summaryrefslogtreecommitdiff
path: root/ghc/compiler/utils/UniqFM.lhs
blob: 52426d3d7bdc0e636a84497b19b21206122f0cfc (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
%
% (c) The AQUA Project, Glasgow University, 1994-1996
%
\section[UniqFM]{Specialised finite maps, for things with @Uniques@}

Based on @FiniteMaps@ (as you would expect).

Basically, the things need to be in class @Uniquable@, and we use the
@uniqueOf@ method to grab their @Uniques@.

(A similar thing to @UniqSet@, as opposed to @Set@.)

\begin{code}
#if defined(COMPILING_GHC)
#include "HsVersions.h"
#define IF_NOT_GHC(a) {--}
#else
#define ASSERT(e) {--}
#define IF_NOT_GHC(a) a
#endif

module UniqFM (
	UniqFM,   -- abstract type
	Uniquable(..), -- class to go with it

	emptyUFM,
	unitUFM,
	unitDirectlyUFM,
	listToUFM,
	listToUFM_Directly,
	addToUFM,addToUFM_C,
	addListToUFM,addListToUFM_C,
	addToUFM_Directly,
	addListToUFM_Directly,
	delFromUFM,
	delFromUFM_Directly,
	delListFromUFM,
	plusUFM,
	plusUFM_C,
	minusUFM,
	intersectUFM,
	IF_NOT_GHC(intersectUFM_C COMMA)
	IF_NOT_GHC(foldUFM COMMA)
	mapUFM,
	filterUFM,
	sizeUFM,
	isNullUFM,
	lookupUFM, lookupUFM_Directly,
	lookupWithDefaultUFM, lookupWithDefaultUFM_Directly,
	eltsUFM,
	ufmToList
#if defined(COMPILING_GHC)
	,FAST_STRING
#endif
    ) where

#if defined(COMPILING_GHC)
IMPORT_DELOOPER( SpecLoop )
#endif

import Unique		( Unique, u2i, mkUniqueGrimily )
import Util
import Pretty		( SYN_IE(Pretty), PrettyRep )
import Outputable	( Outputable(..) )
import PprStyle		( PprStyle )
import SrcLoc		( SrcLoc )

#if ! OMIT_NATIVE_CODEGEN
#define IF_NCG(a) a
#else
#define IF_NCG(a) {--}
#endif
\end{code}

%************************************************************************
%*									*
\subsection{The @UniqFM@ type, and signatures for the functions}
%*									*
%************************************************************************

We use @FiniteMaps@, with a (@uniqueOf@-able) @Unique@ as ``key''.

\begin{code}
emptyUFM	:: UniqFM elt
isNullUFM	:: UniqFM elt -> Bool
unitUFM		:: Uniquable key => key -> elt -> UniqFM elt
unitDirectlyUFM -- got the Unique already
		:: Unique -> elt -> UniqFM elt
listToUFM	:: Uniquable key => [(key,elt)] -> UniqFM elt
listToUFM_Directly
		:: [(Unique, elt)] -> UniqFM elt

addToUFM	:: Uniquable key => UniqFM elt -> key -> elt  -> UniqFM elt
addListToUFM	:: Uniquable key => UniqFM elt -> [(key,elt)] -> UniqFM elt
addToUFM_Directly
		:: UniqFM elt -> Unique -> elt -> UniqFM elt

addToUFM_C	:: Uniquable key => (elt -> elt -> elt)
			   -> UniqFM elt -> key -> elt -> UniqFM elt
addListToUFM_C	:: Uniquable key => (elt -> elt -> elt)
			   -> UniqFM elt -> [(key,elt)]
			   -> UniqFM elt

delFromUFM	:: Uniquable key => UniqFM elt -> key	 -> UniqFM elt
delListFromUFM	:: Uniquable key => UniqFM elt -> [key] -> UniqFM elt
delFromUFM_Directly :: UniqFM elt -> Unique -> UniqFM elt

plusUFM		:: UniqFM elt -> UniqFM elt -> UniqFM elt

plusUFM_C	:: (elt -> elt -> elt)
		-> UniqFM elt -> UniqFM elt -> UniqFM elt

minusUFM	:: UniqFM elt -> UniqFM elt -> UniqFM elt

intersectUFM	:: UniqFM elt -> UniqFM elt -> UniqFM elt
intersectUFM_C	:: (elt -> elt -> elt)
		-> UniqFM elt -> UniqFM elt -> UniqFM elt
foldUFM		:: (elt -> a -> a) -> a -> UniqFM elt -> a
mapUFM		:: (elt1 -> elt2) -> UniqFM elt1 -> UniqFM elt2
filterUFM	:: (elt -> Bool) -> UniqFM elt -> UniqFM elt

