summaryrefslogtreecommitdiff
path: root/ghc/compiler/stgSyn/StgSyn.lhs
blob: 156e8dbada5737e0bc84535adba7725a3ddb6716 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
%
% (c) The GRASP/AQUA Project, Glasgow University, 1992-1998
%
\section[StgSyn]{Shared term graph (STG) syntax for spineless-tagless code generation}

This data type represents programs just before code generation
(conversion to @AbstractC@): basically, what we have is a stylised
form of @CoreSyntax@, the style being one that happens to be ideally
suited to spineless tagless code generation.

\begin{code}
module StgSyn (
	GenStgArg(..), 
	GenStgLiveVars,

	GenStgBinding(..), GenStgExpr(..), GenStgRhs(..),
	GenStgAlt, AltType(..),

	UpdateFlag(..), isUpdatable,

	StgBinderInfo,
	noBinderInfo, stgSatOcc, stgUnsatOcc, satCallsOnly,
	combineStgBinderInfo,

	-- a set of synonyms for the most common (only :-) parameterisation
	StgArg, StgLiveVars,
	StgBinding, StgExpr, StgRhs, StgAlt, 

	-- StgOp
	StgOp(..),

	-- SRTs
	SRT(..), noSRT, nonEmptySRT,

	-- utils
	stgBindHasCafRefs,  stgArgHasCafRefs, stgRhsArity, getArgPrimRep, 
	isDllConApp, isStgTypeArg,
	stgArgType, stgBinders,

	pprStgBinding, pprStgBindings, pprStgBindingsWithSRTs

#ifdef DEBUG
	, pprStgLVs
#endif
    ) where

#include "HsVersions.h"

import CostCentre	( CostCentreStack, CostCentre )
import VarSet		( IdSet, isEmptyVarSet )
import Var		( isId )
import Id		( Id, idName, idPrimRep, idType, idCafInfo )
import IdInfo		( mayHaveCafRefs )
import Name		( isDllName )
import Literal		( Literal, literalType, literalPrimRep )
import ForeignCall	( ForeignCall )
import DataCon		( DataCon, dataConName )
import CoreSyn		( AltCon )
import PprCore		( {- instances -} )
import PrimOp		( PrimOp )
import Outputable
import Util             ( count )
import Type             ( Type )
import TyCon            ( TyCon )
import UniqSet		( isEmptyUniqSet, uniqSetToList, UniqSet )
import Unique		( Unique )
import Bitmap
import CmdLineOpts	( opt_SccProfilingOn )
\end{code}

%************************************************************************
%*									*
\subsection{@GenStgBinding@}
%*									*
%************************************************************************

As usual, expressions are interesting; other things are boring.  Here
are the boring things [except note the @GenStgRhs@], parameterised
with respect to binder and occurrence information (just as in
@CoreSyn@):

There is one SRT for each group of bindings.

\begin{code}
data GenStgBinding bndr occ
  = StgNonRec	bndr (GenStgRhs bndr occ)
  | StgRec	[(bndr, GenStgRhs bndr occ)]

stgBinders :: GenStgBinding bndr occ -> [bndr]
stgBinders (StgNonRec b _) = [b]
stgBinders (StgRec bs)     = map fst bs
\end{code}

%************************************************************************
%*									*
\subsection{@GenStgArg@}
%*									*
%************************************************************************

\begin{code}
data GenStgArg occ
  = StgVarArg	occ
  | StgLitArg   Literal
  | StgTypeArg  Type		-- For when we want to preserve all type info
\end{code}

\begin{code}
getArgPrimRep (StgVarArg local) = idPrimRep local
getArgPrimRep (StgLitArg lit)	= literalPrimRep lit

isStgTypeArg (StgTypeArg _) = True
isStgTypeArg other	    = False

isDllArg :: StgArg -> Bool
	-- Does this argument refer to something in a different DLL?
isDllArg (StgTypeArg v)  = False
isDllArg (StgVarArg v)   = isDllName (idName v)
isDllArg (StgLitArg lit) = False

isDllConApp :: DataCon -> [StgArg] -> Bool
	-- Does this constructor application refer to 
	-- anything in a different DLL?
	-- If so, we can't allocate it statically
isDllConApp con args = isDllName (dataConName con) || any isDllArg args

stgArgType :: StgArg -> Type
	-- Very half baked becase we have lost the type arguments
stgArgType (StgVarArg v)   = idType v
stgArgType (StgLitArg lit) = literalType lit
stgArgType (StgTypeArg lit) = panic "stgArgType called on stgTypeArg"
\end{code}

