1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
|
%************************************************************************
%* *
\section[closure-layout]{Closure Layout}
%* *
%************************************************************************
We first describes the data structures that are shared by
both the reducer and storage manager and then go on to describe
the interface and its implementation.
The heap consists of a contiguous sequence of closures. Each standard
closure occupies a contiguous sequence of machine words, which is laid
out as follows:
\begin{rawlatex}
\begin{center}
\mbox{\epsffile{closure.ps}}
\end{center}
\end{rawlatex}
\begin{onlyinfo}
\begin{verbatim}
< fixed-hdr-size> < var-hdr-size >
-----------------+-----------------+---------+-------------+
|info| | | | | | ptrs... | nonptrs ... |
-----------------+-----------------+---------+-------------+
<------------- header ------------>
\end{verbatim}
\end{onlyinfo}
The closure starts with a header. Typically, the first word in the
header is the {\em info pointer}, and points to its {\em info-table}.
The rest of the header is used for bookkeeping and depends on the
compiler options used. The fixed header is the same for all closures
while the variable header may depend on the closure type.
Following the header is a block of words each of which contains a
pointer to another closure, followed by a block of words containing
non-pointers. The non-pointers may include an unused portion of
``slop'' needed to pad the closure. This is to satisfy any minimum
closure size requirements, primarily for updates in place. The
distinction between the pointers and non-pointers is that the garbage
collector must follow the former but not the latter. The pointers are
placed first to mimimize the number of distinct closure shapes that
have to be managed by the garbage collector.
There are a few non-standard closures which do not follow the convention
of placing all pointers first, but they are all administrative closures
which require their own unique garbage collection code anyway (such as
@TSO@'s and @STKO@'s in the threaded world).
The heap grows upwards (towards higher addresses), and closures are
laid out with the info pointer at the lowest address.
During reduction, the heap pointer (@Hp@) points to the last word of
allocated space (and not to the first word of free space) and the heap
limit (@HpLim@) points to the last word of available space.
%************************************************************************
%* *
\subsection[closure-size]{The ``Size'' of Closures}
%* *
%************************************************************************
When we speak of the ``size'' of a closure, we mean {\em the number of
words in the closure, excluding the fixed header, but including the
variable header, the pointers, non-pointers and slop, if any}.
All closures which may be updated must have a size of at least
@MIN_UPD_SIZE@---currently, this is two, so that they may be directly
overwritten with a small constructor closure, such as a @(:)@ cell or
an indirection on the ``mutables'' list.
%************************************************************************
%* *
\subsection[closure-kinds]{Types of Closure}
%* *
%************************************************************************
{\em This section is now hopelessly out-of-date}. This stuff is {\em
important} if you want newcomers to understand GHC. Am I the only
person who bothers with documentation?! KH
Yes, Kevin, you are. I've taken a stab at this section. I think {\em
hopelessly out-of-date} is a bit overboard, especially compared to
some of the other documentation in this system. If you still don't
like it, you're welcome to update it.
(Umm... Before we update it, would anyone like to go for a pizza?
[WDP 95/03])
We identify several kinds of heap closures. Each type of closure
is treated differently by the storage manager. Different
info-table macros are used to declare the appropriate info-tables used
by the storage manager (see section \ref{info-table-macros}).
Note: it is vitally important that every closure has an appropriate
info-table attached---otherwise chaos results!
\begin{description}
\item[@SPEC@ closures:] These are standard closures which contain
specialized garbage collection code that ``knows'' the @size@/@ptrs@
of the closure. It is only possible to use a specialized info-table if
appropriately specialized garbage collection code is present in the
runtime system. This implies that the compiler needs to know which
@size@/@ptr@ combinations have specialized info-tables. A link-time
error results if the compiler attempts to build a @SPEC@ closure for
an inappropriate @size@/@ptr@ combination.
\item[@GEN@ closures:] These are normal closures which use generic
code for garbage collection. This interprets the @size@/@ptrs@
information stored in the info table. @GEN@ closures can be built for
any @size@/@ptrs@ combination.
\item[@DYN@ closures:] Dynamic closures have the layout information
(@size@/@ptrs@) stored within the variable header of the closure
itself. They are currently only used for partial applications (@PAP@s)
and the ``stable pointer table.''
%partain:\begin{center}
\begin{tabular}{|c|c|c|c|c|c|}
\hline
{\em Fixed Hdr} & {\em Size} & {\em No of ptrs} & {\em Pointers\ldots} & {\em Non-pointers\ldots} \\ \hline
\end{tabular}
%partain:\end{center}
\item[@TUPLE@ closure:] These are similar to @DYN@ closures but for
closures which contain only pointers. They are currently used for
primitive arrays of pointers when mutuples and immutuples do not have
to be distinguished during garbage collection.
%partain:\begin{center}
\begin{tabular}{|c|c|c|c|}
\hline
{\em Fixed Hdr} & {\em Size (= No of ptrs + TUPLE\_VHS)} & {\em Pointers\ldots} \\ \hline
\end{tabular}
%partain:\end{center}
\item[@DATA@ closures:] These are also similar to @DYN@ closures but
for closures containing only non-pointers. They are currently used for
primitive arrays of bytes (arbitrary precision integers and arrays of
unboxed values, for example).
%partain:\begin{center}
\begin{tabular}{|c|c|c|}
\hline
{\em Fixed Hdr} & {\em Size (= No of non-ptr words + DATA\_VHS)} & {\em Non-pointers\ldots} \\ \hline
\end{tabular}
%partain:\end{center}
\item[@MUTUPLE@ closures:] These are a variant of the @TUPLE@
closure. They are used when the garbage collection strategy requires a
distinction between mutable and immutable tuples (i.e. when there is a
``mutables'' list.) Such an array may be frozen, becoming an @IMMUTUPLE@,
with a different info-table.