sizeUFM		:: UniqFM elt -> Int

lookupUFM	:: Uniquable key => UniqFM elt -> key -> Maybe elt
lookupUFM_Directly  -- when you've got the Unique already
		:: UniqFM elt -> Unique -> Maybe elt
lookupWithDefaultUFM
		:: Uniquable key => UniqFM elt -> elt -> key -> elt
lookupWithDefaultUFM_Directly
		:: UniqFM elt -> elt -> Unique -> elt

eltsUFM		:: UniqFM elt -> [elt]
ufmToList	:: UniqFM elt -> [(Unique, elt)]
\end{code}

%************************************************************************
%*									*
\subsection{The @IdFinMap@ and @TyVarFinMap@ specialisations for Ids/TyVars}
%*									*
%************************************************************************

\begin{code}
#ifdef __GLASGOW_HASKELL__
-- I don't think HBC was too happy about this (WDP 94/10)

{-# SPECIALIZE
    addListToUFM :: UniqFM elt -> [(Name,   elt)] -> UniqFM elt
  #-}
{-# SPECIALIZE
    addListToUFM_C :: (elt -> elt -> elt) -> UniqFM elt -> [(Name,  elt)] -> UniqFM elt
  #-}
{-# SPECIALIZE
    addToUFM	:: UniqFM elt -> Unique -> elt  -> UniqFM elt
  #-}
{-# SPECIALIZE
    listToUFM	:: [(Unique, elt)]     -> UniqFM elt
  #-}
{-# SPECIALIZE
    lookupUFM	:: UniqFM elt -> Name   -> Maybe elt
		 , UniqFM elt -> Unique -> Maybe elt
  #-}

#endif {- __GLASGOW_HASKELL__ -}
\end{code}

%************************************************************************
%*									*
\subsection{Andy Gill's underlying @UniqFM@ machinery}
%*									*
%************************************************************************

``Uniq Finite maps'' are the heart and soul of the compiler's
lookup-tables/environments.  Important stuff!  It works well with
Dense and Sparse ranges.
Both @Uq@ Finite maps and @Hash@ Finite Maps
are built ontop of Int Finite Maps.

This code is explained in the paper:
\begin{display}
	A Gill, S Peyton Jones, B O'Sullivan, W Partain and Aqua Friends
	"A Cheap balancing act that grows on a tree"
	Glasgow FP Workshop, Sep 1994, pp??-??
\end{display}

%************************************************************************
%*									*
\subsubsection{The @UniqFM@ type, and signatures for the functions}
%*									*
%************************************************************************

@UniqFM a@ is a mapping from Unique to a.

First, the DataType itself; which is either a Node, a Leaf, or an Empty.

\begin{code}
data UniqFM ele
  = EmptyUFM
  | LeafUFM FAST_INT ele
  | NodeUFM FAST_INT	    -- the switching
	    FAST_INT	    -- the delta
	    (UniqFM ele)
	    (UniqFM ele)

class Uniquable a where
    uniqueOf :: a -> Unique

-- for debugging only :-)
{-
instance Text (UniqFM a) where
	showsPrec _ (NodeUFM a b t1 t2) =
		  showString "NodeUFM " . shows (IBOX(a))
		. showString " " . shows (IBOX(b))
		. showString " (" . shows t1
		. showString ") (" . shows t2
		. showString ")"
	showsPrec _ (LeafUFM x a) = showString "LeafUFM " . shows (IBOX(x))
	showsPrec _ (EmptyUFM) = id
-}
\end{code}

%************************************************************************
%*									*
\subsubsection{The @UniqFM@ functions}
%*									*
%************************************************************************

First the ways of building a UniqFM.

\begin{code}
emptyUFM		     = EmptyUFM
unitUFM	     key elt = mkLeafUFM (u2i (uniqueOf key)) elt
unitDirectlyUFM key elt = mkLeafUFM (u2i key) elt

listToUFM key_elt_pairs
  = addListToUFM_C use_snd EmptyUFM key_elt_pairs

listToUFM_Directly uniq_elt_pairs
  = addListToUFM_directly_C use_snd EmptyUFM uniq_elt_pairs
\end{code}

Now ways of adding things to UniqFMs.