%************************************************************************
%*									*
\subsection{STG expressions}
%*									*
%************************************************************************

The @GenStgExpr@ data type is parameterised on binder and occurrence
info, as before.

%************************************************************************
%*									*
\subsubsection{@GenStgExpr@ application}
%*									*
%************************************************************************

An application is of a function to a list of atoms [not expressions].
Operationally, we want to push the arguments on the stack and call the
function.  (If the arguments were expressions, we would have to build
their closures first.)

There is no constructor for a lone variable; it would appear as
@StgApp var [] _@.
\begin{code}
type GenStgLiveVars occ = UniqSet occ

data GenStgExpr bndr occ
  = StgApp
	occ		-- function
	[GenStgArg occ]	-- arguments; may be empty
\end{code}

%************************************************************************
%*									*
\subsubsection{@StgConApp@ and @StgPrimApp@---saturated applications}
%*									*
%************************************************************************

There are a specialised forms of application, for
constructors, primitives, and literals.
\begin{code}
  | StgLit	Literal
  
  | StgConApp	DataCon
		[GenStgArg occ]	-- Saturated

  | StgOpApp	StgOp		-- Primitive op or foreign call
		[GenStgArg occ]	-- Saturated
		Type		-- Result type; we need to know the result type
				-- so that we can assign result registers.
\end{code}

%************************************************************************
%*									*
\subsubsection{@StgLam@}
%*									*
%************************************************************************

StgLam is used *only* during CoreToStg's work.  Before CoreToStg has finished
it encodes (\x -> e) as (let f = \x -> e in f)

\begin{code}
  | StgLam
	Type		-- Type of whole lambda (useful when making a binder for it)
	[bndr]
	StgExpr		-- Body of lambda
\end{code}


%************************************************************************
%*									*
\subsubsection{@GenStgExpr@: case-expressions}
%*									*
%************************************************************************

This has the same boxed/unboxed business as Core case expressions.
\begin{code}
  | StgCase
	(GenStgExpr bndr occ)
			-- the thing to examine

	(GenStgLiveVars occ) -- Live vars of whole case expression, 
			-- plus everything that happens after the case
			-- i.e., those which mustn't be overwritten

	(GenStgLiveVars occ) -- Live vars of RHSs (plus what happens afterwards)
			-- i.e., those which must be saved before eval.
			--
			-- note that an alt's constructor's
			-- binder-variables are NOT counted in the
			-- free vars for the alt's RHS

	bndr		-- binds the result of evaluating the scrutinee

	SRT		-- The SRT for the continuation

	AltType 

	[GenStgAlt bndr occ]	-- The DEFAULT case is always *first* 
				-- if it is there at all
\end{code}

%************************************************************************
%*									*
\subsubsection{@GenStgExpr@:  @let(rec)@-expressions}
%*									*
%************************************************************************

The various forms of let(rec)-expression encode most of the
interesting things we want to do.
\begin{enumerate}
\item
\begin{verbatim}
let-closure x = [free-vars] expr [args]
in e
\end{verbatim}
is equivalent to
\begin{verbatim}
let x = (\free-vars -> \args -> expr) free-vars
\end{verbatim}
\tr{args} may be empty (and is for most closures).  It isn't under
circumstances like this:
\begin{verbatim}
let x = (\y -> y+z)
\end{verbatim}
This gets mangled to
\begin{verbatim}
let-closure x = [z] [y] (y+z)
\end{verbatim}
The idea is that we compile code for @(y+z)@ in an environment in which
@z@ is bound to an offset from \tr{Node}, and @y@ is bound to an
offset from the stack pointer.