%partain:\begin{center}
\begin{tabular}{|c|c|c|c|}
\hline
{\em Fixed Hdr} & {\em Size (= No of ptrs + MUTUPLE\_VHS)} & {\em Pointers\ldots} \\ \hline
\end{tabular}
%partain:\end{center}
\item[@IMMUTUPLE@ closures:] These are frozen @MUTUPLE@ closures.
%mattson:\begin{center}
\begin{tabular}{|c|c|c|c|}
\hline
{\em Fixed Hdr} & {\em Size (= No of ptrs + MUTUPLE\_VHS)} & {\em Pointers\ldots} \\ \hline
\end{tabular}
%mattson:\end{center}
\end{description}
%************************************************************************
%* *
\subsection[special-closure-types]{Special types}
%* *
%************************************************************************
Special kinds of closures are required for static closures, ``black
holes'', indirections, and in-place updates.
When a ``black hole'' is updated it must be updated with a closure of
size @MIN_UPD_SIZE@ or less. Updates to some specific closure types
are handled specially, as follows:
\begin{itemize}
\item
if the new closure is of zero arity, then the black hole is replaced by
the corresponding static closure (@CONST@);
\item
if the data type of the new closure is isomorphic to Char (one
constructor, with argument type @Char#@), then the black hole is
replaced by the corresponding member of the static character table
(@CHARLIKE@);
\item
if the data type of the new closure is isomorphic to Int (one
constructor, with argument type @Int#@), and the argument is in the
range of the static small-int table then the black hole is replaced by
the corresponding member of the integer table (@INTLIKE@).
\end{itemize}
The special kinds of closure are:
\begin{description}
\item[@STATIC@ closures:] These are closures which are declared
statically and hence do not reside in the heap. Such closures must not
contain any heap pointers and must not be updated. @CAF@ closures are
an exception; see below.
\item[@CONST@ closures:] There need be only one (static) closure for a
nullary constructor. These are declared static at compile time and all
references use the static closure (avoiding heap allocation). However,
dynamic heap-allocated ones will nevertheless arise through updates.
\item[@CHARLIKE@ and @INTLIKE@ closures] There is a similar story for
constructors which have a single primitive data field such as @Int#@
or @Char#@. During garbage collection, pointers to these closures can
be replaced with a known @STATIC@ closure if an appropriate one exists.
\item[@BH@ closures:] Black hole closures are used to overwrite
closures currently being evaluated. They inform the garbage collector
that there are no live roots in the closure, thus removing a potential
space leak. They also become synchronization points in the threaded
world.
\item[@BQ@ closures:] Blocking queue closures are black holes with a
list of blocked threads to be awakened when the black hole is updated.
\item[@IND@ closures:] Indirection closures just point to other
closures. They are introduced when a closure is updated with a closure
that has to be allocated in the heap. The closure to be updated is
{\em indirected} to the new closure. Indirections are normally
removed during garbage collection. However, when profiling, it may be
necessary to maintain cost center information in an indirection, so
there are also ``permanent indirections'' which are retained forever.
\item[@CAF@ indirections:] These are statically defined closures which have
been updated with a heap-allocated result.
Initially these are exactly the same as a @STATIC@ closure but with
special entry code. On entering the closure the entry code must:
\begin{itemize}
\item Allocate a black hole in the heap which will be updated with
the result.
\item Overwrite the static closure with a special @CAF@ indirection.
\item Link the static indirection onto the list of updated @CAF@s.
\end{itemize}
The indirection and the link field require the initial @STATIC@
closure to be of at least size @MIN_UPD_SIZE@ (excluding the fixed
header).
@CAF@s are treated as special garbage collection roots. These roots
are explicitly collected by the garbage collector, since they may
appear in code even if they are not linked with the main heap. They
consequently represent potentially enormous space-leaks. A @CAF@
closure retains a fixed location in statically allocated data space.
When updated, the contents of the @CAF@ indirection are changed to
reflect the new closure. @CAF@ indirections require special garbage
collection code.
\item[@FETCHME@ closures:] These are simply references to remote
objects in the parallel system.
\item[@TSO@ closures:] These are ``thread state objects,'' which are
used in the threaded world to maintain the context (STG registers,
PC location when asleep, etc.) for individual threads of computation.
\item[@STKO@ closures:] These are ``stack objects,'' which are
used in the threaded world as the stack for each thread is allocated
from the heap in smallish chunks. (The stack in the sequential world
is allocated outside of the heap.)
\item[@SPEC_RBH@ and @GEN_RBH@ closures:] These are ``revertible black
holes'' for updatable @SPEC@ (respectively @GEN@) closures. They are
currently used in the parallel system, but they could also be used for
speculation. They act like a black hole for thread synchronization,
but they can also be reverted back to the original @SPEC@
(respectively @GEN@) form (so they do introduce a space leak).
\end{description}
%************************************************************************
%* *
\subsection[closure-layout-macros]{Closure layout macros}
%* *
%************************************************************************
\begin{description}
\item[@FIXED_HS@:]
This is the number of fixed-header words present in every closures.
This includes the info pointer---always the first word---and any
other fixed info. Because this name occurs so often, @_FHS@ is used as
a shorthand form.
\item[@SET_FIXED_HDR(closure, infolbl, costcentre)@:] Initialize the
fixed-header part of @closure@, putting @infolbl@ into the first word
(where the info-table pointer normally lives). Note that @infolbl@
should be the name of the appropriate info-table. If we are profiling
on a sequential machine, then the cost centre will be placed in the
second word of the fixed header.
