1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
|
%
% (c) The GRASP/AQUA Project, Glasgow University, 1997-1998
%
\section{Fast strings}
FastString: A compact, hash-consed, representation of character strings.
Comparison is O(1), and you can get a Unique from them.
Generated by the FSLIT macro
Turn into SDoc with Outputable.ftext
LitString: Just a wrapper for the Addr# of a C string (Ptr CChar).
Practically no operations
Outputing them is fast
Generated by the SLIT macro
Turn into SDoc with Outputable.ptext
Use LitString unless you want the facilities of FastString
\begin{code}
module FastString
(
FastString(..), -- not abstract, for now.
mkFastString, -- :: String -> FastString
mkFastStringNarrow, -- :: String -> FastString
mkFastSubString, -- :: Addr -> Int -> Int -> FastString
mkFastString#, -- :: Addr# -> FastString
mkFastSubStringBA#, -- :: ByteArray# -> Int# -> Int# -> FastString
mkFastStringInt, -- :: [Int] -> FastString
uniqueOfFS, -- :: FastString -> Int#
lengthFS, -- :: FastString -> Int
nullFastString, -- :: FastString -> Bool
unpackFS, -- :: FastString -> String
unpackIntFS, -- :: FastString -> [Int]
appendFS, -- :: FastString -> FastString -> FastString
headFS, -- :: FastString -> Char
headIntFS, -- :: FastString -> Int
tailFS, -- :: FastString -> FastString
concatFS, -- :: [FastString] -> FastString
consFS, -- :: Char -> FastString -> FastString
indexFS, -- :: FastString -> Int -> Char
nilFS, -- :: FastString
hPutFS, -- :: Handle -> FastString -> IO ()
LitString,
mkLitString# -- :: Addr# -> LitString
) where
-- This #define suppresses the "import FastString" that
-- HsVersions otherwise produces
#define COMPILING_FAST_STRING
#include "HsVersions.h"
#if __GLASGOW_HASKELL__ < 503
import PrelIOBase ( IO(..) )
#else
import GHC.IOBase ( IO(..) )
#endif
import PrimPacked
import GLAEXTS
import UNSAFE_IO ( unsafePerformIO )
import MONAD_ST ( stToIO )
import DATA_IOREF ( IORef, newIORef, readIORef, writeIORef )
#if __GLASGOW_HASKELL__ < 503
import PrelArr ( STArray(..), newSTArray )
#else
import GHC.Arr ( STArray(..), newSTArray )
#endif
#if __GLASGOW_HASKELL__ >= 504
import GHC.IOBase
import GHC.Handle
import Foreign.C
#else
import IOExts ( hPutBufBAFull )
#endif
import IO
import Char ( chr, ord )
#define hASH_TBL_SIZE 4091
\end{code}
@FastString@s are packed representations of strings
with a unique id for fast comparisons. The unique id
is assigned when creating the @FastString@, using
a hash table to map from the character string representation
to the unique ID.
\begin{code}
data FastString
= FastString -- packed repr. on the heap.
Int# -- unique id
-- 0 => string literal, comparison
-- will
Int# -- length
ByteArray# -- stuff
| UnicodeStr -- if contains characters outside '\1'..'\xFF'
Int# -- unique id
[Int] -- character numbers
instance Eq FastString where
-- shortcut for real FastStrings
(FastString u1 _ _) == (FastString u2 _ _) = u1 ==# u2
a == b = case cmpFS a b of { LT -> False; EQ -> True; GT -> False }
(FastString u1 _ _) /= (FastString u2 _ _) = u1 /=# u2
a /= b = case cmpFS a b of { LT -> True; EQ -> False; GT -> True }
instance Ord FastString where
-- Compares lexicographically, not by unique
a <= b = case cmpFS a b of { LT -> True; EQ -> True; GT -> False }
a < b = case cmpFS a b of { LT -> True; EQ -> False; GT -> False }
a >= b = case cmpFS a b of { LT -> False; EQ -> True; GT -> True }
a > b = case cmpFS a b of { LT -> False; EQ -> False; GT -> True }
max x y | x >= y = x
| otherwise = y
min x y | x <= y = x
| otherwise = y
compare a b = cmpFS a b
instance Show FastString where
show fs = show (unpackFS fs)
lengthFS :: FastString -> Int
