhs rhss `thenLM` \ (rhss', rhs_infos) ->
returnLM (StgLet (StgRec (binders `zipEqual` rhss')) body',
foldr unionLiftInfo body_info rhs_infos)
| otherwise -- All rhss are liftable
= -- Do the body of the let
fixLM (\ ~(sc_inlines, _, _) ->
addScInlines binders sc_inlines (
liftExpr body `thenLM` \ (body', body_info) ->
mapAndUnzipLM dontLiftRhs rhss `thenLM` \ (rhss', rhs_infos) ->
let
-- Find the free vars of all the rhss,
-- excluding the binders themselves.
rhs_free_vars = unionManyUniqSets (map rhsFreeVars rhss)
`minusUniqSet`
mkUniqSet binders
rhs_info = unionLiftInfos rhs_infos
in
getFinalFreeVars rhs_free_vars `thenLM` \ final_free_vars ->
mapAndUnzipLM (mkScPieces final_free_vars) (binders `zip` rhss')
`thenLM` \ (sc_inlines, sc_pairs) ->
returnLM (sc_inlines,
body',
recScBind rhs_info sc_pairs `unionLiftInfo` body_info)
)) `thenLM` \ (_, expr', final_info) ->
returnLM (expr', final_info)
where
(binders,rhss) = unzip pairs
\end{code}
\begin{code}
liftExpr (StgSCC ty cc expr)
= liftExpr expr `thenLM` \ (expr2, expr_info) ->
returnLM (StgSCC ty cc expr2, expr_info)
\end{code}
A binding is liftable if it's a *function* (args not null) and never
occurs in an argument position.
\begin{code}
isLiftable :: PlainStgRhs -> Bool
isLiftable (StgRhsClosure _ (StgBinderInfo arg_occ _ _ _ unapplied_occ) fvs _ args _)
-- Experimental evidence suggests we should lift only if we will be
-- abstracting up to 4 fvs.
= if not (null args || -- Not a function
unapplied_occ || -- Has an occ with no args at all
arg_occ || -- Occurs in arg position
length fvs > 4 -- Too many free variables
)
then {-trace ("LL: " ++ show (length fvs))-} True
else False
isLiftable other_rhs = False
isLiftableRec :: PlainStgRhs -> Bool
-- this is just the same as for non-rec, except we only lift to
-- abstract up to 1 argument this avoids undoing Static Argument
-- Transformation work
{- Andre's longer comment about isLiftableRec: 1996/01:
A rec binding is "liftable" (according to our heuristics) if:
* It is a function,
* all occurrences have arguments,
* does not occur in an argument position and
* has up to *2* free variables (including the rec binding variable
itself!)
The point is: my experiments show that SAT is more important than LL.
Therefore if we still want to do LL, for *recursive* functions, we do
not want LL to undo what SAT did. We do this by avoiding LL recursive
functions that have more than 2 fvs, since if this recursive function
was created by SAT (we don't know!), it would have at least 3 fvs: one
for the rec binding itself and 2 more for the static arguments (note:
this matches with the choice of performing SAT to have at least 2
static arguments, if we change things there we should change things
here).
-}
isLiftableRec (StgRhsClosure _ (StgBinderInfo arg_occ _ _ _ unapplied_occ) fvs _ args _)
= if not (null args || -- Not a function
unapplied_occ || -- Has an occ with no args at all
arg_occ || -- Occurs in arg position
length fvs > 2 -- Too many free variables
)
then {-trace ("LLRec: " ++ show (length fvs))-} True
else False
isLiftableRec other_rhs = False
rhsFreeVars :: PlainStgRhs -> IdSet
rhsFreeVars (StgRhsClosure _ _ fvs _ _ _) = mkUniqSet fvs
rhsFreeVars other = panic "rhsFreeVars"
\end{code}
dontLiftRhs is like liftExpr, except that it does not lift a top-level
lambda abstraction. It is used for the right-hand sides of
definitions where we've decided *not* to lift: for example, top-level
ones or mutually-recursive ones where not all are lambdas.
\begin{code}
dontLiftRhs :: PlainStgRhs -> LiftM (PlainStgRhs, LiftInfo)
dontLiftRhs rhs@(StgRhsCon cc v args) = returnLM (rhs, emptyLiftInfo)
dontLiftRhs (StgRhsClosure cc bi fvs upd args body)
= liftExpr body `thenLM` \ (body', body_info) ->
returnLM (StgRhsClosure cc bi fvs upd args body', body_info)
\end{code}
\begin{code}
mkScPieces :: IdSet -- Extra args for the supercombinator
-> (Id, PlainStgRhs) -- The processed RHS and original Id
-> LiftM ((Id,[Id]), -- Replace abstraction with this;
-- the set is its free vars
(Id,PlainStgRhs)) -- Binding for supercombinator
mkScPieces extra_arg_set (id, StgRhsClosure cc bi _ upd args body)
= ASSERT( n_args > 0 )
-- Construct the rhs of the supercombinator, and its Id
-- this trace blackholes sometimes, don't use it
-- trace ("LL " ++ show (length (uniqSetToList extra_arg_set))) (
newSupercombinator sc_ty arity `thenLM` \ sc_id ->
returnLM ((sc_id, extra_args), (sc_id, sc_rhs))
--)
where
n_args = length args
extra_args = uniqSetToList extra_arg_set
arity = n_args + length extra_args
-- Construct the supercombinator type
type_of_original_id = getIdUniType id
extra_arg_tys = map getIdUniType extra_args
(tyvars, rest) = splitForalls type_of_original_id
sc_ty = mkForallTy tyvars (glueTyArgs extra_arg_tys rest)
sc_rhs = StgRhsClosure cc bi [] upd (extra_args ++ args) body
\end{code}
%************************************************************************
%* *
\subsection[Lift-monad]{The LiftM monad}
%* *
%************************************************************************
The monad is used only to distribute global stuff, and the unique supply.
