1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
|
{- The GHCbase module includes all the basic
(next-level-above-primitives) GHC-specific code;
used to define Prelude.hs, and also other "packagings"
of Glasgow extensions.
Users should not import it directly.
-}
module GHCbase where
import Array ( array, bounds, assocs )
import Char (isDigit,isUpper,isSpace,isAlphanum,isAlpha,isOctDigit,isHexDigit)
import Ix
import Ratio
import qualified GHCps ( packString, packCBytes, comparePS, unpackPS )
import qualified GHCio ( IOError )
import qualified Monad
import GHCerr
infixr 0 `seq`, `par`, `fork`
{- =============================================================
There's a lot in GHCbase. It's set out as follows:
* Classes (CCallable, CReturnable, ...)
* Types and their instances
* ST, PrimIO, and IO monads
* Basic arrays
* Variables
* Thread waiting
* Other support functions
============================================================= -}
{- =============================================================
** CLASSES
-}
class CCallable a
class CReturnable a
{- =============================================================
** TYPES and their instances
-}
data Addr = A# Addr# deriving (Eq, Ord) -- Glasgow extension
instance CCallable Addr
instance CReturnable Addr
---------------------------------------------------------------
data Word = W# Word# deriving (Eq, Ord) -- Glasgow extension
instance CCallable Word
instance CReturnable Word
---------------------------------------------------------------
data PackedString
= PS ByteArray# -- the bytes
Int# -- length (*not* including NUL at the end)
Bool -- True <=> contains a NUL
| CPS Addr# -- pointer to the (null-terminated) bytes in C land
Int# -- length, as per strlen
-- definitely doesn't contain a NUL
instance Eq PackedString where
x == y = compare x y == EQ
x /= y = compare x y /= EQ
instance Ord PackedString where
compare = GHCps.comparePS
x <= y = compare x y /= GT
x < y = compare x y == LT
x >= y = compare x y /= LT
x > y = compare x y == GT
max x y = case (compare x y) of { LT -> y ; EQ -> x ; GT -> x }
min x y = case (compare x y) of { LT -> x ; EQ -> x ; GT -> y }
--instance Read PackedString: ToDo
instance Show PackedString where
showsPrec p ps r = showsPrec p (GHCps.unpackPS ps) r
showList = showList__ (showsPrec 0)
---------------------------------------------------------------
data State a = S# (State# a)
data ForeignObj = ForeignObj ForeignObj#
instance CCallable ForeignObj
#ifndef __PARALLEL_HASKELL__
data StablePtr a = StablePtr (StablePtr# a)
instance CCallable (StablePtr a)
instance CReturnable (StablePtr a)
#endif
eqForeignObj :: ForeignObj -> ForeignObj -> Bool
makeForeignObj :: Addr -> Addr -> PrimIO ForeignObj
makeForeignObj (A# obj) (A# finaliser) = ST $ \ (S# s#) ->
case makeForeignObj# obj finaliser s# of
StateAndForeignObj# s1# fo# -> (ForeignObj fo#, S# s1#)
eqForeignObj mp1 mp2
= unsafePerformPrimIO (_ccall_ eqForeignObj mp1 mp2) /= (0::Int)
instance Eq ForeignObj where
p == q = eqForeignObj p q
p /= q = not (eqForeignObj p q)
#ifndef __PARALLEL_HASKELL__
-- Nota Bene: it is important {\em not\/} to inline calls to
-- @makeStablePtr#@ since the corresponding macro is very long and we'll
-- get terrible code-bloat.