\item[@<closure-kind>_VHS@:]
This is the number of words in the variable part of the header. This
includes the @size@ and/or @ptr@ fields if required for this closure
type, and any words which are reserved for garbage collection.
@SPEC@, @CONST@, @CHARLIKE@, @INTLIKE@, @BH@ and @IND@ do
not have variable header parts, hence no @<closure-kind>_VHS@ macro is
defined for any of these closure types.
\item[@SET_<closure-kind>_HDR(closure,infolbl,costcentre,size,no-of-ptrs)@:]
This is used to initialize the header of a \tr{<closure-kind>} closure.
The fixed header is set by using @SET_FIXED_HDR(closure,infolbl,costcentre)@
macro.
The variable part of the header, if present, uses the
@size@/@ptrs@ fields. The @size@ should {\em include} any slop
words in the closure. Any field that is not used may be junk.
The fields actually used depend on the type of the closure (other
fields are ignored):
%partain:\begin{center}
\begin{tabular}{|l|l|} \hline
Closure & Fields Used \\ \hline
& \\
\tr{SPEC} & size/nonptrs fields ignored \\
\tr{GEN} & both fields also ignored \\
\tr{DYN} & both fields used \\
\tr{TUPLE} & size used (ptrs = size - \tr{TUPLE_VHS}) \\
\tr{DATA} & size used (ptrs = 0) \\\hline
\end{tabular}
%partain:\end{center}
\item[@<closure-kind>_HS@:]
Total number of words in the header:
\pl{TOT_HDR = FIXED_HDR + VAR_HDR}.
\item[@<closure-kind>_CLOSURE_SIZE(closure)@:]
Returns the size of a closure of this kind. This includes any @VAR_HDR@
words and slop---but excludes the @FIXED_HDR@ words.
\item[@<closure-kind>_CLOSURE_NoPTRS(closure)@:]
Returns the number of closure pointer words in a closure of this kind.
\item[@<closure-kind>_CLOSURE_NoNONPTRS(closure)@:]
Returns the number of useful non-pointer words (including slop) in a
closure of this kind. These follow the pointer words in the closure;
\pl{NoNONPTRS = SIZE - NoPTRS - VAR_HDR}.
\item[@<closure-kind>_CLOSURE_PTR(closure,nth)@:]
Returns the $n$th closure pointer in the closure (starting at 1).
If a loop needs to process all the pointers and non-pointers in a closure then
this macro should be avoided. Instead, have a pointer run over the closure;
for example (from @StgUpdate.lhc@):
\begin{pseudocode}
{ P_ p = PapClosure + FIXED_HS + DYN_VHS;
I_ NPtrWords = DYN_CLOSURE_NoPTRS(Node);
I_ NNonPtrWords = DYN_CLOSURE_NoNONPTRS(Node);
for (i=0; i<NPtrWords; i++) SpA[AREL(i)] = *(p++);
for (i=0; i<NNonPtrWords; i++) SpB[BREL(i)] = *(p++);
}
\end{pseudocode}
\end{description}
%************************************************************************
%* *
\subsection[SMinterface.h-implementation]{Interface implementation}
%* *
%************************************************************************
This section details the implementation of the storage manager
interface.
NB: Heap objects specific to parallel implementations are not defined
here, but in \tr{Parallel.lh} instead.
%************************************************************************
%* *
\subsubsection[common-to-all-closures]{Bits common to all closures (esp. @FIXED_HS@)}
%* *
%************************************************************************
The maximum number of pointers in a generic closure (@GEN@, @DYN@,
@TUPLE@, @DATA@) is defined here.
Multi-slurp protection:
\begin{code}
#ifndef SMClosures_H
#define SMClosures_H
\end{code}
Macros to make rep-table names:
If you change either of these, change .../nativeGen/StixInfo.lhs
too---or else!
\begin{code}
#define MK_REP_LBL(n,s,p) CAT6(n,_,s,_,p,_rtbl)
#define MK_REP_REF(n,s,p) CAT6(n,_,s,_,p,_rtbl)
\end{code}
At the start of a closure is a fixed header. The info-pointer is
normally the first word of a closure, in the fixed header. Following
this we may have any of (but occuring in this order): parallel words
(currently a global address); profiling words (currently a cost
centre). It is possible to change the ordering of fixed header
components by changing the @_HDR_POSN@ macros in the appropriate
files, and the @SET_FIXED_HDR@/@SET_STATIC_FIXED_HDR@ macros below.
The @FIXED_HS@, @SET_FIXED_HDR@ macros and the components
which are used to define them must all be defined consistently.
\begin{code}
#define FIXED_HS (INFO_FIXED_HDR + PAR_FIXED_HDR + PROF_FIXED_HDR + TICKY_FIXED_HDR)
/* NB: this *defines* the intended order for the pieces of
the fixed header. Care should be taken to ensure that this
is followed below and in the component headers.
*/
#define _FHS FIXED_HS /* shorthand */
#define SET_FIXED_HDR(closure,infolbl,costcentre) \
SET_INFO_PTR(closure,infolbl); \
SET_GRAN_HDR(closure,ThisPE); \
SET_PAR_HDR(closure,LOCAL_GA); \
SET_PROF_HDR(closure,costcentre); \
SET_TICKY_HDR(closure,0)
#define UPD_FIXED_HDR(closure,infolbl,costcentre) \
SET_INFO_PTR(closure,infolbl); \
SET_PROF_HDR(closure,costcentre); \
SET_TICKY_HDR(closure,1)
/* fiddling SET_PAR_HDR would be a bug (says Patrick) */
/* We set ticky-hdr to 1 because the only place we
use this macro is when we have just done an update
(WDP 96/01)
*/
/* These items are comma-separated */
#define SET_STATIC_FIXED_HDR(closure,infolbl,cc_ident) \
SET_STATIC_INFO_PTR(infolbl) \
SET_STATIC_PROCS(closure) \
SET_STATIC_PAR_HDR(closure) \
SET_STATIC_PROF_HDR(cc_ident) \
SET_STATIC_TICKY_HDR()
\end{code}
We define @MIN_UPD_SIZE@ to be the minimum size for updatable
closures. This must be at least 2, to allow for @(:)@ cells and
indirections on the ``mutables'' list. This is defined in
\tr{GhcConstants.lh}.
