summaryrefslogtreecommitdiff
path: root/ghc/docs/users_guide/primitives.xml
blob: e41bb59ee1c56c4a2f0815d68f15e1864b26b537 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
<?xml version="1.0" encoding="iso-8859-1"?>
<!-- UNBOXED TYPES AND PRIMITIVE OPERATIONS -->

<sect1 id="primitives">
  <title>Unboxed types and primitive operations</title>
  <indexterm><primary>GHC.Exts module</primary></indexterm>

  <para>This chapter defines all the types which are primitive in
  Glasgow Haskell, and the operations provided for them. You bring
  them into scope by importing module <literal>GHC.Exts</literal>.</para>

  <para>Note: while you really can use this stuff to write fast code,
  we generally find it a lot less painful, and more satisfying in the
  long run, to use higher-level language features and libraries.  With
  any luck, the code you write will be optimised to the efficient
  unboxed version in any case.  And if it isn't, we'd like to know
  about it.</para>
  
<sect2 id="glasgow-unboxed">
<title>Unboxed types
</title>

<para>
<indexterm><primary>Unboxed types (Glasgow extension)</primary></indexterm>
</para>

<para>Most types in GHC are <firstterm>boxed</firstterm>, which means
that values of that type are represented by a pointer to a heap
object.  The representation of a Haskell <literal>Int</literal>, for
example, is a two-word heap object.  An <firstterm>unboxed</firstterm>
type, however, is represented by the value itself, no pointers or heap
allocation are involved.
</para>

<para>
Unboxed types correspond to the &ldquo;raw machine&rdquo; types you
would use in C: <literal>Int&num;</literal> (long int),
<literal>Double&num;</literal> (double), <literal>Addr&num;</literal>
(void *), etc.  The <emphasis>primitive operations</emphasis>
(PrimOps) on these types are what you might expect; e.g.,
<literal>(+&num;)</literal> is addition on
<literal>Int&num;</literal>s, and is the machine-addition that we all
know and love&mdash;usually one instruction.
</para>

<para>
Primitive (unboxed) types cannot be defined in Haskell, and are
therefore built into the language and compiler.  Primitive types are
always unlifted; that is, a value of a primitive type cannot be
bottom.  We use the convention that primitive types, values, and
operations have a <literal>&num;</literal> suffix.
</para>

<para>
Primitive values are often represented by a simple bit-pattern, such
as <literal>Int&num;</literal>, <literal>Float&num;</literal>,
<literal>Double&num;</literal>.  But this is not necessarily the case:
a primitive value might be represented by a pointer to a
heap-allocated object.  Examples include
<literal>Array&num;</literal>, the type of primitive arrays.  A
primitive array is heap-allocated because it is too big a value to fit
in a register, and would be too expensive to copy around; in a sense,
it is accidental that it is represented by a pointer.  If a pointer
represents a primitive value, then it really does point to that value:
no unevaluated thunks, no indirections&hellip;nothing can be at the
other end of the pointer than the primitive value.
</para>

<para>
There are some restrictions on the use of primitive types, the main
one being that you can't pass a primitive value to a polymorphic
function or store one in a polymorphic data type.  This rules out
things like <literal>[Int&num;]</literal> (i.e. lists of primitive
integers).  The reason for this restriction is that polymorphic
arguments and constructor fields are assumed to be pointers: if an
unboxed integer is stored in one of these, the garbage collector would
attempt to follow it, leading to unpredictable space leaks.  Or a
<function>seq</function> operation on the polymorphic component may
attempt to dereference the pointer, with disastrous results.  Even
worse, the unboxed value might be larger than a pointer
(<literal>Double&num;</literal> for instance).
</para>

<para>
Nevertheless, A numerically-intensive program using unboxed types can
go a <emphasis>lot</emphasis> faster than its &ldquo;standard&rdquo;
counterpart&mdash;we saw a threefold speedup on one example.
</para>

</sect2>

<sect2 id="unboxed-tuples">
<title>Unboxed Tuples
</title>

<para>
Unboxed tuples aren't really exported by <literal>GHC.Exts</literal>,
they're available by default with <option>-fglasgow-exts</option>.  An
unboxed tuple looks like this:
</para>

<para>

<programlisting>
(# e_1, ..., e_n #)
</programlisting>

</para>

<para>
where <literal>e&lowbar;1..e&lowbar;n</literal> are expressions of any
type (primitive or non-primitive).  The type of an unboxed tuple looks
the same.
</para>

<para>
Unboxed tuples are used for functions that need to return multiple
values, but they avoid the heap allocation normally associated with
using fully-fledged tuples.  When an unboxed tuple is returned, the
components are put directly into registers or on the stack; the
unboxed tuple itself does not have a composite representation.  Many
of the primitive operations listed in this section return unboxed
tuples.
</para>

<para>
There are some pretty stringent restrictions on the use of unboxed tuples:
</para>

<para>

<itemizedlist>
<listitem>

<para>
 Unboxed tuple types are subject to the same restrictions as
other unboxed types; i.e. they may not be stored in polymorphic data
structures or passed to polymorphic functions.

</para>
</listitem>
<listitem>

<para>
 Unboxed tuples may only be constructed as the direct result of
a function, and may only be deconstructed with a <literal>case</literal> expression.
eg. the following are valid:


<programlisting>
f x y = (# x+1, y-1 #)
g x = case f x x of { (# a, b #) -&#62; a + b }
</programlisting>


but the following are invalid:


<programlisting>
f x y = g (# x, y #)
g (# x, y #) = x + y
</programlisting>


</para>
</listitem>
<listitem>

<para>
 No variable can have an unboxed tuple type.  This is illegal:


<programlisting>
f :: (# Int, Int #) -&#62; (# Int, Int #)
f x = x
</programlisting>


because <literal>x</literal> has an unboxed tuple type.