makeStablePtr :: a -> PrimIO (StablePtr a)
deRefStablePtr :: StablePtr a -> PrimIO a
freeStablePtr :: StablePtr a -> PrimIO ()
performGC :: PrimIO ()
{-# INLINE deRefStablePtr #-}
{-# INLINE freeStablePtr #-}
{-# INLINE performGC #-}
makeStablePtr f = ST $ \ (S# rw1#) ->
case makeStablePtr# f rw1# of
StateAndStablePtr# rw2# sp# -> (StablePtr sp#, S# rw2#)
deRefStablePtr (StablePtr sp#) = ST $ \ (S# rw1#) ->
case deRefStablePtr# sp# rw1# of
StateAndPtr# rw2# a -> (a, S# rw2#)
freeStablePtr sp = _ccall_ freeStablePointer sp
performGC = _ccall_GC_ StgPerformGarbageCollection
#endif /* !__PARALLEL_HASKELL__ */
---------------------------------------------------------------
data Return2GMPs = Return2GMPs Int# Int# ByteArray# Int# Int# ByteArray#
data ReturnIntAndGMP = ReturnIntAndGMP Int# Int# Int# ByteArray#
data StateAndPtr# s elt = StateAndPtr# (State# s) elt
data StateAndChar# s = StateAndChar# (State# s) Char#
data StateAndInt# s = StateAndInt# (State# s) Int#
data StateAndWord# s = StateAndWord# (State# s) Word#
data StateAndFloat# s = StateAndFloat# (State# s) Float#
data StateAndDouble# s = StateAndDouble# (State# s) Double#
data StateAndAddr# s = StateAndAddr# (State# s) Addr#
#ifndef __PARALLEL_HASKELL__
data StateAndStablePtr# s a = StateAndStablePtr# (State# s) (StablePtr# a)
#endif
data StateAndForeignObj# s = StateAndForeignObj# (State# s) ForeignObj#
data StateAndArray# s elt = StateAndArray# (State# s) (Array# elt)
data StateAndMutableArray# s elt = StateAndMutableArray# (State# s) (MutableArray# s elt)
data StateAndByteArray# s = StateAndByteArray# (State# s) ByteArray#
data StateAndMutableByteArray# s = StateAndMutableByteArray# (State# s) (MutableByteArray# s)
data StateAndSynchVar# s elt = StateAndSynchVar# (State# s) (SynchVar# s elt)
---------------------------------------------------------------
data Lift a = Lift a
{-# GENERATE_SPECS data a :: Lift a #-}
{- =============================================================
** ST, PrimIO, and IO monads
-}
---------------------------------------------------------------
--The state-transformer proper
-- By default the monad is strict; too many people got bitten by
-- space leaks when it was lazy.
newtype ST s a = ST (State s -> (a, State s))
runST (ST m)
= case m (S# realWorld#) of
(r,_) -> r
instance Monad (ST s) where
{-# INLINE return #-}
{-# INLINE (>>) #-}
{-# INLINE (>>=) #-}
return x = ST $ \ s@(S# _) -> (x, s)
m >> k = m >>= \ _ -> k
(ST m) >>= k
= ST $ \ s ->
case (m s) of {(r, new_s) ->
case (k r) of { ST k2 ->
(k2 new_s) }}
{-# INLINE returnST #-}
-- here for backward compatibility:
returnST :: a -> ST s a
thenST :: ST s a -> (a -> ST s b) -> ST s b
seqST :: ST s a -> ST s b -> ST s b
returnST = return
thenST = (>>=)
seqST = (>>)
-- not sure whether to 1.3-ize these or what...
{-# INLINE returnStrictlyST #-}
{-# INLINE thenStrictlyST #-}
{-# INLINE seqStrictlyST #-}
{-# GENERATE_SPECS returnStrictlyST a #-}
returnStrictlyST :: a -> ST s a
{-# GENERATE_SPECS thenStrictlyST a b #-}
thenStrictlyST :: ST s a -> (a -> ST s b) -> ST s b
{-# GENERATE_SPECS seqStrictlyST a b #-}
seqStrictlyST :: ST s a -> ST s b -> ST s b
returnStrictlyST a = ST $ \ s@(S# _) -> (a, s)
thenStrictlyST (ST m) k = ST $ \ s -> -- @(S# _) Omitted SLPJ [May95] no need to evaluate the state
case (m s) of { (r, new_s) ->
case (k r) of { ST k2 ->
(k2 new_s) }}
seqStrictlyST (ST m) (ST k) = ST $ \ s -> -- @(S# _) Omitted SLPJ [May95] no need to evaluate the state
case (m s) of { (_, new_s) ->
(k new_s) }
-- BUILT-IN: runST (see Builtin.hs)
unsafeInterleaveST :: ST s a -> ST s a -- ToDo: put in state-interface.tex
unsafeInterleaveST (ST m) = ST $ \ s ->
let
(r, new_s) = m s
in
(r, s)
fixST :: (a -> ST s a) -> ST s a
fixST k = ST $ \ s ->
let (ST k_r) = k r
ans = k_r s
(r,new_s) = ans
in
ans
-- more backward compatibility stuff:
listST :: [ST s a] -> ST s [a]
mapST :: (a -> ST s b) -> [a] -> ST s [b]
mapAndUnzipST :: (a -> ST s (b,c)) -> [a] -> ST s ([b],[c])
listST = accumulate
mapST = mapM