(A let-closure is an @StgLet@ with a @StgRhsClosure@ RHS.)

\item
\begin{verbatim}
let-constructor x = Constructor [args]
in e
\end{verbatim}

(A let-constructor is an @StgLet@ with a @StgRhsCon@ RHS.)

\item
Letrec-expressions are essentially the same deal as
let-closure/let-constructor, so we use a common structure and
distinguish between them with an @is_recursive@ boolean flag.

\item
\begin{verbatim}
let-unboxed u = an arbitrary arithmetic expression in unboxed values
in e
\end{verbatim}
All the stuff on the RHS must be fully evaluated.  No function calls either!

(We've backed away from this toward case-expressions with
suitably-magical alts ...)

\item
~[Advanced stuff here!  Not to start with, but makes pattern matching
generate more efficient code.]

\begin{verbatim}
let-escapes-not fail = expr
in e'
\end{verbatim}
Here the idea is that @e'@ guarantees not to put @fail@ in a data structure,
or pass it to another function.  All @e'@ will ever do is tail-call @fail@.
Rather than build a closure for @fail@, all we need do is to record the stack
level at the moment of the @let-escapes-not@; then entering @fail@ is just
a matter of adjusting the stack pointer back down to that point and entering
the code for it.

Another example:
\begin{verbatim}
f x y = let z = huge-expression in
	if y==1 then z else
	if y==2 then z else
	1
\end{verbatim}

(A let-escapes-not is an @StgLetNoEscape@.)

\item
We may eventually want:
\begin{verbatim}
let-literal x = Literal
in e
\end{verbatim}

(ToDo: is this obsolete?)
\end{enumerate}

And so the code for let(rec)-things:
\begin{code}
  | StgLet
	(GenStgBinding bndr occ)	-- right hand sides (see below)
	(GenStgExpr bndr occ)		-- body

  | StgLetNoEscape			-- remember: ``advanced stuff''
	(GenStgLiveVars occ)		-- Live in the whole let-expression
					-- Mustn't overwrite these stack slots
    	    	    	    	    	-- *Doesn't* include binders of the let(rec).

	(GenStgLiveVars occ)		-- Live in the right hand sides (only)
					-- These are the ones which must be saved on
					-- the stack if they aren't there already
    	    	    	    	    	-- *Does* include binders of the let(rec) if recursive.

	(GenStgBinding bndr occ)	-- right hand sides (see below)
	(GenStgExpr bndr occ)		-- body
\end{code}

%************************************************************************
%*									*
\subsubsection{@GenStgExpr@: @scc@ expressions}
%*									*
%************************************************************************

Finally for @scc@ expressions we introduce a new STG construct.

\begin{code}
  | StgSCC
	CostCentre		-- label of SCC expression
	(GenStgExpr bndr occ)	-- scc expression
  -- end of GenStgExpr
\end{code}

%************************************************************************
%*									*
\subsection{STG right-hand sides}
%*									*
%************************************************************************

Here's the rest of the interesting stuff for @StgLet@s; the first
flavour is for closures:
\begin{code}
data GenStgRhs bndr occ
  = StgRhsClosure
	CostCentreStack		-- CCS to be attached (default is CurrentCCS)
	StgBinderInfo		-- Info about how this binder is used (see below)
	[occ]			-- non-global free vars; a list, rather than
				-- a set, because order is important
	!UpdateFlag		-- ReEntrant | Updatable | SingleEntry
	SRT 			-- The SRT reference
	[bndr]			-- arguments; if empty, then not a function;
				-- as above, order is important.
	(GenStgExpr bndr occ)	-- body
\end{code}
An example may be in order.  Consider:
\begin{verbatim}
let t = \x -> \y -> ... x ... y ... p ... q in e
\end{verbatim}
Pulling out the free vars and stylising somewhat, we get the equivalent:
\begin{verbatim}
let t = (\[p,q] -> \[x,y] -> ... x ... y ... p ...q) p q
\end{verbatim}
Stg-operationally, the @[x,y]@ are on the stack, the @[p,q]@ are
offsets from @Node@ into the closure, and the code ptr for the closure
will be exactly that in parentheses above.