</para>
</listitem>

</itemizedlist>

</para>

<para>
Note: we may relax some of these restrictions in the future.
</para>

<para>
The <literal>IO</literal> and <literal>ST</literal> monads use unboxed
tuples to avoid unnecessary allocation during sequences of operations.
</para>

</sect2>

<sect2>
<title>Character and numeric types</title>

<indexterm><primary>character types, primitive</primary></indexterm>
<indexterm><primary>numeric types, primitive</primary></indexterm>
<indexterm><primary>integer types, primitive</primary></indexterm>
<indexterm><primary>floating point types, primitive</primary></indexterm>
<para>
There are the following obvious primitive types:
</para>

<programlisting>
type Char#
type Int#
type Word#
type Addr#
type Float#
type Double#
type Int64#
type Word64#
</programlisting>

<indexterm><primary><literal>Char&num;</literal></primary></indexterm>
<indexterm><primary><literal>Int&num;</literal></primary></indexterm>
<indexterm><primary><literal>Word&num;</literal></primary></indexterm>
<indexterm><primary><literal>Addr&num;</literal></primary></indexterm>
<indexterm><primary><literal>Float&num;</literal></primary></indexterm>
<indexterm><primary><literal>Double&num;</literal></primary></indexterm>
<indexterm><primary><literal>Int64&num;</literal></primary></indexterm>
<indexterm><primary><literal>Word64&num;</literal></primary></indexterm>

<para>
If you really want to know their exact equivalents in C, see
<filename>ghc/includes/StgTypes.h</filename> in the GHC source tree.
</para>

<para>
Literals for these types may be written as follows:
</para>

<para>

<programlisting>
1#              an Int#
1.2#            a Float#
1.34##          a Double#
'a'#            a Char#; for weird characters, use e.g. '\o&#60;octal&#62;'#
"a"#            an Addr# (a `char *'); only characters '\0'..'\255' allowed
</programlisting>

<indexterm><primary>literals, primitive</primary></indexterm>
<indexterm><primary>constants, primitive</primary></indexterm>
<indexterm><primary>numbers, primitive</primary></indexterm>
</para>

</sect2>

<sect2>
<title>Comparison operations</title>

<para>
<indexterm><primary>comparisons, primitive</primary></indexterm>
<indexterm><primary>operators, comparison</primary></indexterm>
</para>

<para>

<programlisting>
{&#62;,&#62;=,==,/=,&#60;,&#60;=}# :: Int# -&#62; Int# -&#62; Bool

{gt,ge,eq,ne,lt,le}Char# :: Char# -&#62; Char# -&#62; Bool
    -- ditto for Word# and Addr#
</programlisting>

<indexterm><primary><literal>&#62;&num;</literal></primary></indexterm>
<indexterm><primary><literal>&#62;=&num;</literal></primary></indexterm>
<indexterm><primary><literal>==&num;</literal></primary></indexterm>
<indexterm><primary><literal>/=&num;</literal></primary></indexterm>
<indexterm><primary><literal>&#60;&num;</literal></primary></indexterm>
<indexterm><primary><literal>&#60;=&num;</literal></primary></indexterm>
<indexterm><primary><literal>gt&lcub;Char,Word,Addr&rcub;&num;</literal></primary></indexterm>
<indexterm><primary><literal>ge&lcub;Char,Word,Addr&rcub;&num;</literal></primary></indexterm>
<indexterm><primary><literal>eq&lcub;Char,Word,Addr&rcub;&num;</literal></primary></indexterm>
<indexterm><primary><literal>ne&lcub;Char,Word,Addr&rcub;&num;</literal></primary></indexterm>
<indexterm><primary><literal>lt&lcub;Char,Word,Addr&rcub;&num;</literal></primary></indexterm>
<indexterm><primary><literal>le&lcub;Char,Word,Addr&rcub;&num;</literal></primary></indexterm>
</para>

</sect2>

<sect2>
<title>Primitive-character operations</title>

<para>
<indexterm><primary>characters, primitive operations</primary></indexterm>
<indexterm><primary>operators, primitive character</primary></indexterm>
</para>

<para>

<programlisting>
ord# :: Char# -&#62; Int#
chr# :: Int# -&#62; Char#
</programlisting>

<indexterm><primary><literal>ord&num;</literal></primary></indexterm>
<indexterm><primary><literal>chr&num;</literal></primary></indexterm>
</para>

</sect2>

<sect2>
<title>Primitive-<literal>Int</literal> operations</title>

<para>
<indexterm><primary>integers, primitive operations</primary></indexterm>
<indexterm><primary>operators, primitive integer</primary></indexterm>
</para>

<para>

<programlisting>
{+,-,*,quotInt,remInt,gcdInt}# :: Int# -&#62; Int# -&#62; Int#
negateInt# :: Int# -&#62; Int#

iShiftL#, iShiftRA#, iShiftRL# :: Int# -&#62; Int# -&#62; Int#
        -- shift left, right arithmetic, right logical

addIntC#, subIntC#, mulIntC# :: Int# -> Int# -> (# Int#, Int# #)
	-- add, subtract, multiply with carry
</programlisting>