All updates are performed on closures of this size so @BH@ and @IND@
closures all have this size.
Finally we define the number of words that the storage-manager needs
to reserve in the variable header for mutable closures:
\begin{code}
#if defined(GCap) || defined(GCgn)
# define GC_MUT_REQUIRED
# define GC_MUT_RESERVED_WORDS 1
# define MUT_NOT_LINKED 1 /* Assuming 1 is not a valid pointer */
# define MUT_LINK(closure) (((P_)(closure))[FIXED_HS])
# define SET_MUT_RESERVED_WORDS(closure) MUT_LINK(closure) = MUT_NOT_LINKED
# define SET_STATIC_MUT_RESERVED_WORDS , (W_) MUT_NOT_LINKED
#else
# define GC_MUT_RESERVED_WORDS 0
# define SET_STATIC_MUT_RESERVED_WORDS
#endif
\end{code}
%************************************************************************
%* *
\subsubsection[SPEC-closures]{@SPEC@ (specialized) closure macros}
%* *
%************************************************************************
@SPEC@ closures have no variable header size---it is always 0.
@SPEC_VHS@ is left undefined, so that if anyone tries to use it,
they will hear about it soon enough (WDP 95/05).
\begin{code}
#define SPEC_HS (FIXED_HS)
#define SPEC_SIZE(fields) (FIXED_HS + (fields))
/*notational convenience; in SMscan.lc + elsewhere */
#define SPEC_CLOSURE_PTR(closure, no) (((P_)(closure))[SPEC_HS + (no) - 1])
#define SPEC_CLOSURE_SIZE(closure) ((W_)INFO_SIZE(INFO_PTR(closure)))
#define SPEC_CLOSURE_NoPTRS(closure) ((W_)INFO_NoPTRS(INFO_PTR(closure)))
#define SPEC_CLOSURE_NoNONPTRS(closure) (SPEC_CLOSURE_SIZE(closure)-SPEC_CLOSURE_NoPTRS(closure)/*-SPEC_VHS*/)
#define SET_SPEC_HDR(closure,infolbl,cc,size,ptrs) \
SET_FIXED_HDR(closure,infolbl,cc)
\end{code}
%************************************************************************
%* *
\subsubsection[ForeignObj-closures]{@ForeignObj@ closure macros}
%* *
%************************************************************************
Here's what a ForeignObj looks like:
\begin{verbatim}
<Var Hdr>
+----------+----------+------+-------------+------+
| Info Ptr | Forward | Data | FreeRoutine | List |
+----------+----------+------+-------------+------+
\end{verbatim}
@List@ is a pointer to the next ForeignObj in the list of all
ForeignObjs. Note that it is essential that the garbage collector {\em
not\/} follow this link but that the link must get updated with the
new address.
The optional @Forward@ field is used by copying collectors to insert
the forwarding pointer into. (If we overwrite the @Data@ part, we
don't know which ForeignObj has just died; if we overwrite the @List@ part,
we can't traverse the list of all ForeignObjs.)
The @FreeRoutine@ is a reference to the finalisation routine to call
when the @ForeignObj@ becomes garbage -- SOF 4/96
\begin{code}
#if !defined(PAR)
# if defined(_INFO_COPYING)
# define ForeignObj_VHS 1
# else
# define ForeignObj_VHS 0
# endif
# define ForeignObj_HS (FIXED_HS + ForeignObj_VHS)
# define ForeignObj_SIZE (ForeignObj_VHS + 3)
# define ForeignObj_CLOSURE_NoPTRS(closure) 0
# define ForeignObj_CLOSURE_DATA(closure) (((StgForeignObj *)(closure))[ForeignObj_HS + 0])
# define ForeignObj_CLOSURE_FINALISER(closure) (((StgForeignObj *)(closure))[ForeignObj_HS + 1])
# define ForeignObj_CLOSURE_LINK(closure) (((StgPtrPtr) (closure))[ForeignObj_HS + 2])
# define SET_ForeignObj_HDR(closure,infolbl,cc,size,ptrs) \
SET_FIXED_HDR(closure,infolbl,cc)
\end{code}
And to check that a Foreign ptr closure is valid
\begin{code}
EXTDATA_RO(ForeignObj_info);
# if defined(DEBUG)
# define CHECK_ForeignObj_CLOSURE( closure ) \
do { \
CHECK_ForeignObj_InfoTable( closure ); \
} while (0)
# define CHECK_ForeignObj_InfoTable( closure ) \
ASSERT( (*((PP_)(closure))) == ForeignObj_info )
extern void Validate_ForeignObjList( P_ MPlist );
# define VALIDATE_ForeignObjList( mplist ) Validate_ForeignObjList( mplist )
# else /* !DEBUG */
# define CHECK_ForeignObj_CLOSURE( closure ) /* nothing */
# define VALIDATE_ForeignObjList( mplist ) /* nothing */
# endif /* !DEBUG */
#endif /* !PAR */
\end{code}
%************************************************************************
%* *
\subsubsection[SP-table-closures]{@SPTable@ Stable Pointer Table closure macros}
%* *
%************************************************************************
A stable pointer is a name for a Haskell object which can be passed to
the external world. It is ``stable'' in the sense that the name does
not change when the Haskell garbage collector runs---in contrast to
the address of the object which may well change.