mapAndUnzipST = Monad.mapAndUnzipL
forkST :: ST s a -> ST s a
#ifndef __CONCURRENT_HASKELL__
forkST x = x
#else
forkST (ST action) = ST $ \ s ->
let
(r, new_s) = action s
in
new_s `fork__` (r, s)
where
fork__ x y = case (fork# x) of { 0# -> parError; _ -> y }
#endif {- concurrent -}
----------------------------------------------------------------------------
type PrimIO a = ST RealWorld a
fixPrimIO :: (a -> PrimIO a) -> PrimIO a
fixPrimIO = fixST
stToIO :: ST RealWorld a -> IO a
primIOToIO :: PrimIO a -> IO a
ioToST :: IO a -> ST RealWorld a
ioToPrimIO :: IO a -> PrimIO a
primIOToIO = stToIO -- for backwards compatibility
ioToPrimIO = ioToST
stToIO (ST m) = IO $ ST $ \ s ->
case (m s) of { (r, new_s) ->
(Right r, new_s) }
ioToST (IO (ST io)) = ST $ \ s ->
case (io s) of { (r, new_s) ->
case r of
Right a -> (a, new_s)
Left e -> error ("I/O Error (ioToST): " ++ showsPrec 0 e "\n")
}
{-# GENERATE_SPECS unsafePerformPrimIO a #-}
unsafePerformPrimIO :: PrimIO a -> a
unsafeInterleavePrimIO :: PrimIO a -> PrimIO a
forkPrimIO :: PrimIO a -> PrimIO a
unsafePerformPrimIO = runST
unsafeInterleavePrimIO = unsafeInterleaveST
forkPrimIO = forkST
-- the following functions are now there for backward compatibility mostly:
{-# GENERATE_SPECS returnPrimIO a #-}
returnPrimIO :: a -> PrimIO a
{-# GENERATE_SPECS thenPrimIO b #-}
thenPrimIO :: PrimIO a -> (a -> PrimIO b) -> PrimIO b
{-# GENERATE_SPECS seqPrimIO b #-}
seqPrimIO :: PrimIO a -> PrimIO b -> PrimIO b
listPrimIO :: [PrimIO a] -> PrimIO [a]
mapPrimIO :: (a -> PrimIO b) -> [a] -> PrimIO [b]
mapAndUnzipPrimIO :: (a -> PrimIO (b,c)) -> [a] -> PrimIO ([b],[c])
{-# INLINE returnPrimIO #-}
{-# INLINE thenPrimIO #-}
{-# INLINE seqPrimIO #-}
returnPrimIO = return
thenPrimIO = (>>=)
seqPrimIO = (>>)
listPrimIO = accumulate
mapPrimIO = mapM
mapAndUnzipPrimIO = Monad.mapAndUnzipL
---------------------------------------------------------
newtype IO a = IO (PrimIO (Either GHCio.IOError a))
instance Functor IO where
map f x = x >>= (return . f)
instance Monad IO where
{-# INLINE return #-}
{-# INLINE (>>) #-}
{-# INLINE (>>=) #-}
m >> k = m >>= \ _ -> k
return x = IO $ ST $ \ s@(S# _) -> (Right x, s)
(IO (ST m)) >>= k
= IO $ ST $ \ s ->
let (r, new_s) = m s in
case r of
Left err -> (Left err, new_s)
Right x -> case (k x) of { IO (ST k2) ->
k2 new_s }
instance Show (IO a) where
showsPrec p f = showString "<<IO action>>"
showList = showList__ (showsPrec 0)
fixIO :: (a -> IO a) -> IO a
-- not required but worth having around
fixIO k = IO $ ST $ \ s ->
let
(IO (ST k_loop)) = k loop
result = k_loop s
(Right loop, _) = result
in
result
{- =============================================================
** BASIC ARRAY (and ByteArray) SUPPORT
-}
type IPr = (Int, Int)
data Ix ix => Array ix elt = Array (ix,ix) (Array# elt)
data Ix ix => ByteArray ix = ByteArray (ix,ix) ByteArray#
instance CCallable (ByteArray ix)
instance (Ix a, Eq b) => Eq (Array a b) where
a == a' = assocs a == assocs a'
a /= a' = assocs a /= assocs a'
instance (Ix a, Ord b) => Ord (Array a b) where
compare a b = compare (assocs a) (assocs b)
instance (Ix a, Show a, Show b) => Show (Array a b) where
showsPrec p a = showParen (p > 9) (
showString "array " .
shows (bounds a) . showChar ' ' .
shows (assocs a) )
showList = showList__ (showsPrec 0)
instance (Ix a, Read a, Read b) => Read (Array a b) where
readsPrec p = readParen (p > 9)
(\r -> [(array b as, u) | ("array",s) <- lex r,
(b,t) <- reads s,
(as,u) <- reads t ])
readList = readList__ (readsPrec 0)
-----------------------------------------------------------------
-- Mutable arrays
{-
Idle ADR question: What's the tradeoff here between flattening these
datatypes into @MutableArray ix ix (MutableArray# s elt)@ and using
it as is? As I see it, the former uses slightly less heap and
provides faster access to the individual parts of the bounds while the
code used has the benefit of providing a ready-made @(lo, hi)@ pair as
required by many array-related functions. Which wins? Is the
difference significant (probably not).