<indexterm><primary><literal>+&num;</literal></primary></indexterm>
<indexterm><primary><literal>-&num;</literal></primary></indexterm>
<indexterm><primary><literal>*&num;</literal></primary></indexterm>
<indexterm><primary><literal>quotInt&num;</literal></primary></indexterm>
<indexterm><primary><literal>remInt&num;</literal></primary></indexterm>
<indexterm><primary><literal>gcdInt&num;</literal></primary></indexterm>
<indexterm><primary><literal>iShiftL&num;</literal></primary></indexterm>
<indexterm><primary><literal>iShiftRA&num;</literal></primary></indexterm>
<indexterm><primary><literal>iShiftRL&num;</literal></primary></indexterm>
<indexterm><primary><literal>addIntC&num;</literal></primary></indexterm>
<indexterm><primary><literal>subIntC&num;</literal></primary></indexterm>
<indexterm><primary><literal>mulIntC&num;</literal></primary></indexterm>
<indexterm><primary>shift operations, integer</primary></indexterm>
</para>

<para>
<emphasis>Note:</emphasis> No error/overflow checking!
</para>

</sect2>

<sect2>
<title>Primitive-<literal>Double</literal> and <literal>Float</literal> operations</title>

<para>
<indexterm><primary>floating point numbers, primitive</primary></indexterm>
<indexterm><primary>operators, primitive floating point</primary></indexterm>
</para>

<para>

<programlisting>
{+,-,*,/}##         :: Double# -&#62; Double# -&#62; Double#
{&#60;,&#60;=,==,/=,&#62;=,&#62;}## :: Double# -&#62; Double# -&#62; Bool
negateDouble#       :: Double# -&#62; Double#
double2Int#         :: Double# -&#62; Int#
int2Double#         :: Int#    -&#62; Double#

{plus,minus,times,divide}Float# :: Float# -&#62; Float# -&#62; Float#
{gt,ge,eq,ne,lt,le}Float# :: Float# -&#62; Float# -&#62; Bool
negateFloat#        :: Float# -&#62; Float#
float2Int#          :: Float# -&#62; Int#
int2Float#          :: Int#   -&#62; Float#
</programlisting>

</para>

<para>
<indexterm><primary><literal>+&num;&num;</literal></primary></indexterm>
<indexterm><primary><literal>-&num;&num;</literal></primary></indexterm>
<indexterm><primary><literal>*&num;&num;</literal></primary></indexterm>
<indexterm><primary><literal>/&num;&num;</literal></primary></indexterm>
<indexterm><primary><literal>&#60;&num;&num;</literal></primary></indexterm>
<indexterm><primary><literal>&#60;=&num;&num;</literal></primary></indexterm>
<indexterm><primary><literal>==&num;&num;</literal></primary></indexterm>
<indexterm><primary><literal>=/&num;&num;</literal></primary></indexterm>
<indexterm><primary><literal>&#62;=&num;&num;</literal></primary></indexterm>
<indexterm><primary><literal>&#62;&num;&num;</literal></primary></indexterm>
<indexterm><primary><literal>negateDouble&num;</literal></primary></indexterm>
<indexterm><primary><literal>double2Int&num;</literal></primary></indexterm>
<indexterm><primary><literal>int2Double&num;</literal></primary></indexterm>
</para>

<para>
<indexterm><primary><literal>plusFloat&num;</literal></primary></indexterm>
<indexterm><primary><literal>minusFloat&num;</literal></primary></indexterm>
<indexterm><primary><literal>timesFloat&num;</literal></primary></indexterm>
<indexterm><primary><literal>divideFloat&num;</literal></primary></indexterm>
<indexterm><primary><literal>gtFloat&num;</literal></primary></indexterm>
<indexterm><primary><literal>geFloat&num;</literal></primary></indexterm>
<indexterm><primary><literal>eqFloat&num;</literal></primary></indexterm>
<indexterm><primary><literal>neFloat&num;</literal></primary></indexterm>
<indexterm><primary><literal>ltFloat&num;</literal></primary></indexterm>
<indexterm><primary><literal>leFloat&num;</literal></primary></indexterm>
<indexterm><primary><literal>negateFloat&num;</literal></primary></indexterm>
<indexterm><primary><literal>float2Int&num;</literal></primary></indexterm>
<indexterm><primary><literal>int2Float&num;</literal></primary></indexterm>
</para>

<para>
And a full complement of trigonometric functions:
</para>

<para>

<programlisting>
expDouble#      :: Double# -&#62; Double#
logDouble#      :: Double# -&#62; Double#
sqrtDouble#     :: Double# -&#62; Double#
sinDouble#      :: Double# -&#62; Double#
cosDouble#      :: Double# -&#62; Double#
tanDouble#      :: Double# -&#62; Double#
asinDouble#     :: Double# -&#62; Double#
acosDouble#     :: Double# -&#62; Double#
atanDouble#     :: Double# -&#62; Double#
sinhDouble#     :: Double# -&#62; Double#
coshDouble#     :: Double# -&#62; Double#
tanhDouble#     :: Double# -&#62; Double#
powerDouble#    :: Double# -&#62; Double# -&#62; Double#
</programlisting>

<indexterm><primary>trigonometric functions, primitive</primary></indexterm>
</para>

<para>
similarly for <literal>Float&num;</literal>.
</para>

<para>
There are two coercion functions for <literal>Float&num;</literal>/<literal>Double&num;</literal>:
</para>

<para>

<programlisting>
float2Double#   :: Float# -&#62; Double#
double2Float#   :: Double# -&#62; Float#
</programlisting>

<indexterm><primary><literal>float2Double&num;</literal></primary></indexterm>
<indexterm><primary><literal>double2Float&num;</literal></primary></indexterm>
</para>

<para>
The primitive version of <function>decodeDouble</function>
(<function>encodeDouble</function> is implemented as an external C
function):
</para>