The stable pointer type is parameterized by the type of the thing
which is named.
\begin{verbatim}
type StablePtr# a
\end{verbatim}
A stable pointer is represented by an index into the (unique,
heap-allocated) @StablePointerTable@. The Haskell garbage collector
treats the @StablePointerTable@ as a source of roots for GC.
In order to provide efficient access to stable pointers and to be able
to cope with any number of stable pointers ($0 \ldots 100000$), the
table of stable pointers is an array stored on the heap and can grow
when it overflows. (Since we cannot compact the table by moving
stable pointers about, it seems unlikely that a half-empty table can
be reduced in size---this could be fixed if neccessary by using a
hash table of some sort.)
In general a stable pointer table closure looks like this:
\begin{verbatim}
<------------header--------------->
+------+------------+------+-------+---+---+---+-----+-----+--+--+--+----+
| Info | GCReserved | Size | NPtrs |SP0|SP1|...|SPn-1| Top |s0|s1|..|sn-1|
+------+------------+------+-------+---+---+---+-----+-----+--+--+--+----+
\end{verbatim}
The fields are:
\begin{description}
\item[@Size@:] number of words excluding fixed header ($= @DYN_VHS@ + @NPtrs@ + 1 + @NPtrs@$)
\item[@NPtrs@:] number of (stable) pointers.
\item[@SPi@:] ``unstable'' pointer to a closure. This is the pointer
that gets updated when the garbage collector moves an object we have a
stable pointer to. If the pointer is not in use, it points to a
static closure.
\item[@si@:] entry in a stack of unused pointers. Entries in
use will contain a number in the range $0\ldots n-1$.
\item[@Top@] is the index of the first element above the top of the stack.
\end{description}
For example, with $n = 4$ and pointers @0@ and @3@ in use (pointing to
@p1@ and @p2@ respectively), the table might look like this:
\begin{verbatim}
+------+----+---+----+---+---+----+---+---+---+---+---+
| Info | 11 | 4 | p1 | x | x | p2 | 2 | 2 | 1 | ? | ? |
+------+----+---+----+---+---+----+---+---+---+---+---+
+-----------^
\end{verbatim}
From the above description, it should be clear that this is just a
special case of a @DYN@ closure. However, a few macros to access the
various fields would be jolly useful.
Nota Bene: one might think that since the table is mutable, we'd need
to treat it a bit more like a @MUTUPLE@. This isn't necessary because
we treat the stable pointer table as a root.
\begin{code}
#if !defined(PAR)
\end{code}
\begin{code}
# define SPT_SIZE(closure) DYN_CLOSURE_SIZE(closure)
# define SPT_NoPTRS(closure) DYN_CLOSURE_NoPTRS(closure)
# define SPT_TOP(closure) (((I_ *) closure)[DYN_HS + SPT_NoPTRS(closure)])
# define SPT_SPTR(closure,index) (((PP_) closure)[DYN_HS + index])
# define SPT_FREE(closure,index) (((I_ *) closure)[DYN_HS + SPT_NoPTRS(closure) + 1 + index])
\end{code}
And to implement the stack:
\begin{code}
# define SPT_FULL(closure) (SPT_TOP(closure) == SPT_NoPTRS(closure))
# define SPT_EMPTY(closure) (SPT_TOP(closure) == 0)
# define SPT_PUSH(closure,free) SPT_FREE(closure,SPT_TOP(closure)++) = free
# define SPT_POP(closure) SPT_FREE(closure,--SPT_TOP(closure))
\end{code}
And to check that an SPT_Closure is what it's supposed to be, we check
that the size and number of pointers match up and we check that the
free list and sptr areas are consistent.
Note that we cannot always check the info table since we might be
halfway through garbage collection when we call these (eg in
@freeStablePointer@.
\begin{code}
# if defined(DEBUG)
# define CHECK_SPT_CLOSURE( closure ) \
do { \
CHECK_SPT_InfoTable( closure ); \
CHECK_SPT_Size( closure ); \
CHECK_SPT_Contents( closure ); \
} while (0)
EXTDATA_RO(StablePointerTable_info);
EXTDATA_RO(EmptyStablePointerTable_info);
EXTDATA(EmptySPTable_closure);
extern int ValidateSPTable PROTO(( P_ SPTable ));
# define CHECK_SPT_InfoTable( closure ) \
ASSERT( (*((PP_) (closure)) == EmptyStablePointerTable_info && (closure == EmptySPTable_closure) ) || \
(*((PP_) (closure)) == StablePointerTable_info) )
# define CHECK_SPT_Size( closure ) \
ASSERT( SPT_SIZE( closure ) == DYN_VHS + 2 * SPT_NoPTRS( closure ) + 1 )
# define CHECK_SPT_Contents( closure ) \
ASSERT( ValidateSPTable( closure ) == 0 )
# else
# define CHECK_SPT_InfoTable( closure ) /* nothing */
# define CHECK_SPT_Contents( closure ) /* nothing */
# define CHECK_SPT_Size( closure ) /* nothing */
# define CHECK_SPT_CLOSURE( closure ) /* nothing */
# endif /* DEBUG */
#endif /* !PAR */
\end{code}
%************************************************************************
%* *
\subsubsection[GEN-closures]{@GEN@ (generic) closure macros}
%* *
%************************************************************************
\begin{code}
#define GEN_VHS 0
#define GEN_HS (FIXED_HS + GEN_VHS)
#define GEN_N_VHS GEN_VHS
#define GEN_N_HS GEN_HS
#define GEN_S_VHS GEN_VHS
#define GEN_S_HS GEN_HS
#define GEN_U_VHS GEN_VHS
#define GEN_U_HS GEN_HS
#define GEN_CLOSURE_SIZE(closure) GEN_INFO_SIZE(INFO_PTR(closure))
#define GEN_CLOSURE_NoPTRS(closure) GEN_INFO_NoPTRS(INFO_PTR(closure))
#define GEN_CLOSURE_NoNONPTRS(closure) (GEN_CLOSURE_SIZE(closure) - GEN_CLOSURE_NoPTRS(closure) - GEN_VHS)
#define GEN_CLOSURE_PTR(closure, no) (((P_)(closure))[GEN_HS + (no) - 1])
#define SET_GEN_HDR(closure,infolbl,cc,size,ptrs) SET_FIXED_HDR(closure,infolbl,cc)
\end{code}
%************************************************************************
%* *
\subsubsection[DYN-closures]{@DYN@ (dynamic) closure macros}
%* *
%************************************************************************
For dynamic closures (with both pointers and data stored within the closure).