lengthFS (FastString _ l# _) = I# l#
lengthFS (UnicodeStr _ s) = length s
nullFastString :: FastString -> Bool
nullFastString (FastString _ l# _) = l# ==# 0#
nullFastString (UnicodeStr _ []) = True
nullFastString (UnicodeStr _ (_:_)) = False
unpackFS :: FastString -> String
unpackFS (FastString _ l# ba#) = unpackNBytesBA (BA ba#) (I# l#)
unpackFS (UnicodeStr _ s) = map chr s
unpackIntFS :: FastString -> [Int]
unpackIntFS (UnicodeStr _ s) = s
unpackIntFS fs = map ord (unpackFS fs)
appendFS :: FastString -> FastString -> FastString
appendFS fs1 fs2 = mkFastStringInt (unpackIntFS fs1 ++ unpackIntFS fs2)
concatFS :: [FastString] -> FastString
concatFS ls = mkFastStringInt (concat (map unpackIntFS ls)) -- ToDo: do better
headFS :: FastString -> Char
headFS (FastString _ l# ba#) =
if l# ># 0# then C# (indexCharArray# ba# 0#) else error ("headFS: empty FS")
headFS (UnicodeStr _ (c:_)) = chr c
headFS (UnicodeStr _ []) = error ("headFS: empty FS")
headIntFS :: FastString -> Int
headIntFS (UnicodeStr _ (c:_)) = c
headIntFS fs = ord (headFS fs)
indexFS :: FastString -> Int -> Char
indexFS f i@(I# i#) =
case f of
FastString _ l# ba#
| l# ># 0# && l# ># i# -> C# (indexCharArray# ba# i#)
| otherwise -> error (msg (I# l#))
UnicodeStr _ s -> chr (s!!i)
where
msg l = "indexFS: out of range: " ++ show (l,i)
tailFS :: FastString -> FastString
tailFS (FastString _ l# ba#) = mkFastSubStringBA# ba# 1# (l# -# 1#)
tailFS fs = mkFastStringInt (tail (unpackIntFS fs))
consFS :: Char -> FastString -> FastString
consFS c fs = mkFastStringInt (ord c : unpackIntFS fs)
uniqueOfFS :: FastString -> Int#
uniqueOfFS (FastString u# _ _) = u#
uniqueOfFS (UnicodeStr u# _) = u#
nilFS = mkFastString ""
\end{code}
Internally, the compiler will maintain a fast string symbol
table, providing sharing and fast comparison. Creation of
new @FastString@s then covertly does a lookup, re-using the
@FastString@ if there was a hit.
Caution: mkFastStringUnicode assumes that if the string is in the
table, it sits under the UnicodeStr constructor. Other mkFastString
variants analogously assume the FastString constructor.
\begin{code}
data FastStringTable =
FastStringTable
Int#
(MutableArray# RealWorld [FastString])
type FastStringTableVar = IORef FastStringTable
string_table :: FastStringTableVar
string_table =
unsafePerformIO (
stToIO (newSTArray (0::Int,hASH_TBL_SIZE) [])
>>= \ (STArray _ _ arr#) ->
newIORef (FastStringTable 0# arr#))
lookupTbl :: FastStringTable -> Int# -> IO [FastString]
lookupTbl (FastStringTable _ arr#) i# =
IO ( \ s# ->
readArray# arr# i# s#)
updTbl :: FastStringTableVar -> FastStringTable -> Int# -> [FastString] -> IO ()
updTbl fs_table_var (FastStringTable uid# arr#) i# ls =
IO (\ s# -> case writeArray# arr# i# ls s# of { s2# ->
(# s2#, () #) }) >>
writeIORef fs_table_var (FastStringTable (uid# +# 1#) arr#)
mkFastString# :: Addr# -> FastString
mkFastString# a# =
case strLength (Ptr a#) of { (I# len#) -> mkFastStringLen# a# len# }
mkFastStringLen# :: Addr# -> Int# -> FastString
mkFastStringLen# a# len# =
unsafePerformIO (
readIORef string_table >>= \ ft@(FastStringTable uid# tbl#) ->
let
h = hashStr a# len#
in
-- _trace ("hashed: "++show (I# h)) $
lookupTbl ft h >>= \ lookup_result ->
case lookup_result of
[] ->
-- no match, add it to table by copying out the
-- the string into a ByteArray
-- _trace "empty bucket" $
case copyPrefixStr a# (I# len#) of
BA barr# ->
let f_str = FastString uid# len# barr# in
updTbl string_table ft h [f_str] >>
({- _trace ("new: " ++ show f_str) $ -} return f_str)
ls ->
-- non-empty `bucket', scan the list looking
-- entry with same length and compare byte by byte.