<para>

<programlisting>
decodeDouble#   :: Double# -&#62; PrelNum.ReturnIntAndGMP
</programlisting>

<indexterm><primary><literal>encodeDouble&num;</literal></primary></indexterm>
<indexterm><primary><literal>decodeDouble&num;</literal></primary></indexterm>
</para>

<para>
(And the same for <literal>Float&num;</literal>s.)
</para>

</sect2>

<sect2 id="integer-operations">
<title>Operations on/for <literal>Integers</literal> (interface to GMP)
</title>

<para>
<indexterm><primary>arbitrary precision integers</primary></indexterm>
<indexterm><primary>Integer, operations on</primary></indexterm>
</para>

<para>
We implement <literal>Integers</literal> (arbitrary-precision
integers) using the GNU multiple-precision (GMP) package (version
2.0.2).
</para>

<para>
The data type for <literal>Integer</literal> is either a small
integer, represented by an <literal>Int</literal>, or a large integer
represented using the pieces required by GMP's
<literal>MP&lowbar;INT</literal> in <filename>gmp.h</filename> (see
<filename>gmp.info</filename> in
<filename>ghc/includes/runtime/gmp</filename>).  It comes out as:
</para>

<para>

<programlisting>
data Integer = S# Int#             -- small integers
             | J# Int# ByteArray#  -- large integers
</programlisting>

<indexterm><primary>Integer type</primary></indexterm> The primitive
ops to support large <literal>Integers</literal> use the
&ldquo;pieces&rdquo; of the representation, and are as follows:
</para>

<para>

<programlisting>
negateInteger#  :: Int# -&#62; ByteArray# -&#62; Integer

{plus,minus,times}Integer#, gcdInteger#, 
  quotInteger#, remInteger#, divExactInteger#
	:: Int# -> ByteArray#
        -> Int# -> ByteArray#
        -> (# Int#, ByteArray# #)

cmpInteger# 
	:: Int# -> ByteArray#
        -> Int# -> ByteArray#
        -> Int# -- -1 for &#60;; 0 for ==; +1 for >

cmpIntegerInt# 
	:: Int# -> ByteArray#
        -> Int#
        -> Int# -- -1 for &#60;; 0 for ==; +1 for >

gcdIntegerInt# :: 
	:: Int# -> ByteArray#
        -> Int#
        -> Int#

divModInteger#, quotRemInteger#
        :: Int# -> ByteArray#
        -> Int# -> ByteArray#
        -> (# Int#, ByteArray#,
                  Int#, ByteArray# #)

integer2Int# :: Int# -> ByteArray# -> Int#

int2Integer#  :: Int#  -> Integer -- NB: no error-checking on these two!
word2Integer# :: Word# -> Integer

addr2Integer# :: Addr# -> Integer
        -- the Addr# is taken to be a `char *' string
        -- to be converted into an Integer.
</programlisting>

<indexterm><primary><literal>negateInteger&num;</literal></primary></indexterm>
<indexterm><primary><literal>plusInteger&num;</literal></primary></indexterm>
<indexterm><primary><literal>minusInteger&num;</literal></primary></indexterm>
<indexterm><primary><literal>timesInteger&num;</literal></primary></indexterm>
<indexterm><primary><literal>quotInteger&num;</literal></primary></indexterm>
<indexterm><primary><literal>remInteger&num;</literal></primary></indexterm>
<indexterm><primary><literal>gcdInteger&num;</literal></primary></indexterm>
<indexterm><primary><literal>gcdIntegerInt&num;</literal></primary></indexterm>
<indexterm><primary><literal>divExactInteger&num;</literal></primary></indexterm>
<indexterm><primary><literal>cmpInteger&num;</literal></primary></indexterm>
<indexterm><primary><literal>divModInteger&num;</literal></primary></indexterm>
<indexterm><primary><literal>quotRemInteger&num;</literal></primary></indexterm>
<indexterm><primary><literal>integer2Int&num;</literal></primary></indexterm>
<indexterm><primary><literal>int2Integer&num;</literal></primary></indexterm>
<indexterm><primary><literal>word2Integer&num;</literal></primary></indexterm>
<indexterm><primary><literal>addr2Integer&num;</literal></primary></indexterm>
</para>

</sect2>

<sect2>
<title>Words and addresses</title>

<para>
<indexterm><primary>word, primitive type</primary></indexterm>
<indexterm><primary>address, primitive type</primary></indexterm>
<indexterm><primary>unsigned integer, primitive type</primary></indexterm>
<indexterm><primary>pointer, primitive type</primary></indexterm>
</para>

<para>
A <literal>Word&num;</literal> is used for bit-twiddling operations.
It is the same size as an <literal>Int&num;</literal>, but has no sign
nor any arithmetic operations.

<programlisting>
type Word#      -- Same size/etc as Int# but *unsigned*
type Addr#      -- A pointer from outside the "Haskell world" (from C, probably);
                -- described under "arrays"
</programlisting>

<indexterm><primary><literal>Word&num;</literal></primary></indexterm>
<indexterm><primary><literal>Addr&num;</literal></primary></indexterm>
</para>

<para>
<literal>Word&num;</literal>s and <literal>Addr&num;</literal>s have
the usual comparison operations.  Other
unboxed-<literal>Word</literal> ops (bit-twiddling and coercions):
</para>

<para>

<programlisting>
{gt,ge,eq,ne,lt,le}Word# :: Word# -> Word# -> Bool

and#, or#, xor# :: Word# -> Word# -> Word#
        -- standard bit ops.

quotWord#, remWord# :: Word# -> Word# -> Word#
        -- word (i.e. unsigned) versions are different from int
        -- versions, so we have to provide these explicitly.