The second flavour of right-hand-side is for constructors (simple but important):
\begin{code}
  | StgRhsCon
	CostCentreStack		-- CCS to be attached (default is CurrentCCS).
				-- Top-level (static) ones will end up with
				-- DontCareCCS, because we don't count static
				-- data in heap profiles, and we don't set CCCS
				-- from static closure.
	DataCon			-- constructor
	[GenStgArg occ]	-- args
\end{code}

\begin{code}
stgRhsArity :: StgRhs -> Int
stgRhsArity (StgRhsClosure _ _ _ _ _ bndrs _) = count isId bndrs
  -- The arity never includes type parameters, so
  -- when keeping type arguments and binders in the Stg syntax 
  -- (opt_RuntimeTypes) we have to fliter out the type binders.
stgRhsArity (StgRhsCon _ _ _) = 0
\end{code}

\begin{code}
stgBindHasCafRefs :: GenStgBinding bndr Id -> Bool
stgBindHasCafRefs (StgNonRec _ rhs) = rhsHasCafRefs rhs
stgBindHasCafRefs (StgRec binds)    = any rhsHasCafRefs (map snd binds)

rhsHasCafRefs (StgRhsClosure _ _ _ upd srt _ _) 
  = isUpdatable upd || nonEmptySRT srt
rhsHasCafRefs (StgRhsCon _ _ args)
  = any stgArgHasCafRefs args

stgArgHasCafRefs (StgVarArg id) = mayHaveCafRefs (idCafInfo id)
stgArgHasCafRefs _ = False
\end{code}

Here's the @StgBinderInfo@ type, and its combining op:
\begin{code}
data StgBinderInfo
  = NoStgBinderInfo
  | SatCallsOnly	-- All occurrences are *saturated* *function* calls
			-- This means we don't need to build an info table and 
			-- slow entry code for the thing
			-- Thunks never get this value

noBinderInfo = NoStgBinderInfo
stgUnsatOcc  = NoStgBinderInfo
stgSatOcc    = SatCallsOnly

satCallsOnly :: StgBinderInfo -> Bool
satCallsOnly SatCallsOnly    = True
satCallsOnly NoStgBinderInfo = False

combineStgBinderInfo :: StgBinderInfo -> StgBinderInfo -> StgBinderInfo
combineStgBinderInfo SatCallsOnly SatCallsOnly = SatCallsOnly
combineStgBinderInfo info1 info2 	       = NoStgBinderInfo

--------------
pp_binder_info NoStgBinderInfo = empty
pp_binder_info SatCallsOnly    = ptext SLIT("sat-only")
\end{code}

%************************************************************************
%*									*
\subsection[Stg-case-alternatives]{STG case alternatives}
%*									*
%************************************************************************

Very like in @CoreSyntax@ (except no type-world stuff).

The type constructor is guaranteed not to be abstract; that is, we can
see its representation.  This is important because the code generator
uses it to determine return conventions etc.  But it's not trivial
where there's a moduule loop involved, because some versions of a type
constructor might not have all the constructors visible.  So
mkStgAlgAlts (in CoreToStg) ensures that it gets the TyCon from the
constructors or literals (which are guaranteed to have the Real McCoy)
rather than from the scrutinee type.

\begin{code}
type GenStgAlt bndr occ
  = (AltCon,		-- alts: data constructor,
     [bndr],		-- constructor's parameters,
     [Bool],		-- "use mask", same length as
			-- parameters; a True in a
			-- param's position if it is
			-- used in the ...
     GenStgExpr bndr occ)	-- ...right-hand side.

data AltType
  = PolyAlt		-- Polymorphic (a type variable)
  | UbxTupAlt TyCon	-- Unboxed tuple
  | AlgAlt    TyCon	-- Algebraic data type; the AltCons will be DataAlts
  | PrimAlt   TyCon	-- Primitive data type; the AltCons will be LitAlts
\end{code}