-- _trace ("non-empty bucket"++show ls) $
case bucket_match ls len# a# of
Nothing ->
case copyPrefixStr a# (I# len#) of
BA barr# ->
let f_str = FastString uid# len# barr# in
updTbl string_table ft h (f_str:ls) >>
( {- _trace ("new: " ++ show f_str) $ -} return f_str)
Just v -> {- _trace ("re-use: "++show v) $ -} return v)
where
bucket_match [] _ _ = Nothing
bucket_match (v@(FastString _ l# ba#):ls) len# a# =
if len# ==# l# && eqStrPrefix a# ba# l# then
Just v
else
bucket_match ls len# a#
bucket_match (UnicodeStr _ _ : ls) len# a# =
bucket_match ls len# a#
mkFastSubStringBA# :: ByteArray# -> Int# -> Int# -> FastString
mkFastSubStringBA# barr# start# len# =
unsafePerformIO (
readIORef string_table >>= \ ft@(FastStringTable uid# tbl#) ->
let
h = hashSubStrBA barr# start# len#
in
-- _trace ("hashed(b): "++show (I# h)) $
lookupTbl ft h >>= \ lookup_result ->
case lookup_result of
[] ->
-- no match, add it to table by copying out the
-- the string into a ByteArray
-- _trace "empty bucket(b)" $
case copySubStrBA (BA barr#) (I# start#) (I# len#) of
BA ba# ->
let f_str = FastString uid# len# ba# in
updTbl string_table ft h [f_str] >>
-- _trace ("new(b): " ++ show f_str) $
return f_str
ls ->
-- non-empty `bucket', scan the list looking
-- entry with same length and compare byte by byte.
-- _trace ("non-empty bucket(b)"++show ls) $
case bucket_match ls start# len# barr# of
Nothing ->
case copySubStrBA (BA barr#) (I# start#) (I# len#) of
BA ba# ->
let f_str = FastString uid# len# ba# in
updTbl string_table ft h (f_str:ls) >>
-- _trace ("new(b): " ++ show f_str) $
return f_str
Just v ->
-- _trace ("re-use(b): "++show v) $
return v
)
where
bucket_match [] _ _ _ = Nothing
bucket_match (v:ls) start# len# ba# =
case v of
FastString _ l# barr# ->
if len# ==# l# && eqStrPrefixBA barr# ba# start# len# then
Just v
else
bucket_match ls start# len# ba#
UnicodeStr _ _ -> bucket_match ls start# len# ba#
mkFastStringUnicode :: [Int] -> FastString
mkFastStringUnicode s =
unsafePerformIO (
readIORef string_table >>= \ ft@(FastStringTable uid# tbl#) ->
let
h = hashUnicode s 0#
in
-- _trace ("hashed(b): "++show (I# h)) $
lookupTbl ft h >>= \ lookup_result ->
case lookup_result of
[] ->
-- no match, add it to table by copying out the
-- the string into a [Int]
let f_str = UnicodeStr uid# s in
updTbl string_table ft h [f_str] >>
-- _trace ("new(b): " ++ show f_str) $
return f_str
ls ->
-- non-empty `bucket', scan the list looking
-- entry with same length and compare byte by byte.
-- _trace ("non-empty bucket(b)"++show ls) $
case bucket_match ls of
Nothing ->
let f_str = UnicodeStr uid# s in
updTbl string_table ft h (f_str:ls) >>
-- _trace ("new(b): " ++ show f_str) $
return f_str
Just v ->
-- _trace ("re-use(b): "++show v) $
return v
)
where
bucket_match [] = Nothing
bucket_match (v@(UnicodeStr _ s'):ls) =
if s' == s then Just v else bucket_match ls
bucket_match (FastString _ _ _ : ls) = bucket_match ls
mkFastStringNarrow :: String -> FastString
mkFastStringNarrow str =
case packString str of { (I# len#, BA frozen#) ->
mkFastSubStringBA# frozen# 0# len#
}
{- 0-indexed array, len# == index to one beyond end of string,
i.e., (0,1) => empty string. -}
mkFastString :: String -> FastString
mkFastString str = if all good str
then mkFastStringNarrow str
else mkFastStringUnicode (map ord str)
where
good c = c >= '\1' && c <= '\xFF'
mkFastStringInt :: [Int] -> FastString
mkFastStringInt str = if all good str
then mkFastStringNarrow (map chr str)
else mkFastStringUnicode str
where
good c = c >= 1 && c <= 0xFF
mkFastSubString :: Addr# -> Int -> Int -> FastString
mkFastSubString a# (I# start#) (I# len#) =