not# :: Word# -> Word#

shiftL#, shiftRL# :: Word# -> Int# -> Word#
        -- shift left, right logical

int2Word#       :: Int#  -> Word# -- just a cast, really
word2Int#       :: Word# -> Int#
</programlisting>

<indexterm><primary>bit operations, Word and Addr</primary></indexterm>
<indexterm><primary><literal>gtWord&num;</literal></primary></indexterm>
<indexterm><primary><literal>geWord&num;</literal></primary></indexterm>
<indexterm><primary><literal>eqWord&num;</literal></primary></indexterm>
<indexterm><primary><literal>neWord&num;</literal></primary></indexterm>
<indexterm><primary><literal>ltWord&num;</literal></primary></indexterm>
<indexterm><primary><literal>leWord&num;</literal></primary></indexterm>
<indexterm><primary><literal>and&num;</literal></primary></indexterm>
<indexterm><primary><literal>or&num;</literal></primary></indexterm>
<indexterm><primary><literal>xor&num;</literal></primary></indexterm>
<indexterm><primary><literal>not&num;</literal></primary></indexterm>
<indexterm><primary><literal>quotWord&num;</literal></primary></indexterm>
<indexterm><primary><literal>remWord&num;</literal></primary></indexterm>
<indexterm><primary><literal>shiftL&num;</literal></primary></indexterm>
<indexterm><primary><literal>shiftRA&num;</literal></primary></indexterm>
<indexterm><primary><literal>shiftRL&num;</literal></primary></indexterm>
<indexterm><primary><literal>int2Word&num;</literal></primary></indexterm>
<indexterm><primary><literal>word2Int&num;</literal></primary></indexterm>
</para>

<para>
Unboxed-<literal>Addr</literal> ops (C casts, really):

<programlisting>
{gt,ge,eq,ne,lt,le}Addr# :: Addr# -> Addr# -> Bool

int2Addr#       :: Int#  -> Addr#
addr2Int#       :: Addr# -> Int#
addr2Integer#   :: Addr# -> (# Int#, ByteArray# #)
</programlisting>

<indexterm><primary><literal>gtAddr&num;</literal></primary></indexterm>
<indexterm><primary><literal>geAddr&num;</literal></primary></indexterm>
<indexterm><primary><literal>eqAddr&num;</literal></primary></indexterm>
<indexterm><primary><literal>neAddr&num;</literal></primary></indexterm>
<indexterm><primary><literal>ltAddr&num;</literal></primary></indexterm>
<indexterm><primary><literal>leAddr&num;</literal></primary></indexterm>
<indexterm><primary><literal>int2Addr&num;</literal></primary></indexterm>
<indexterm><primary><literal>addr2Int&num;</literal></primary></indexterm>
<indexterm><primary><literal>addr2Integer&num;</literal></primary></indexterm>
</para>

<para>
The casts between <literal>Int&num;</literal>,
<literal>Word&num;</literal> and <literal>Addr&num;</literal>
correspond to null operations at the machine level, but are required
to keep the Haskell type checker happy.
</para>

<para>
Operations for indexing off of C pointers
(<literal>Addr&num;</literal>s) to snatch values are listed under
&ldquo;arrays&rdquo;.
</para>

</sect2>

<sect2>
<title>Arrays</title>

<para>
<indexterm><primary>arrays, primitive</primary></indexterm>
</para>

<para>
The type <literal>Array&num; elt</literal> is the type of primitive,
unpointed arrays of values of type <literal>elt</literal>.
</para>

<para>

<programlisting>
type Array# elt
</programlisting>

<indexterm><primary><literal>Array&num;</literal></primary></indexterm>
</para>

<para>
<literal>Array&num;</literal> is more primitive than a Haskell
array&mdash;indeed, the Haskell <literal>Array</literal> interface is
implemented using <literal>Array&num;</literal>&mdash;in that an
<literal>Array&num;</literal> is indexed only by
<literal>Int&num;</literal>s, starting at zero.  It is also more
primitive by virtue of being unboxed.  That doesn't mean that it isn't
a heap-allocated object&mdash;of course, it is.  Rather, being unboxed
means that it is represented by a pointer to the array itself, and not
to a thunk which will evaluate to the array (or to bottom).  The
components of an <literal>Array&num;</literal> are themselves boxed.
</para>

<para>
The type <literal>ByteArray&num;</literal> is similar to
<literal>Array&num;</literal>, except that it contains just a string
of (non-pointer) bytes.
</para>

<para>

<programlisting>
type ByteArray#
</programlisting>

<indexterm><primary><literal>ByteArray&num;</literal></primary></indexterm>
</para>

<para>
Arrays of these types are useful when a Haskell program wishes to
construct a value to pass to a C procedure. It is also possible to use
them to build (say) arrays of unboxed characters for internal use in a
Haskell program.  Given these uses, <literal>ByteArray&num;</literal>
is deliberately a bit vague about the type of its components.
Operations are provided to extract values of type
<literal>Char&num;</literal>, <literal>Int&num;</literal>,
<literal>Float&num;</literal>, <literal>Double&num;</literal>, and
<literal>Addr&num;</literal> from arbitrary offsets within a
<literal>ByteArray&num;</literal>.  (For type
<literal>Foo&num;</literal>, the $i$th offset gets you the $i$th
<literal>Foo&num;</literal>, not the <literal>Foo&num;</literal> at
byte-position $i$.  Mumble.)  (If you want a
<literal>Word&num;</literal>, grab an <literal>Int&num;</literal>,
then coerce it.)
</para>