\begin{code}
type LiftM a = LiftFlags
-> SplitUniqSupply
-> (IdEnv -- Domain = candidates for lifting
(Id, -- The supercombinator
[Id]) -- Args to apply it to
)
-> a
type LiftFlags = Maybe Int -- No of fvs reqd to float recursive
-- binding; Nothing == infinity
runLM :: LiftFlags -> SplitUniqSupply -> LiftM a -> a
runLM flags us m = m flags us nullIdEnv
thenLM :: LiftM a -> (a -> LiftM b) -> LiftM b
thenLM m k ci us idenv
= k (m ci us1 idenv) ci us2 idenv
where
(us1, us2) = splitUniqSupply us
returnLM :: a -> LiftM a
returnLM a ci us idenv = a
fixLM :: (a -> LiftM a) -> LiftM a
fixLM k ci us idenv = r
where
r = k r ci us idenv
mapLM :: (a -> LiftM b) -> [a] -> LiftM [b]
mapLM f [] = returnLM []
mapLM f (a:as) = f a `thenLM` \ r ->
mapLM f as `thenLM` \ rs ->
returnLM (r:rs)
mapAndUnzipLM :: (a -> LiftM (b,c)) -> [a] -> LiftM ([b],[c])
mapAndUnzipLM f [] = returnLM ([],[])
mapAndUnzipLM f (a:as) = f a `thenLM` \ (b,c) ->
mapAndUnzipLM f as `thenLM` \ (bs,cs) ->
returnLM (b:bs, c:cs)
\end{code}
\begin{code}
newSupercombinator :: UniType
-> Int -- Arity
-> LiftM Id
newSupercombinator ty arity ci us idenv
= (mkSysLocal SLIT("sc") uniq ty mkUnknownSrcLoc) -- ToDo: improve location
`addIdArity` arity
-- ToDo: rm the addIdArity? Just let subsequent stg-saturation pass do it?
where
uniq = getSUnique us
lookup :: Id -> LiftM (Id,[Id])
lookup v ci us idenv
= case lookupIdEnv idenv v of
Just result -> result
Nothing -> (v, [])
addScInlines :: [Id] -> [(Id,[Id])] -> LiftM a -> LiftM a
addScInlines ids values m ci us idenv
= m ci us idenv'
where
idenv' = growIdEnvList idenv (ids `zip_lazy` values)
-- zip_lazy zips two things together but matches lazily on the
-- second argument. This is important, because the ids are know here,
-- but the things they are bound to are decided only later
zip_lazy [] _ = []
zip_lazy (x:xs) ~(y:ys) = (x,y) : zip_lazy xs ys
-- The free vars reported by the free-var analyser will include
-- some ids, f, which are to be replaced by ($f a b c), where $f
-- is the supercombinator. Hence instead of f being a free var,
-- {a,b,c} are.
--
-- Example
-- let
-- f a = ...y1..y2.....
-- in
-- let
-- g b = ...f...z...
-- in
-- ...
--
-- Here the free vars of g are {f,z}; but f will be lambda-lifted
-- with free vars {y1,y2}, so the "real~ free vars of g are {y1,y2,z}.
getFinalFreeVars :: IdSet -> LiftM IdSet
getFinalFreeVars free_vars ci us idenv
= unionManyUniqSets (map munge_it (uniqSetToList free_vars))
where
munge_it :: Id -> IdSet -- Takes a free var and maps it to the "real"
-- free var
munge_it id = case lookupIdEnv idenv id of
Just (_, args) -> mkUniqSet args
Nothing -> singletonUniqSet id
\end{code}
%************************************************************************
%* *
\subsection[Lift-info]{The LiftInfo type}
%* *
%************************************************************************
\begin{code}
type LiftInfo = Bag PlainStgBinding -- Float to top
emptyLiftInfo = emptyBag
unionLiftInfo :: LiftInfo -> LiftInfo -> LiftInfo
unionLiftInfo binds1 binds2 = binds1 `unionBags` binds2
unionLiftInfos :: [LiftInfo] -> LiftInfo
unionLiftInfos infos = foldr unionLiftInfo emptyLiftInfo infos
mkScInfo :: PlainStgBinding -> LiftInfo
mkScInfo bind = unitBag bind
nonRecScBind :: LiftInfo -- From body of supercombinator
-> (Id, PlainStgRhs) -- Supercombinator and its rhs
-> LiftInfo
nonRecScBind binds (sc_id,sc_rhs) = binds `snocBag` (StgNonRec sc_id sc_rhs)
-- In the recursive case, all the SCs from the RHSs of the recursive group
-- are dealing with might potentially mention the new, recursive SCs.
-- So we flatten the whole lot into a single recursive group.
recScBind :: LiftInfo -- From body of supercombinator
-> [(Id,PlainStgRhs)] -- Supercombinator rhs
-> LiftInfo
recScBind binds pairs = unitBag (co_rec_ify (StgRec pairs : bagToList binds))
co_rec_ify :: [PlainStgBinding] -> PlainStgBinding
co_rec_ify binds = StgRec (concat (map f binds))
where
f (StgNonRec id rhs) = [(id,rhs)]
f (StgRec pairs) = pairs
getScBinds :: LiftInfo -> [PlainStgBinding]
getScBinds binds = bagToList binds
looksLikeSATRhs [(f,StgRhsClosure _ _ _ _ ls _)] (StgApp (StgVarAtom f') args _)
= (f == f') && (length args == length ls)
looksLikeSATRhs _ _ = False
\end{code}
|