There is an alternative version of @addListToUFM_C@, that uses @plusUFM@,
but the semantics of this operation demands a linear insertion;
perhaps the version without the combinator function
could be optimised using it.

\begin{code}
addToUFM fm key elt = addToUFM_C use_snd fm key elt

addToUFM_Directly fm u elt = insert_ele use_snd fm (u2i u) elt

addToUFM_C combiner fm key elt
  = insert_ele combiner fm (u2i (uniqueOf key)) elt

addListToUFM fm key_elt_pairs = addListToUFM_C use_snd fm key_elt_pairs
addListToUFM_Directly fm uniq_elt_pairs = addListToUFM_directly_C use_snd fm uniq_elt_pairs

addListToUFM_C combiner fm key_elt_pairs
 = foldl (\ fm (k, e) -> insert_ele combiner fm (u2i (uniqueOf k)) e)
	 fm key_elt_pairs

addListToUFM_directly_C combiner fm uniq_elt_pairs
 = foldl (\ fm (k, e) -> insert_ele combiner fm (u2i k) e)
	 fm uniq_elt_pairs
\end{code}

Now ways of removing things from UniqFM.

\begin{code}
delListFromUFM fm lst = foldl delFromUFM fm lst

delFromUFM          fm key = delete fm (u2i (uniqueOf key))
delFromUFM_Directly fm u   = delete fm (u2i u)

delete EmptyUFM _   = EmptyUFM
delete fm       key = del_ele fm
  where
    del_ele :: UniqFM a -> UniqFM a

    del_ele lf@(LeafUFM j _)
      | j _EQ_ key	= EmptyUFM
      | otherwise	= lf	-- no delete!

    del_ele nd@(NodeUFM j p t1 t2)
      | j _GT_ key
      = mkSLNodeUFM (NodeUFMData j p) (del_ele t1) t2
      | otherwise
      = mkLSNodeUFM (NodeUFMData j p) t1 (del_ele t2)

    del_ele _ = panic "Found EmptyUFM FM when rec-deleting"
\end{code}

Now ways of adding two UniqFM's together.

\begin{code}
plusUFM tr1 tr2 = plusUFM_C use_snd tr1 tr2

plusUFM_C f EmptyUFM tr	= tr
plusUFM_C f tr EmptyUFM	= tr
plusUFM_C f fm1 fm2	= mix_trees fm1 fm2
    where
	mix_trees (LeafUFM i a) t2 = insert_ele (flip f) t2 i a
	mix_trees t1 (LeafUFM i a) = insert_ele f	 t1 i a

	mix_trees left_t@(NodeUFM j p t1 t2) right_t@(NodeUFM j' p' t1' t2')
	  = mix_branches
		(ask_about_common_ancestor
			(NodeUFMData j p)
			(NodeUFMData j' p'))
	  where
		-- Given a disjoint j,j' (p >^ p' && p' >^ p):
		--
		--	  j		j'			(C j j')
		--	 / \	+      / \	==>		/	\
		--     t1   t2	    t1'	  t2'		       j	 j'
		--					      / \	/ \
		--					     t1	 t2   t1'  t2'
		-- Fast, Ehh !
		--
	  mix_branches (NewRoot nd False)
		= mkLLNodeUFM nd left_t right_t
	  mix_branches (NewRoot nd True)
		= mkLLNodeUFM nd right_t left_t

		-- Now, if j == j':
		--
		--	  j		j'			 j
		--	 / \	+      / \	==>		/ \
		--     t1   t2	    t1'	  t2'		t1 + t1'   t2 + t2'
		--
	  mix_branches (SameRoot)
		= mkSSNodeUFM (NodeUFMData j p)
			(mix_trees t1 t1')
			(mix_trees t2 t2')
		-- Now the 4 different other ways; all like this:
		--
		-- Given j >^ j' (and, say,  j > j')
		--
		--	  j		j'			 j
		--	 / \	+      / \	==>		/ \
		--     t1   t2	    t1'	  t2'		      t1   t2 + j'
		--						       / \
		--						     t1'  t2'
	  mix_branches (LeftRoot Leftt) -- | trace "LL" True
	    = mkSLNodeUFM
		(NodeUFMData j p)
		(mix_trees t1 right_t)
		t2