<para>
Lastly, we have static byte-arrays, of type
<literal>Addr&num;</literal> &lsqb;mentioned previously].  (Remember
the duality between arrays and pointers in C.)  Arrays of this types
are represented by a pointer to an array in the world outside Haskell,
so this pointer is not followed by the garbage collector.  In other
respects they are just like <literal>ByteArray&num;</literal>.  They
are only needed in order to pass values from C to Haskell.
</para>

</sect2>

<sect2>
<title>Reading and writing</title>

<para>
Primitive arrays are linear, and indexed starting at zero.
</para>

<para>
The size and indices of a <literal>ByteArray&num;</literal>, <literal>Addr&num;</literal>, and
<literal>MutableByteArray&num;</literal> are all in bytes.  It's up to the program to
calculate the correct byte offset from the start of the array.  This
allows a <literal>ByteArray&num;</literal> to contain a mixture of values of different
type, which is often needed when preparing data for and unpicking
results from C.  (Umm&hellip;not true of indices&hellip;WDP 95/09)
</para>

<para>
<emphasis>Should we provide some <literal>sizeOfDouble&num;</literal> constants?</emphasis>
</para>

<para>
Out-of-range errors on indexing should be caught by the code which
uses the primitive operation; the primitive operations themselves do
<emphasis>not</emphasis> check for out-of-range indexes. The intention is that the
primitive ops compile to one machine instruction or thereabouts.
</para>

<para>
We use the terms &ldquo;reading&rdquo; and &ldquo;writing&rdquo; to refer to accessing
<emphasis>mutable</emphasis> arrays (see <xref linkend="sect-mutable">), and
&ldquo;indexing&rdquo; to refer to reading a value from an <emphasis>immutable</emphasis>
array.
</para>

<para>
Immutable byte arrays are straightforward to index (all indices are in
units of the size of the object being read):

<programlisting>
indexCharArray#   :: ByteArray# -> Int# -> Char#
indexIntArray#    :: ByteArray# -> Int# -> Int#
indexAddrArray#   :: ByteArray# -> Int# -> Addr#
indexFloatArray#  :: ByteArray# -> Int# -> Float#
indexDoubleArray# :: ByteArray# -> Int# -> Double#

indexCharOffAddr#   :: Addr# -> Int# -> Char#
indexIntOffAddr#    :: Addr# -> Int# -> Int#
indexFloatOffAddr#  :: Addr# -> Int# -> Float#
indexDoubleOffAddr# :: Addr# -> Int# -> Double#
indexAddrOffAddr#   :: Addr# -> Int# -> Addr#
 -- Get an Addr# from an Addr# offset
</programlisting>

<indexterm><primary><literal>indexCharArray&num;</literal></primary></indexterm>
<indexterm><primary><literal>indexIntArray&num;</literal></primary></indexterm>
<indexterm><primary><literal>indexAddrArray&num;</literal></primary></indexterm>
<indexterm><primary><literal>indexFloatArray&num;</literal></primary></indexterm>
<indexterm><primary><literal>indexDoubleArray&num;</literal></primary></indexterm>
<indexterm><primary><literal>indexCharOffAddr&num;</literal></primary></indexterm>
<indexterm><primary><literal>indexIntOffAddr&num;</literal></primary></indexterm>
<indexterm><primary><literal>indexFloatOffAddr&num;</literal></primary></indexterm>
<indexterm><primary><literal>indexDoubleOffAddr&num;</literal></primary></indexterm>
<indexterm><primary><literal>indexAddrOffAddr&num;</literal></primary></indexterm>
</para>

<para>
The last of these, <function>indexAddrOffAddr&num;</function>, extracts an <literal>Addr&num;</literal> using an offset
from another <literal>Addr&num;</literal>, thereby providing the ability to follow a chain of
C pointers.
</para>

<para>
Something a bit more interesting goes on when indexing arrays of boxed
objects, because the result is simply the boxed object. So presumably
it should be entered&mdash;we never usually return an unevaluated
object!  This is a pain: primitive ops aren't supposed to do
complicated things like enter objects.  The current solution is to
return a single element unboxed tuple (see <xref linkend="unboxed-tuples">).
</para>

<para>

<programlisting>
indexArray#       :: Array# elt -> Int# -> (# elt #)
</programlisting>

<indexterm><primary><literal>indexArray&num;</literal></primary></indexterm>
</para>

</sect2>

<sect2>
<title>The state type</title>

<para>
<indexterm><primary><literal>state, primitive type</literal></primary></indexterm>
<indexterm><primary><literal>State&num;</literal></primary></indexterm>
</para>

<para>
The primitive type <literal>State&num;</literal> represents the state of a state
transformer.  It is parameterised on the desired type of state, which
serves to keep states from distinct threads distinct from one another.
But the <emphasis>only</emphasis> effect of this parameterisation is in the type
system: all values of type <literal>State&num;</literal> are represented in the same way.
Indeed, they are all represented by nothing at all!  The code
generator &ldquo;knows&rdquo; to generate no code, and allocate no registers
etc, for primitive states.
</para>

<para>

<programlisting>
type State# s
</programlisting>

</para>

<para>
The type <literal>GHC.RealWorld</literal> is truly opaque: there are no values defined
of this type, and no operations over it.  It is &ldquo;primitive&rdquo; in that
sense - but it is <emphasis>not unlifted!</emphasis> Its only role in life is to be
the type which distinguishes the <literal>IO</literal> state transformer.
</para>

<para>

<programlisting>
data RealWorld
</programlisting>

</para>

</sect2>

<sect2>
<title>State of the world</title>

<para>
A single, primitive, value of type <literal>State&num; RealWorld</literal> is provided.
</para>