\begin{code}
#define DYN_VHS 2
#define DYN_HS (FIXED_HS + DYN_VHS)
#define DYN_CLOSURE_SIZE(closure) (((P_)(closure))[FIXED_HS])
#define DYN_CLOSURE_NoPTRS(closure) (((P_)(closure))[FIXED_HS + 1])
#define DYN_CLOSURE_NoNONPTRS(closure) (DYN_CLOSURE_SIZE(closure) - DYN_CLOSURE_NoPTRS(closure) - DYN_VHS)
#define DYN_CLOSURE_PTR(closure, no) (((P_)(closure))[DYN_HS + (no) - 1])
#define SET_DYN_HDR(closure,infolbl,cc,size,ptrs) \
{ SET_FIXED_HDR(closure,infolbl,cc); \
DYN_CLOSURE_NoPTRS(closure) = (W_)(ptrs); \
DYN_CLOSURE_SIZE(closure) = (W_)(size); }
\end{code}
%************************************************************************
%* *
\subsubsection[TUPLE-closures]{@TUPLE@ (big purely-pointer) closure macros}
%* *
%************************************************************************
For tuple closures (which contain only pointers after the variable header).
\begin{code}
#define TUPLE_VHS 1
#define TUPLE_HS (FIXED_HS + TUPLE_VHS)
#define TUPLE_CLOSURE_SIZE(closure) (((P_)(closure))[FIXED_HS])
#define TUPLE_CLOSURE_NoPTRS(closure) (TUPLE_CLOSURE_SIZE(closure) - TUPLE_VHS)
#define TUPLE_CLOSURE_NoNONPTRS(closure) 0L
#define TUPLE_CLOSURE_PTR(closure, no) (((P_)(closure))[TUPLE_HS + (no) - 1])
#define SET_TUPLE_HDR(closure,infolbl,cc,size,ptrs) \
{ SET_FIXED_HDR(closure,infolbl,cc); \
TUPLE_CLOSURE_SIZE(closure) = (W_)(size); }
\end{code}
%************************************************************************
%* *
\subsubsection[DATA-closures]{@DATA@ (big purely non-pointer) closure macros}
%* *
%************************************************************************
For data closures (which contain only raw data (no pointers) after the
variable header):
\begin{code}
#define DATA_VHS 1
#define DATA_HS (FIXED_HS + DATA_VHS)
#define DATA_CLOSURE_SIZE(closure) (((P_)(closure))[FIXED_HS])
#define DATA_CLOSURE_NoPTRS(closure) ((I_)0)
#define DATA_CLOSURE_NoNONPTRS(closure) (DATA_CLOSURE_SIZE(closure) - DATA_VHS)
#define SET_DATA_HDR(closure,infolbl,cc,size,ptrs) \
{ SET_FIXED_HDR(closure,infolbl,cc); \
DATA_CLOSURE_SIZE(closure) = (W_)(size); }
\end{code}
%************************************************************************
%* *
\subsubsection[MUTUPLE-closures]{@MUTUPLE@ (mutable pointer) closure macros}
%* *
%************************************************************************
Mutable closures of pointers have to be treated specially for the
benefit of generational garbage collection schemes. If the garbage
collection scheme does not need to treat them specially
@GC_MUT_REQUIRED@ is undefined and the closures are defined
identical to @TUPLE@ closures.
\begin{code}
#if defined(GC_MUT_REQUIRED)
# define MUTUPLE_VHS (1 + GC_MUT_RESERVED_WORDS)
# define MUTUPLE_HS (FIXED_HS + MUTUPLE_VHS)
# define MUTUPLE_CLOSURE_SIZE(closure) (((P_)(closure))[FIXED_HS + GC_MUT_RESERVED_WORDS])
# define MUTUPLE_CLOSURE_NoPTRS(closure) (MUTUPLE_CLOSURE_SIZE(closure) - MUTUPLE_VHS)
# define MUTUPLE_CLOSURE_NoNONPTRS(closure) 0L
# define MUTUPLE_CLOSURE_PTR(closure, no) (((P_)(closure))[MUTUPLE_HS + (no) - 1])
# define SET_MUTUPLE_HDR(closure,infolbl,cc,size,ptrs) \
{ SET_FIXED_HDR(closure,infolbl,cc); \
SET_MUT_RESERVED_WORDS(closure); \
MUTUPLE_CLOSURE_SIZE(closure) = (W_)(size); }
#else /* ! GC_MUT_REQUIRED---define as TUPLE closure */
# define MUTUPLE_VHS TUPLE_VHS
# define MUTUPLE_HS TUPLE_HS
# define MUTUPLE_CLOSURE_SIZE(closure) TUPLE_CLOSURE_SIZE(closure)
# define MUTUPLE_CLOSURE_NoPTRS(closure) TUPLE_CLOSURE_NoPTRS(closure)
# define MUTUPLE_CLOSURE_NoNONPTRS(closure) TUPLE_CLOSURE_NoNONPTRS(closure)
# define MUTUPLE_CLOSURE_PTR(closure, no) TUPLE_CLOSURE_PTR(closure, no)
# define SET_MUTUPLE_HDR(closure,infolbl,cc,size,ptrs) \
SET_TUPLE_HDR(closure,infolbl,cc,size,ptrs)
#endif
\end{code}
%************************************************************************
%* *
\subsubsection[STATIC-closures]{@STATIC@ closure macros}
%* *
%************************************************************************
Static closures are those that are allocated in text/data space at
compile time (i.e., not in dynamic heap). The odd-looking macro
@SET_STATIC_HDR@ depends on the compiler to cooperate---it must drop
in the closure free-variable words and the concluding @};@! Also note
that the info-table label is a ``base'' label.