	  mix_branches (LeftRoot Rightt) -- | trace "LR" True
	    = mkLSNodeUFM
		(NodeUFMData j p)
		t1
		(mix_trees t2 right_t)

	  mix_branches (RightRoot Leftt) -- | trace "RL" True
	    = mkSLNodeUFM
		(NodeUFMData j' p')
		(mix_trees left_t t1')
		t2'

	  mix_branches (RightRoot Rightt) -- | trace "RR" True
	    = mkLSNodeUFM
		(NodeUFMData j' p')
		t1'
		(mix_trees left_t t2')

	mix_trees _ _ = panic "EmptyUFM found when inserting into plusInt"
\end{code}

And ways of subtracting them. First the base cases,
then the full D&C approach.

\begin{code}
minusUFM EmptyUFM _  = EmptyUFM
minusUFM t1 EmptyUFM = t1
minusUFM fm1 fm2     = minus_trees fm1 fm2
    where
	--
	-- Notice the asymetry of subtraction
	--
	minus_trees lf@(LeafUFM i a) t2 =
		case lookUp t2 i of
		  Nothing -> lf
		  Just b -> EmptyUFM

	minus_trees t1 (LeafUFM i _) = delete t1 i

	minus_trees left_t@(NodeUFM j p t1 t2) right_t@(NodeUFM j' p' t1' t2')
	  = minus_branches
		(ask_about_common_ancestor
			(NodeUFMData j p)
			(NodeUFMData j' p'))
	  where
		-- Given a disjoint j,j' (p >^ p' && p' >^ p):
		--
		--	  j		j'		   j
		--	 / \	+      / \	==>	  / \
		--     t1   t2	    t1'	  t2'		 t1  t2
		--
		--
		-- Fast, Ehh !
		--
	  minus_branches (NewRoot nd _) = left_t

		-- Now, if j == j':
		--
		--	  j		j'			 j
		--	 / \	+      / \	==>		/ \
		--     t1   t2	    t1'	  t2'		t1 + t1'   t2 + t2'
		--
	  minus_branches (SameRoot)
		= mkSSNodeUFM (NodeUFMData j p)
			(minus_trees t1 t1')
			(minus_trees t2 t2')
		-- Now the 4 different other ways; all like this:
		-- again, with asymatry

		--
		-- The left is above the right
		--
	  minus_branches (LeftRoot Leftt)
	    = mkSLNodeUFM
		(NodeUFMData j p)
		(minus_trees t1 right_t)
		t2
	  minus_branches (LeftRoot Rightt)
	    = mkLSNodeUFM
		(NodeUFMData j p)
		t1
		(minus_trees t2 right_t)

		--
		-- The right is above the left
		--
	  minus_branches (RightRoot Leftt)
	    = minus_trees left_t t1'
	  minus_branches (RightRoot Rightt)
	    = minus_trees left_t t2'

	minus_trees _ _ = panic "EmptyUFM found when insering into plusInt"
\end{code}

And taking the intersection of two UniqFM's.

\begin{code}
intersectUFM t1 t2 = intersectUFM_C use_snd t1 t2

intersectUFM_C f EmptyUFM _ = EmptyUFM
intersectUFM_C f _ EmptyUFM = EmptyUFM
intersectUFM_C f fm1 fm2    = intersect_trees fm1 fm2
    where
	intersect_trees (LeafUFM i a) t2 =
		case lookUp t2 i of
		  Nothing -> EmptyUFM
		  Just b -> mkLeafUFM i (f a b)

	intersect_trees t1 (LeafUFM i a) =
		case lookUp t1 i of
		  Nothing -> EmptyUFM
		  Just b -> mkLeafUFM i (f b a)

	intersect_trees left_t@(NodeUFM j p t1 t2) right_t@(NodeUFM j' p' t1' t2')
	  = intersect_branches
		(ask_about_common_ancestor
			(NodeUFMData j p)
			(NodeUFMData j' p'))
	  where
		-- Given a disjoint j,j' (p >^ p' && p' >^ p):
		--
		--	  j		j'
		--	 / \	+      / \	==>		EmptyUFM
		--     t1   t2	    t1'	  t2'
		--
		-- Fast, Ehh !
		--
	  intersect_branches (NewRoot nd _) = EmptyUFM