<para>

<programlisting>
realWorld# :: State# RealWorld
</programlisting>

<indexterm><primary>realWorld&num; state object</primary></indexterm>
</para>

<para>
(Note: in the compiler, not a <literal>PrimOp</literal>; just a mucho magic
<literal>Id</literal>. Exported from <literal>GHC</literal>, though).
</para>

</sect2>

<sect2 id="sect-mutable">
<title>Mutable arrays</title>

<para>
<indexterm><primary>mutable arrays</primary></indexterm>
<indexterm><primary>arrays, mutable</primary></indexterm>
Corresponding to <literal>Array&num;</literal> and <literal>ByteArray&num;</literal>, we have the types of
mutable versions of each.  In each case, the representation is a
pointer to a suitable block of (mutable) heap-allocated storage.
</para>

<para>

<programlisting>
type MutableArray# s elt
type MutableByteArray# s
</programlisting>

<indexterm><primary><literal>MutableArray&num;</literal></primary></indexterm>
<indexterm><primary><literal>MutableByteArray&num;</literal></primary></indexterm>
</para>

<sect3>
<title>Allocation</title>

<para>
<indexterm><primary>mutable arrays, allocation</primary></indexterm>
<indexterm><primary>arrays, allocation</primary></indexterm>
<indexterm><primary>allocation, of mutable arrays</primary></indexterm>
</para>

<para>
Mutable arrays can be allocated. Only pointer-arrays are initialised;
arrays of non-pointers are filled in by &ldquo;user code&rdquo; rather than by
the array-allocation primitive.  Reason: only the pointer case has to
worry about GC striking with a partly-initialised array.
</para>

<para>

<programlisting>
newArray#       :: Int# -> elt -> State# s -> (# State# s, MutableArray# s elt #)

newCharArray#   :: Int# -> State# s -> (# State# s, MutableByteArray# s elt #)
newIntArray#    :: Int# -> State# s -> (# State# s, MutableByteArray# s elt #)
newAddrArray#   :: Int# -> State# s -> (# State# s, MutableByteArray# s elt #)
newFloatArray#  :: Int# -> State# s -> (# State# s, MutableByteArray# s elt #)
newDoubleArray# :: Int# -> State# s -> (# State# s, MutableByteArray# s elt #)
</programlisting>

<indexterm><primary><literal>newArray&num;</literal></primary></indexterm>
<indexterm><primary><literal>newCharArray&num;</literal></primary></indexterm>
<indexterm><primary><literal>newIntArray&num;</literal></primary></indexterm>
<indexterm><primary><literal>newAddrArray&num;</literal></primary></indexterm>
<indexterm><primary><literal>newFloatArray&num;</literal></primary></indexterm>
<indexterm><primary><literal>newDoubleArray&num;</literal></primary></indexterm>
</para>

<para>
The size of a <literal>ByteArray&num;</literal> is given in bytes.
</para>

</sect3>

<sect3>
<title>Reading and writing</title>

<para>
<indexterm><primary>arrays, reading and writing</primary></indexterm>
</para>

<para>

<programlisting>
readArray#       :: MutableArray# s elt -> Int# -> State# s -> (# State# s, elt #)
readCharArray#   :: MutableByteArray# s -> Int# -> State# s -> (# State# s, Char# #)
readIntArray#    :: MutableByteArray# s -> Int# -> State# s -> (# State# s, Int# #)
readAddrArray#   :: MutableByteArray# s -> Int# -> State# s -> (# State# s, Addr# #)
readFloatArray#  :: MutableByteArray# s -> Int# -> State# s -> (# State# s, Float# #)
readDoubleArray# :: MutableByteArray# s -> Int# -> State# s -> (# State# s, Double# #)

writeArray#       :: MutableArray# s elt -> Int# -> elt     -> State# s -> State# s
writeCharArray#   :: MutableByteArray# s -> Int# -> Char#   -> State# s -> State# s
writeIntArray#    :: MutableByteArray# s -> Int# -> Int#    -> State# s -> State# s
writeAddrArray#   :: MutableByteArray# s -> Int# -> Addr#   -> State# s -> State# s
writeFloatArray#  :: MutableByteArray# s -> Int# -> Float#  -> State# s -> State# s
writeDoubleArray# :: MutableByteArray# s -> Int# -> Double# -> State# s -> State# s
</programlisting>

<indexterm><primary><literal>readArray&num;</literal></primary></indexterm>
<indexterm><primary><literal>readCharArray&num;</literal></primary></indexterm>
<indexterm><primary><literal>readIntArray&num;</literal></primary></indexterm>
<indexterm><primary><literal>readAddrArray&num;</literal></primary></indexterm>
<indexterm><primary><literal>readFloatArray&num;</literal></primary></indexterm>
<indexterm><primary><literal>readDoubleArray&num;</literal></primary></indexterm>
<indexterm><primary><literal>writeArray&num;</literal></primary></indexterm>
<indexterm><primary><literal>writeCharArray&num;</literal></primary></indexterm>
<indexterm><primary><literal>writeIntArray&num;</literal></primary></indexterm>
<indexterm><primary><literal>writeAddrArray&num;</literal></primary></indexterm>
<indexterm><primary><literal>writeFloatArray&num;</literal></primary></indexterm>
<indexterm><primary><literal>writeDoubleArray&num;</literal></primary></indexterm>
</para>

</sect3>

<sect3>
<title>Equality</title>

<para>
<indexterm><primary>arrays, testing for equality</primary></indexterm>
</para>

<para>
One can take &ldquo;equality&rdquo; of mutable arrays.  What is compared is the
<emphasis>name</emphasis> or reference to the mutable array, not its contents.
</para>