@SET_STATIC_HDR@ is for SPEC-layout closures.
\begin{code}
#define STATIC_VHS 0
#define STATIC_HS (FIXED_HS)
#define STATIC_CLOSURE_SIZE(closure) (STATIC_INFO_SIZE(INFO_PTR(closure)))
#define STATIC_CLOSURE_NoPTRS(closure) (STATIC_INFO_NoPTRS(INFO_PTR(closure)))
#define STATIC_CLOSURE_NoNONPTRS(closure) (STATIC_CLOSURE_SIZE(closure)-STATIC_CLOSURE_NoPTRS(closure)-STATIC_VHS)
#define SET_STATIC_HDR(closure,infolbl,cc,closure_localness,info_localness_macro) \
info_localness_macro(infolbl); \
closure_localness \
W_ closure[] = {SET_STATIC_FIXED_HDR(&closure[0],infolbl,cc)
\end{code}
%************************************************************************
%* *
\subsubsection[IND-closures]{@IND@ (indirection) closure macros}
%* *
%************************************************************************
Indirections are introduced when closures are updated. They are only
built by the update macros and the special @CAF@ entry macro in
@SMupdate.lh@.
Indirections also have a fixed size of @IND_CLOSURE_SIZE(closure)@.
Both for @CAF@s and for normal nodes in Appel's collector we have to
be able to identify and link together lists of indirections which are
treated specially by the garbage collector. For this purpose we use
the @MUT_LINK@ field.
@CAF@s (which look like indirections) need to be linked regardless of
whether or not we're doing generational collection, so we don't rely
on @MUT_LINK@ being defined.
\begin{code}
#define IND_VHS (1)
#define IND_HS (FIXED_HS + IND_VHS)
#define IND_CLOSURE_SIZE(closure) (MIN_UPD_SIZE)
#define IND_CLOSURE_NoPTRS(closure) 1
#define IND_CLOSURE_NoNONPTRS(closure) \
(IND_CLOSURE_SIZE(closure)-IND_CLOSURE_NoPTRS(closure)-IND_VHS)
\end{code}
Indirections must store a pointer to the closure which is the target
of the indirection:
\begin{code}
#define IND_CLOSURE_PTR(closure) (((P_)(closure))[IND_HS])
#define IND_CLOSURE_LINK(closure) (((P_)(closure))[FIXED_HS])
\end{code}
When we are profiling, we occasionally use ``permanent indirections''
to store cost centres associated in some way with PAPs. Don't ask me
why. For now, a permanent indirection must have the same shape as a
regular indirection. The only difference is that it is, well,
permanent. That is to say, it is never short-circuited. (What is the
point, anyway?)
Presumably, such objects could shrink as they moved into the old
generation, but then their header size would change as well (the word
that they get to lose is the VHS word of a standard indirection), and
I just don't feel up to it today. --JSM.
\begin{code}
#if defined(PROFILING) || defined(TICKY_TICKY)
#define PERM_IND_CLOSURE_PTR(closure,dummy) IND_CLOSURE_PTR(closure)
/* really *must* be the same as IND_CLOSURE_PTR; it is
merely a "two-argument" variant, to fit in with the
bizarre goings-on in SMmark.lhc and friends. WDP 95/12
*/
#endif
\end{code}
%************************************************************************
%* *
\subsubsection[BH-closures]{@BH@ (black hole) closure macros}
%* *
%************************************************************************
There are two flavours of black holes; one for updatable closures
(size @MIN_UPD_SIZE@) and one for single entry closures (size
@MIN_NONUPD_SIZE@). Note that single-entry black holes can never
become blocking queues, because that would imply multiple entries
to the closure.
Black holes are introduced either on entering a closure or when
performing garbage collection (see section
\ref{black-hole-overwrite}). They indicate that the pointers within
the closure are no longer needed.
The compiler will also allocate an updatable black hole on entering a
@CAF@.
\begin{code}
#define BH_HS (FIXED_HS)
#define BH_VHS 0L
#define BH_U_SIZE MIN_UPD_SIZE
#define BH_N_SIZE MIN_NONUPD_SIZE
#define BH_CLOSURE_SIZE(closure) ((W_)INFO_SIZE(INFO_PTR(closure)))
#define BH_CLOSURE_NoPTRS(closure) 0L
#define BH_CLOSURE_NoNONPTRS(closure) (BH_CLOSURE_SIZE(closure)-BH_CLOSURE_NoPTRS(closure)-BH_VHS)
#define SET_BH_HDR(closure,infolbl,cc,size,ptrs) \
SET_FIXED_HDR(closure,infolbl,cc)
/* most args aren't used, but are required for SET_*_HDR uniformity */
\end{code}
%************************************************************************
%* *
\subsubsection[RBH-closures]{@RBH@ (revertible black hole) closure macros}
%* *
%************************************************************************
There are two kinds of revertible black holes, produced from GEN or
SPEC closures, respectively. There's no @SET_RBH_HDR@ macro -- use
@convertToRBH@ instead!!