%************************************************************************
%*									*
\subsection[Stg]{The Plain STG parameterisation}
%*									*
%************************************************************************

This happens to be the only one we use at the moment.

\begin{code}
type StgBinding     = GenStgBinding	Id Id
type StgArg         = GenStgArg		Id
type StgLiveVars    = GenStgLiveVars	Id
type StgExpr        = GenStgExpr	Id Id
type StgRhs         = GenStgRhs		Id Id
type StgAlt	    = GenStgAlt		Id Id
\end{code}

%************************************************************************
%*                                                                      *
\subsubsection[UpdateFlag-datatype]{@UpdateFlag@}
%*                                                                      *
%************************************************************************

This is also used in @LambdaFormInfo@ in the @ClosureInfo@ module.

A @ReEntrant@ closure may be entered multiple times, but should not be
updated or blackholed.  An @Updatable@ closure should be updated after
evaluation (and may be blackholed during evaluation).  A @SingleEntry@
closure will only be entered once, and so need not be updated but may
safely be blackholed.

\begin{code}
data UpdateFlag = ReEntrant | Updatable | SingleEntry

instance Outputable UpdateFlag where
    ppr u
      = char (case u of { ReEntrant -> 'r';  Updatable -> 'u';  SingleEntry -> 's' })

isUpdatable ReEntrant   = False
isUpdatable SingleEntry = False
isUpdatable Updatable   = True
\end{code}

%************************************************************************
%*                                                                      *
\subsubsection{StgOp}
%*                                                                      *
%************************************************************************

An StgOp allows us to group together PrimOps and ForeignCalls.
It's quite useful to move these around together, notably
in StgOpApp and COpStmt.

\begin{code}
data StgOp = StgPrimOp  PrimOp

	   | StgFCallOp ForeignCall Unique
		-- The Unique is occasionally needed by the C pretty-printer
		-- (which lacks a unique supply), notably when generating a
		-- typedef for foreign-export-dynamic
\end{code}


%************************************************************************
%*                                                                      *
\subsubsection[Static Reference Tables]{@SRT@}
%*                                                                      *
%************************************************************************

There is one SRT per top-level function group.  Each local binding and
case expression within this binding group has a subrange of the whole
SRT, expressed as an offset and length.

In CoreToStg we collect the list of CafRefs at each SRT site, which is later 
converted into the length and offset form by the SRT pass.

\begin{code}
data SRT = NoSRT
	 | SRTEntries IdSet
		-- generated by CoreToStg
         | SRT !Int{-offset-} !Int{-length-} !Bitmap{-bitmap-}
		-- generated by computeSRTs

noSRT :: SRT
noSRT = NoSRT

nonEmptySRT NoSRT           = False
nonEmptySRT (SRTEntries vs) = not (isEmptyVarSet vs)
nonEmptySRT _               = True

pprSRT (NoSRT) = ptext SLIT("_no_srt_")
pprSRT (SRTEntries ids) = text "SRT:" <> ppr ids
pprSRT (SRT off length bitmap) = parens (ppr off <> comma <> text "*bitmap*")
\end{code}

%************************************************************************
%*									*
\subsection[Stg-pretty-printing]{Pretty-printing}
%*									*
%************************************************************************

Robin Popplestone asked for semi-colon separators on STG binds; here's
hoping he likes terminators instead...  Ditto for case alternatives.

\begin{code}
pprGenStgBinding :: (Outputable bndr, Outputable bdee, Ord bdee)
		 => GenStgBinding bndr bdee -> SDoc

pprGenStgBinding (StgNonRec bndr rhs)
  = hang (hsep [ppr bndr, equals])
    	4 ((<>) (ppr rhs) semi)

pprGenStgBinding (StgRec pairs)
  = vcat ((ifPprDebug (ptext SLIT("{- StgRec (begin) -}"))) :
	   (map (ppr_bind) pairs) ++ [(ifPprDebug (ptext SLIT("{- StgRec (end) -}")))])
  where
    ppr_bind (bndr, expr)
      = hang (hsep [ppr bndr, equals])
	     4 ((<>) (ppr expr) semi)