<para>

<programlisting>
sameMutableArray#     :: MutableArray# s elt -> MutableArray# s elt -> Bool
sameMutableByteArray# :: MutableByteArray# s -> MutableByteArray# s -> Bool
</programlisting>

<indexterm><primary><literal>sameMutableArray&num;</literal></primary></indexterm>
<indexterm><primary><literal>sameMutableByteArray&num;</literal></primary></indexterm>
</para>

</sect3>

<sect3>
<title>Freezing mutable arrays</title>

<para>
<indexterm><primary>arrays, freezing mutable</primary></indexterm>
<indexterm><primary>freezing mutable arrays</primary></indexterm>
<indexterm><primary>mutable arrays, freezing</primary></indexterm>
</para>

<para>
Only unsafe-freeze has a primitive.  (Safe freeze is done directly in Haskell
by copying the array and then using <function>unsafeFreeze</function>.)
</para>

<para>

<programlisting>
unsafeFreezeArray#     :: MutableArray# s elt -> State# s -> (# State# s, Array# s elt #)
unsafeFreezeByteArray# :: MutableByteArray# s -> State# s -> (# State# s, ByteArray# #)
</programlisting>

<indexterm><primary><literal>unsafeFreezeArray&num;</literal></primary></indexterm>
<indexterm><primary><literal>unsafeFreezeByteArray&num;</literal></primary></indexterm>
</para>

</sect3>

</sect2>

<sect2>
<title>Synchronizing variables (M-vars)</title>

<para>
<indexterm><primary>synchronising variables (M-vars)</primary></indexterm>
<indexterm><primary>M-Vars</primary></indexterm>
</para>

<para>
Synchronising variables are the primitive type used to implement
Concurrent Haskell's MVars (see the Concurrent Haskell paper for
the operational behaviour of these operations).
</para>

<para>

<programlisting>
type MVar# s elt        -- primitive

newMVar#    :: State# s -> (# State# s, MVar# s elt #)
takeMVar#   :: SynchVar# s elt -> State# s -> (# State# s, elt #)
putMVar#    :: SynchVar# s elt -> State# s -> State# s
</programlisting>

<indexterm><primary><literal>SynchVar&num;</literal></primary></indexterm>
<indexterm><primary><literal>newSynchVar&num;</literal></primary></indexterm>
<indexterm><primary><literal>takeMVar</literal></primary></indexterm>
<indexterm><primary><literal>putMVar</literal></primary></indexterm>
</para>

</sect2>

<sect2 id="glasgow-prim-arrays">
<title>Primitive arrays, mutable and otherwise
</title>

<para>
<indexterm><primary>primitive arrays (Glasgow extension)</primary></indexterm>
<indexterm><primary>arrays, primitive (Glasgow extension)</primary></indexterm>
</para>

<para>
GHC knows about quite a few flavours of Large Swathes of Bytes.
</para>

<para>
First, GHC distinguishes between primitive arrays of (boxed) Haskell
objects (type <literal>Array&num; obj</literal>) and primitive arrays of bytes (type
<literal>ByteArray&num;</literal>).
</para>

<para>
Second, it distinguishes between&hellip;
<variablelist>

<varlistentry>
<term>Immutable:</term>
<listitem>
<para>
Arrays that do not change (as with &ldquo;standard&rdquo; Haskell arrays); you
can only read from them.  Obviously, they do not need the care and
attention of the state-transformer monad.
</para>
</listitem>
</varlistentry>
<varlistentry>
<term>Mutable:</term>
<listitem>
<para>
Arrays that may be changed or &ldquo;mutated.&rdquo;  All the operations on them
live within the state-transformer monad and the updates happen
<emphasis>in-place</emphasis>.
</para>
</listitem>
</varlistentry>
<varlistentry>
<term>&ldquo;Static&rdquo; (in C land):</term>
<listitem>
<para>
A C routine may pass an <literal>Addr&num;</literal> pointer back into Haskell land.  There
are then primitive operations with which you may merrily grab values
over in C land, by indexing off the &ldquo;static&rdquo; pointer.
</para>
</listitem>
</varlistentry>
<varlistentry>
<term>&ldquo;Stable&rdquo; pointers:</term>
<listitem>
<para>
If, for some reason, you wish to hand a Haskell pointer (i.e.,
<emphasis>not</emphasis> an unboxed value) to a C routine, you first make the
pointer &ldquo;stable,&rdquo; so that the garbage collector won't forget that it
exists.  That is, GHC provides a safe way to pass Haskell pointers to
C.
</para>

<para>
Please see the module <literal>Foreign.StablePtr</literal> in the
library documentation for more details.
</para>
</listitem>
</varlistentry>
<varlistentry>
<term>&ldquo;Foreign objects&rdquo;:</term>
<listitem>
<para>
A &ldquo;foreign object&rdquo; is a safe way to pass an external object (a
C-allocated pointer, say) to Haskell and have Haskell do the Right
Thing when it no longer references the object.  So, for example, C
could pass a large bitmap over to Haskell and say &ldquo;please free this
memory when you're done with it.&rdquo;
</para>

<para>
Please see module <literal>Foreign.ForeignPtr</literal> in the library
documentatation for more details.
</para>
</listitem>
</varlistentry>
</variablelist>
</para>

<para>
The libraries documentatation gives more details on all these
&ldquo;primitive array&rdquo; types and the operations on them.
</para>

</sect2>

</sect1>

<!-- Emacs stuff:
     ;;; Local Variables: ***
     ;;; mode: xml ***
     ;;; sgml-parent-document: ("users_guide.xml" "book" "chapter" "sect1") ***
     ;;; End: ***
 -->