Note that the NoPTRS and NoNONPTRS macros refer to the *original* closure.
\begin{code}
#define SPEC_RBH_VHS (1L)
#define SPEC_RBH_HS (FIXED_HS + SPEC_RBH_VHS)
#define SPEC_RBH_CLOSURE_PTR(closure, no) (((P_)(closure))[SPEC_RBH_HS + (no) - 1])
#define SPEC_RBH_CLOSURE_SIZE(closure) ((W_)INFO_SIZE(REVERT_INFOPTR(INFO_PTR(closure))))
#define SPEC_RBH_CLOSURE_NoPTRS(closure) ((W_)INFO_NoPTRS(REVERT_INFOPTR(INFO_PTR(closure))))
#define SPEC_RBH_CLOSURE_NoNONPTRS(closure) (SPEC_RBH_CLOSURE_SIZE(closure)-SPEC_RBH_CLOSURE_NoPTRS(closure))
#define SPEC_RBH_BQ_LOCN (SPEC_RBH_HS)
#define SPEC_RBH_BQ(closure) (((P_)(closure))[SPEC_RBH_BQ_LOCN])
#define GEN_RBH_VHS (1L)
#define GEN_RBH_HS (FIXED_HS + GEN_RBH_VHS)
#define GEN_RBH_CLOSURE_PTR(closure, no) (((P_)(closure))[GEN_RBH_HS + (no) - 1])
#define GEN_RBH_CLOSURE_SIZE(closure) (GEN_INFO_SIZE(REVERT_INFOPTR(INFO_PTR(closure))))
#define GEN_RBH_CLOSURE_NoPTRS(closure) (GEN_INFO_NoPTRS(REVERT_INFOPTR(INFO_PTR(closure))))
#define GEN_RBH_CLOSURE_NoNONPTRS(closure) (GEN_RBH_CLOSURE_SIZE(closure)-GEN_RBH_CLOSURE_NoPTRS(closure)-GEN_VHS)
#define GEN_RBH_BQ_LOCN (GEN_RBH_HS)
#define GEN_RBH_BQ(closure) (((P_)(closure))[GEN_RBH_BQ_LOCN])
\end{code}
%************************************************************************
%* *
\subsubsection[CONST-closures]{@CONST@ (nullary data-constructor) closure macros}
%* *
%************************************************************************
These are never allocated normally---static closures are used
instead. They arise only as a result of in-place updates which use
@INPLACE_UPD_HDR@.
\begin{code}
#define CONST_HS (FIXED_HS)
#define CONST_VHS (0L)
#define CONST_CLOSURE_SIZE(closure) (0L)
#define CONST_CLOSURE_NoPTRS(closure) (0L)
#define CONST_CLOSURE_NoNONPTRS(closure) (0L)
\end{code}
%************************************************************************
%* *
\subsubsection[CHARLIKE-closures]{@CHARLIKE@ closure macros}
%* *
%************************************************************************
These are never allocated normally. They are a static array of
closures indexed by literal characters. As with @CONST@ closures,
@CHARLIKE@ closures only arise from in-place updates using
@INPLACE_UPD_HDR@.
\begin{code}
#define CHARLIKE_HS (FIXED_HS)
#define CHARLIKE_VHS (0L)
#define CHARLIKE_CLOSURE_SIZE(closure) (1L)
#define CHARLIKE_CLOSURE_NoPTRS(closure) (0L)
#define CHARLIKE_CLOSURE_NoNONPTRS(closure) (1L)
/* Array of static charlike closures */
extern const W_ CHARLIKE_closures[];
/* Macro to retrieve static charlike closure */
#define CHARLIKE_CLOSURE(the_char) \
(& CHARLIKE_closures[(CHARLIKE_HS+1) * ((W_)(the_char))])
#define CHARLIKE_VALUE(closure) \
(((P_)(closure))[CHARLIKE_HS])
/* INPLACE_UPD_HDR used for inplace updates */
\end{code}
%************************************************************************
%* *
\subsubsection[INTLIKE-closures]{@INTLIKE@ closure macros}
%* *
%************************************************************************
These may be allocated normally (@SET_INTLIKE_HDR@) or result from
inplace updates (@INPLACE_UPD_HDR@). They may be converted to a static
closure during garbage collection.
Note: the garbage collector (@EVAC_FN(IntLike)@) assumes that this has
the same structure as a @SPEC_1_0@ closure.
\begin{code}
#define INTLIKE_HS (FIXED_HS)
#define INTLIKE_VHS (0L)
#define INTLIKE_CLOSURE_SIZE(closure) (1L)
#define INTLIKE_CLOSURE_NoPTRS(closure) (0L)
#define INTLIKE_CLOSURE_NoNONPTRS(closure) (1L)
/* Array of static intlike closures */
extern P_ INTLIKE_closures;
/* Range of static intlike closures MAX_INTLIKE, MIN_INTLIKE is in GhcConstants.lh */
/* Macro to retrieve static intlike closure */
#define INTLIKE_CLOSURE(the_int) \
(INTLIKE_closures + ((INTLIKE_HS+1) * ((I_)(the_int))))
#define INTLIKE_VALUE(closure) \
((I_) ((P_)(closure))[INTLIKE_HS])
#define SET_INTLIKE_HDR(closure,infolbl,cc,size,ptrs) \
SET_FIXED_HDR(closure,infolbl,cc)
/* INPLACE_UPD_HDR used for inplace updates */
\end{code}
End multi-slurp protection:
\begin{code}
#endif /* SMClosures_H */
\end{code}
|