pprStgBinding  :: StgBinding -> SDoc
pprStgBinding  bind  = pprGenStgBinding bind

pprStgBindings :: [StgBinding] -> SDoc
pprStgBindings binds = vcat (map pprGenStgBinding binds)

pprGenStgBindingWithSRT	 
	:: (Outputable bndr, Outputable bdee, Ord bdee) 
	=> (GenStgBinding bndr bdee,[(Id,[Id])]) -> SDoc

pprGenStgBindingWithSRT (bind,srts)
  = vcat (pprGenStgBinding bind : map pprSRT srts)
  where pprSRT (id,srt) = 
	   ptext SLIT("SRT") <> parens (ppr id) <> ptext SLIT(": ") <> ppr srt

pprStgBindingsWithSRTs :: [(StgBinding,[(Id,[Id])])] -> SDoc
pprStgBindingsWithSRTs binds = vcat (map pprGenStgBindingWithSRT binds)
\end{code}

\begin{code}
instance (Outputable bdee) => Outputable (GenStgArg bdee) where
    ppr = pprStgArg

instance (Outputable bndr, Outputable bdee, Ord bdee)
		=> Outputable (GenStgBinding bndr bdee) where
    ppr = pprGenStgBinding

instance (Outputable bndr, Outputable bdee, Ord bdee)
		=> Outputable (GenStgExpr bndr bdee) where
    ppr = pprStgExpr

instance (Outputable bndr, Outputable bdee, Ord bdee)
		=> Outputable (GenStgRhs bndr bdee) where
    ppr rhs = pprStgRhs rhs
\end{code}

\begin{code}
pprStgArg :: (Outputable bdee) => GenStgArg bdee -> SDoc

pprStgArg (StgVarArg var) = ppr var
pprStgArg (StgLitArg con) = ppr con
pprStgArg (StgTypeArg ty) = char '@' <+> ppr ty
\end{code}

\begin{code}
pprStgExpr :: (Outputable bndr, Outputable bdee, Ord bdee)
	   => GenStgExpr bndr bdee -> SDoc
-- special case
pprStgExpr (StgLit lit)     = ppr lit

-- general case
pprStgExpr (StgApp func args)
  = hang (ppr func)
	 4 (sep (map (ppr) args))
\end{code}

\begin{code}
pprStgExpr (StgConApp con args)
  = hsep [ ppr con, brackets (interppSP args)]

pprStgExpr (StgOpApp op args _)
  = hsep [ pprStgOp op, brackets (interppSP args)]

pprStgExpr (StgLam _ bndrs body)
  =sep [ char '\\' <+> ppr bndrs <+> ptext SLIT("->"),
	 pprStgExpr body ]
\end{code}

\begin{code}
-- special case: let v = <very specific thing>
--		 in
--		 let ...
--		 in
--		 ...
--
-- Very special!  Suspicious! (SLPJ)

{-
pprStgExpr (StgLet srt (StgNonRec bndr (StgRhsClosure cc bi free_vars upd_flag args rhs))
		    	expr@(StgLet _ _))
  = ($$)
      (hang (hcat [ptext SLIT("let { "), ppr bndr, ptext SLIT(" = "),
			  ppr cc,
			  pp_binder_info bi,
			  ptext SLIT(" ["), ifPprDebug (interppSP free_vars), ptext SLIT("] \\"),
			  ppr upd_flag, ptext SLIT(" ["),
			  interppSP args, char ']'])
	    8 (sep [hsep [ppr rhs, ptext SLIT("} in")]]))
      (ppr expr)
-}

-- special case: let ... in let ...

pprStgExpr (StgLet bind expr@(StgLet _ _))
  = ($$)
      (sep [hang (ptext SLIT("let {"))
	 	2 (hsep [pprGenStgBinding bind, ptext SLIT("} in")])])
      (ppr expr)