mkFastStringLen# (a# `plusAddr#` start#) len#
\end{code}
\begin{code}
hashStr :: Addr# -> Int# -> Int#
-- use the Addr to produce a hash value between 0 & m (inclusive)
hashStr a# len# = loop 0# 0#
where
loop h n | n ==# len# = h
| otherwise = loop h2 (n +# 1#)
where c = ord# (indexCharOffAddr# a# n)
h2 = (c +# (h *# 128#)) `remInt#` hASH_TBL_SIZE#
hashSubStrBA :: ByteArray# -> Int# -> Int# -> Int#
-- use the byte array to produce a hash value between 0 & m (inclusive)
hashSubStrBA ba# start# len# = loop 0# 0#
where
loop h n | n ==# len# = h
| otherwise = loop h2 (n +# 1#)
where c = ord# (indexCharArray# ba# (start# +# n))
h2 = (c +# (h *# 128#)) `remInt#` hASH_TBL_SIZE#
hashUnicode :: [Int] -> Int# -> Int#
hashUnicode [] h = h
hashUnicode (I# c : cs) h = hashUnicode cs ((c +# (h *# 128#)) `remInt#` hASH_TBL_SIZE#)
\end{code}
\begin{code}
cmpFS :: FastString -> FastString -> Ordering
cmpFS (UnicodeStr u1# s1) (UnicodeStr u2# s2) = if u1# ==# u2# then EQ
else compare s1 s2
cmpFS (UnicodeStr _ s1) s2 = compare s1 (unpackIntFS s2)
cmpFS s1 (UnicodeStr _ s2) = compare (unpackIntFS s1) s2
cmpFS (FastString u1# l1# b1#) (FastString u2# l2# b2#) =
if u1# ==# u2# then EQ else
let l# = if l1# <=# l2# then l1# else l2# in
unsafePerformIO (
memcmp b1# b2# l# >>= \ (I# res) ->
return (
if res <# 0# then LT
else if res ==# 0# then
if l1# ==# l2# then EQ
else if l1# <# l2# then LT else GT
else GT
))
#ifndef __HADDOCK__
foreign import ccall unsafe "ghc_memcmp"
memcmp :: ByteArray# -> ByteArray# -> Int# -> IO Int
#endif
-- -----------------------------------------------------------------------------
-- Outputting 'FastString's
#if __GLASGOW_HASKELL__ >= 504
-- this is our own version of hPutBuf for FastStrings, because in
-- 5.04+ we don't have mutable byte arrays and therefore hPutBufBA.
-- The closest is hPutArray in Data.Array.IO, but that does some extra
-- range checks that we want to avoid here.
foreign import ccall unsafe "__hscore_memcpy_dst_off"
memcpy_baoff_ba :: RawBuffer -> Int -> RawBuffer -> CSize -> IO (Ptr ())
hPutFS handle (FastString _ l# ba#)
| l# ==# 0# = return ()
| otherwise
= do wantWritableHandle "hPutFS" handle $
\ handle_@Handle__{ haFD=fd, haBuffer=ref, haIsStream=stream } -> do
old_buf@Buffer{ bufBuf=old_raw, bufRPtr=r, bufWPtr=w, bufSize=size }
<- readIORef ref
let count = I# l#
raw = unsafeCoerce# ba# :: MutableByteArray# RealWorld
-- enough room in handle buffer?
if (size - w > count)
-- There's enough room in the buffer:
-- just copy the data in and update bufWPtr.
then do memcpy_baoff_ba old_raw w raw (fromIntegral count)
writeIORef ref old_buf{ bufWPtr = w + count }
return ()
-- else, we have to flush
else do flushed_buf <- flushWriteBuffer fd stream old_buf
writeIORef ref flushed_buf
let this_buf =
Buffer{ bufBuf=raw, bufState=WriteBuffer,
bufRPtr=0, bufWPtr=count, bufSize=count }
flushWriteBuffer fd stream this_buf
return ()
#else
hPutFS :: Handle -> FastString -> IO ()
hPutFS handle (FastString _ l# ba#)
| l# ==# 0# = return ()
| otherwise = do mba <- stToIO $ unsafeThawByteArray (ByteArray (bot::Int) bot ba#)
hPutBufBAFull handle mba (I# l#)
where
bot = error "hPutFS.ba"
#endif
-- ONLY here for debugging the NCG (so -ddump-stix works for string
-- literals); no idea if this is really necessary. JRS, 010131
hPutFS handle (UnicodeStr _ is)
= hPutStr handle ("(UnicodeStr " ++ show is ++ ")")
-- -----------------------------------------------------------------------------
-- LitStrings, here for convenience only.
type LitString = Ptr ()
mkLitString# :: Addr# -> LitString
mkLitString# a# = Ptr a#
\end{code}
|