		-- Now, if j == j':
		--
		--	  j		j'			 j
		--	 / \	+      / \	==>		/ \
		--     t1   t2	    t1'	  t2'		t1 x t1'   t2 x t2'
		--
	  intersect_branches (SameRoot)
		= mkSSNodeUFM (NodeUFMData j p)
			(intersect_trees t1 t1')
			(intersect_trees t2 t2')
		-- Now the 4 different other ways; all like this:
		--
		-- Given j >^ j' (and, say,  j > j')
		--
		--	  j		j'		       t2 + j'
		--	 / \	+      / \	==>		   / \
		--     t1   t2	    t1'	  t2'			 t1'  t2'
		--
		-- This does cut down the search space quite a bit.

	  intersect_branches (LeftRoot Leftt)
	    = intersect_trees t1 right_t
	  intersect_branches (LeftRoot Rightt)
	    = intersect_trees t2 right_t
	  intersect_branches (RightRoot Leftt)
	    = intersect_trees left_t t1'
	  intersect_branches (RightRoot Rightt)
	    = intersect_trees left_t t2'

	intersect_trees x y = panic ("EmptyUFM found when intersecting trees")
\end{code}

Now the usual set of `collection' operators, like map, fold, etc.

\begin{code}
foldUFM fn a EmptyUFM = a
foldUFM fn a fm	      = fold_tree fn a fm

mapUFM fn EmptyUFM    = EmptyUFM
mapUFM fn fm	      = map_tree fn fm

filterUFM fn EmptyUFM = EmptyUFM
filterUFM fn fm	      = filter_tree fn fm
\end{code}

Note, this takes a long time, O(n), but
because we dont want to do this very often, we put up with this.
O'rable, but how often do we look at the size of
a finite map?

\begin{code}
sizeUFM EmptyUFM	    = 0
sizeUFM (NodeUFM _ _ t1 t2) = sizeUFM t1 + sizeUFM t2
sizeUFM (LeafUFM _ _)	    = 1

isNullUFM EmptyUFM = True
isNullUFM _	   = False
\end{code}

looking up in a hurry is the {\em whole point} of this binary tree lark.
Lookup up a binary tree is easy (and fast).

\begin{code}
lookupUFM	   fm key = lookUp fm (u2i (uniqueOf key))
lookupUFM_Directly fm key = lookUp fm (u2i key)

lookupWithDefaultUFM fm deflt key
  = case lookUp fm (u2i (uniqueOf key)) of
      Nothing  -> deflt
      Just elt -> elt

lookupWithDefaultUFM_Directly fm deflt key
  = case lookUp fm (u2i key) of
      Nothing  -> deflt
      Just elt -> elt

lookUp EmptyUFM _   = Nothing
lookUp fm i	    = lookup_tree fm
  where
	lookup_tree :: UniqFM a -> Maybe a

	lookup_tree (LeafUFM j b)
	  | j _EQ_ i	= Just b
	  | otherwise	= Nothing
	lookup_tree (NodeUFM j p t1 t2)
	  | j _GT_ i	= lookup_tree t1
	  | otherwise	= lookup_tree t2

	lookup_tree EmptyUFM = panic "lookup Failed"
\end{code}

folds are *wonderful* things.

\begin{code}
eltsUFM EmptyUFM = []
eltsUFM fm       = fold_tree (:) [] fm

ufmToList EmptyUFM = []
ufmToList fm
  = fold_tree (\ iu elt rest -> (mkUniqueGrimily iu, elt) : rest) [] fm
  where
    fold_tree f a (NodeUFM _ _ t1 t2) = fold_tree f (fold_tree f a t2) t1
    fold_tree f a (LeafUFM iu obj)    = f iu obj a

    fold_tree f a EmptyUFM = panic "Should Never fold over an EmptyUFM"
\end{code}

%************************************************************************
%*									*
\subsubsection{The @UniqFM@ type, and its functions}
%*									*
%************************************************************************

You should always use these to build the tree.
There are 4 versions of mkNodeUFM, depending on
the strictness of the two sub-tree arguments.
The strictness is used *both* to prune out
empty trees, *and* to improve performance,
stoping needless thunks lying around.
The rule of thumb (from experence with these trees)
is make thunks strict, but data structures lazy.
If in doubt, use mkSSNodeUFM, which has the `strongest'
functionality, but may do a few needless evaluations.