-- general case
pprStgExpr (StgLet bind expr)
  = sep [hang (ptext SLIT("let {")) 2 (pprGenStgBinding bind),
	   hang (ptext SLIT("} in ")) 2 (ppr expr)]

pprStgExpr (StgLetNoEscape lvs_whole lvs_rhss bind expr)
  = sep [hang (ptext SLIT("let-no-escape {"))
	    	2 (pprGenStgBinding bind),
	   hang ((<>) (ptext SLIT("} in "))
		   (ifPprDebug (
		    nest 4 (
		      hcat [ptext  SLIT("-- lvs: ["), interppSP (uniqSetToList lvs_whole),
			     ptext SLIT("]; rhs lvs: ["), interppSP (uniqSetToList lvs_rhss),
			     char ']']))))
		2 (ppr expr)]

pprStgExpr (StgSCC cc expr)
  = sep [ hsep [ptext SLIT("_scc_"), ppr cc],
	  pprStgExpr expr ]

pprStgExpr (StgCase expr lvs_whole lvs_rhss bndr srt alt_type alts)
  = sep [sep [ptext SLIT("case"),
	   nest 4 (hsep [pprStgExpr expr,
	     ifPprDebug (dcolon <+> ppr alt_type)]),
	   ptext SLIT("of"), ppr bndr, char '{'],
	   ifPprDebug (
	   nest 4 (
	     hcat [ptext  SLIT("-- lvs: ["), interppSP (uniqSetToList lvs_whole),
		    ptext SLIT("]; rhs lvs: ["), interppSP (uniqSetToList lvs_rhss),
		    ptext SLIT("]; "),
		    pprMaybeSRT srt])),
	   nest 2 (vcat (map pprStgAlt alts)),
	   char '}']

pprStgAlt (con, params, use_mask, expr)
  = hang (hsep [ppr con, interppSP params, ptext SLIT("->")])
	 4 (ppr expr <> semi)

pprStgOp (StgPrimOp  op)   = ppr op
pprStgOp (StgFCallOp op _) = ppr op

instance Outputable AltType where
  ppr PolyAlt 	     = ptext SLIT("Polymorphic")
  ppr (UbxTupAlt tc) = ptext SLIT("UbxTup") <+> ppr tc
  ppr (AlgAlt tc)    = ptext SLIT("Alg")    <+> ppr tc
  ppr (PrimAlt tc)   = ptext SLIT("Prim")   <+> ppr tc
\end{code}

\begin{code}
pprStgLVs :: Outputable occ => GenStgLiveVars occ -> SDoc
pprStgLVs lvs
  = getPprStyle $ \ sty ->
    if userStyle sty || isEmptyUniqSet lvs then
	empty
    else
	hcat [text "{-lvs:", interpp'SP (uniqSetToList lvs), text "-}"]
\end{code}

\begin{code}
pprStgRhs :: (Outputable bndr, Outputable bdee, Ord bdee)
	  => GenStgRhs bndr bdee -> SDoc

-- special case
pprStgRhs (StgRhsClosure cc bi [free_var] upd_flag srt [{-no args-}] (StgApp func []))
  = hcat [ ppr cc,
	   pp_binder_info bi,
	   brackets (ifPprDebug (ppr free_var)),
	   ptext SLIT(" \\"), ppr upd_flag, pprMaybeSRT srt, ptext SLIT(" [] "), ppr func ]

-- general case
pprStgRhs (StgRhsClosure cc bi free_vars upd_flag srt args body)
  = hang (hsep [if opt_SccProfilingOn then ppr cc else empty,
		pp_binder_info bi,
		ifPprDebug (brackets (interppSP free_vars)),
		char '\\' <> ppr upd_flag, pprMaybeSRT srt, brackets (interppSP args)])
	 4 (ppr body)

pprStgRhs (StgRhsCon cc con args)
  = hcat [ ppr cc,
	   space, ppr con, ptext SLIT("! "), brackets (interppSP args)]

pprMaybeSRT (NoSRT) = empty
pprMaybeSRT srt     = ptext SLIT("srt:") <> pprSRT srt
\end{code}