\begin{code}
mkLeafUFM :: FAST_INT -> a -> UniqFM a
mkLeafUFM i a	  = LeafUFM i a

-- The *ONLY* ways of building a NodeUFM.

mkSSNodeUFM (NodeUFMData j p) EmptyUFM t2 = t2
mkSSNodeUFM (NodeUFMData j p) t1 EmptyUFM = t1
mkSSNodeUFM (NodeUFMData j p) t1 t2
  = ASSERT(correctNodeUFM (IBOX(j)) (IBOX(p)) t1 t2)
    NodeUFM j p t1 t2

mkSLNodeUFM (NodeUFMData j p) EmptyUFM t2 = t2
mkSLNodeUFM (NodeUFMData j p) t1 t2
  = ASSERT(correctNodeUFM (IBOX(j)) (IBOX(p)) t1 t2)
    NodeUFM j p t1 t2

mkLSNodeUFM (NodeUFMData j p) t1 EmptyUFM = t1
mkLSNodeUFM (NodeUFMData j p) t1 t2
  = ASSERT(correctNodeUFM (IBOX(j)) (IBOX(p)) t1 t2)
    NodeUFM j p t1 t2

mkLLNodeUFM (NodeUFMData j p) t1 t2
  = ASSERT(correctNodeUFM (IBOX(j)) (IBOX(p)) t1 t2)
    NodeUFM j p t1 t2

correctNodeUFM
	:: Int
	-> Int
	-> UniqFM a
	-> UniqFM a
	-> Bool

correctNodeUFM j p t1 t2
  = correct (j-p) (j-1) p t1 && correct j ((j-1)+p) p t2
  where
    correct low high _ (LeafUFM i _)
      = low <= IBOX(i) && IBOX(i) <= high
    correct low high above_p (NodeUFM j p _ _)
      = low <= IBOX(j) && IBOX(j) <= high && above_p > IBOX(p)
    correct _ _ _ EmptyUFM = panic "EmptyUFM stored inside a tree"
\end{code}

Note: doing SAT on this by hand seems to make it worse. Todo: Investigate,
and if necessary do $\lambda$ lifting on our functions that are bound.

\begin{code}
insert_ele
	:: (a -> a -> a)
	-> UniqFM a
	-> FAST_INT
	-> a
	-> UniqFM a

insert_ele f EmptyUFM i new = mkLeafUFM i new

insert_ele f (LeafUFM j old) i new
  | j _GT_ i =
	  mkLLNodeUFM (getCommonNodeUFMData
			  (indexToRoot i)
			  (indexToRoot j))
		 (mkLeafUFM i new)
		 (mkLeafUFM j old)
  | j _EQ_ i  = mkLeafUFM j (f old new)
  | otherwise =
	  mkLLNodeUFM (getCommonNodeUFMData
			  (indexToRoot i)
			  (indexToRoot j))
		 (mkLeafUFM j old)
		 (mkLeafUFM i new)

insert_ele f n@(NodeUFM j p t1 t2) i a
  | i _LT_ j
    = if (i _GE_ (j _SUB_ p))
      then mkSLNodeUFM (NodeUFMData j p) (insert_ele f t1 i a) t2
      else mkLLNodeUFM (getCommonNodeUFMData
			  (indexToRoot i)
			  ((NodeUFMData j p)))
		  (mkLeafUFM i a)
		  n
  | otherwise
    = if (i _LE_ ((j _SUB_ ILIT(1)) _ADD_ p))
      then mkLSNodeUFM (NodeUFMData j p) t1 (insert_ele f t2 i a)
      else mkLLNodeUFM (getCommonNodeUFMData
			  (indexToRoot i)
			  ((NodeUFMData j p)))
		  n
		  (mkLeafUFM i a)
\end{code}

This has got a left to right ordering.

\begin{code}
fold_tree f a (NodeUFM _ _ t1 t2) = fold_tree f (fold_tree f a t2) t1
fold_tree f a (LeafUFM _ obj)	  = f obj a

fold_tree f a EmptyUFM = panic "Should Never fold over an EmptyUFM"
\end{code}

\begin{code}
map_tree f (NodeUFM j p t1 t2)
  = mkSSNodeUFM (NodeUFMData j p) (map_tree f t1) (map_tree f t2)
map_tree f (LeafUFM i obj)
  = mkLeafUFM i (f obj)

map_tree f _ = panic "map_tree failed"
\end{code}

\begin{code}
filter_tree f nd@(NodeUFM j p t1 t2)
  = mkSSNodeUFM (NodeUFMData j p) (filter_tree f t1) (filter_tree f t2)

filter_tree f lf@(LeafUFM i obj)
  | f obj = lf
  | otherwise = EmptyUFM
\end{code}

%************************************************************************
%*									*
\subsubsection{The @UniqFM@ type, and signatures for the functions}
%*									*
%************************************************************************

Now some Utilities;

This is the information that is held inside a NodeUFM, packaged up for
consumer use.

\begin{code}
data NodeUFMData
  = NodeUFMData FAST_INT
		FAST_INT
\end{code}

This is the information used when computing new NodeUFMs.

\begin{code}
data Side = Leftt | Rightt -- NB: avoid 1.3 names "Left" and "Right"
data CommonRoot
  = LeftRoot  Side	-- which side is the right down ?
  | RightRoot Side	-- which side is the left down ?
  | SameRoot		-- they are the same !
  | NewRoot NodeUFMData	-- here's the new, common, root
	    Bool	-- do you need to swap left and right ?
\end{code}

This specifies the relationship between NodeUFMData and CalcNodeUFMData.

\begin{code}
indexToRoot :: FAST_INT -> NodeUFMData

indexToRoot i
  = let
	l = (ILIT(1) :: FAST_INT)
    in
    NodeUFMData (((i `shiftR_` l) `shiftL_` l) _ADD_ ILIT(1)) l

getCommonNodeUFMData :: NodeUFMData -> NodeUFMData -> NodeUFMData

getCommonNodeUFMData (NodeUFMData i p) (NodeUFMData i2 p2)
  | p _EQ_ p2	= getCommonNodeUFMData_ p j j2
  | p _LT_ p2	= getCommonNodeUFMData_ p2 (j _QUOT_ (p2 _QUOT_ p)) j2
  | otherwise	= getCommonNodeUFMData_ p j (j2 _QUOT_ (p _QUOT_ p2))
  where
    l  = (ILIT(1) :: FAST_INT)
    j  = i  _QUOT_ (p  `shiftL_` l)
    j2 = i2 _QUOT_ (p2 `shiftL_` l)

    getCommonNodeUFMData_ :: FAST_INT -> FAST_INT -> FAST_INT -> NodeUFMData

    getCommonNodeUFMData_ p j j_
      | j _EQ_ j_
      = NodeUFMData (((j `shiftL_` l) _ADD_ l) _MUL_ p) p
      | otherwise
      = getCommonNodeUFMData_ (p `shiftL_`  l) (j `shiftR_` l) (j_ `shiftR_` l)

ask_about_common_ancestor :: NodeUFMData -> NodeUFMData -> CommonRoot

ask_about_common_ancestor x@(NodeUFMData j p) y@(NodeUFMData j2 p2)
  | j _EQ_ j2 = SameRoot
  | otherwise
  = case getCommonNodeUFMData x y of
      nd@(NodeUFMData j3 p3)
	| j3 _EQ_ j  -> LeftRoot (decideSide (j _GT_ j2))
	| j3 _EQ_ j2 -> RightRoot (decideSide (j _LT_ j2))
	| otherwise   -> NewRoot nd (j _GT_ j2)
    where
	decideSide :: Bool -> Side
	decideSide True	 = Leftt
	decideSide False = Rightt
\end{code}

This might be better in Util.lhs ?


Now the bit twiddling functions.
\begin{code}
shiftL_ :: FAST_INT -> FAST_INT -> FAST_INT
shiftR_ :: FAST_INT -> FAST_INT -> FAST_INT

#if __GLASGOW_HASKELL__
{-# INLINE shiftL_ #-}
{-# INLINE shiftR_ #-}
shiftL_ n p = word2Int#((int2Word# n) `shiftL#` p)
shiftR_ n p = word2Int#((int2Word# n) `shiftr` p)
  where
    shiftr x y = shiftRA# x y

#else {- not GHC -}
shiftL_ n p = n * (2 ^ p)
shiftR_ n p = n `quot` (2 ^ p)

#endif {- not GHC -}
\end{code}

\begin{code}
use_snd :: a -> b -> b
use_snd a b = b
\end{code}