Idle AJG answer: When I looked at the outputted code (though it was 2
years ago) it seems like you often needed the tuple, and we build
it frequently. Now we've got the overloading specialiser things
might be different, though.
-}
data Ix ix => MutableArray s ix elt = MutableArray (ix,ix) (MutableArray# s elt)
data Ix ix => MutableByteArray s ix = MutableByteArray (ix,ix) (MutableByteArray# s)
instance CCallable (MutableByteArray s ix)
newArray :: Ix ix => (ix,ix) -> elt -> ST s (MutableArray s ix elt)
newCharArray, newIntArray, newAddrArray, newFloatArray, newDoubleArray
:: Ix ix => (ix,ix) -> ST s (MutableByteArray s ix)
{-# SPECIALIZE newArray :: IPr -> elt -> ST s (MutableArray s Int elt),
(IPr,IPr) -> elt -> ST s (MutableArray s IPr elt)
#-}
{-# SPECIALIZE newCharArray :: IPr -> ST s (MutableByteArray s Int) #-}
{-# SPECIALIZE newIntArray :: IPr -> ST s (MutableByteArray s Int) #-}
{-# SPECIALIZE newAddrArray :: IPr -> ST s (MutableByteArray s Int) #-}
{-# SPECIALIZE newFloatArray :: IPr -> ST s (MutableByteArray s Int) #-}
{-# SPECIALIZE newDoubleArray :: IPr -> ST s (MutableByteArray s Int) #-}
newArray ixs@(ix_start, ix_end) init = ST $ \ (S# s#) ->
let n# = case (if null (range ixs)
then 0
else (index ixs ix_end) + 1) of { I# x -> x }
-- size is one bigger than index of last elem
in
case (newArray# n# init s#) of { StateAndMutableArray# s2# arr# ->
(MutableArray ixs arr#, S# s2#)}
newCharArray ixs@(ix_start, ix_end) = ST $ \ (S# s#) ->
let n# = case (if null (range ixs)
then 0
else ((index ixs ix_end) + 1)) of { I# x -> x }
in
case (newCharArray# n# s#) of { StateAndMutableByteArray# s2# barr# ->
(MutableByteArray ixs barr#, S# s2#)}
newIntArray ixs@(ix_start, ix_end) = ST $ \ (S# s#) ->
let n# = case (if null (range ixs)
then 0
else ((index ixs ix_end) + 1)) of { I# x -> x }
in
case (newIntArray# n# s#) of { StateAndMutableByteArray# s2# barr# ->
(MutableByteArray ixs barr#, S# s2#)}
newAddrArray ixs@(ix_start, ix_end) = ST $ \ (S# s#) ->
let n# = case (if null (range ixs)
then 0
else ((index ixs ix_end) + 1)) of { I# x -> x }
in
case (newAddrArray# n# s#) of { StateAndMutableByteArray# s2# barr# ->
(MutableByteArray ixs barr#, S# s2#)}
newFloatArray ixs@(ix_start, ix_end) = ST $ \ (S# s#) ->
let n# = case (if null (range ixs)
then 0
else ((index ixs ix_end) + 1)) of { I# x -> x }
in
case (newFloatArray# n# s#) of { StateAndMutableByteArray# s2# barr# ->
(MutableByteArray ixs barr#, S# s2#)}
newDoubleArray ixs@(ix_start, ix_end) = ST $ \ (S# s#) ->
let n# = case (if null (range ixs)
then 0
else ((index ixs ix_end) + 1)) of { I# x -> x }
in
case (newDoubleArray# n# s#) of { StateAndMutableByteArray# s2# barr# ->
(MutableByteArray ixs barr#, S# s2#)}
boundsOfArray :: Ix ix => MutableArray s ix elt -> (ix, ix)
boundsOfByteArray :: Ix ix => MutableByteArray s ix -> (ix, ix)
{-# SPECIALIZE boundsOfArray :: MutableArray s Int elt -> IPr #-}
{-# SPECIALIZE boundsOfByteArray :: MutableByteArray s Int -> IPr #-}
boundsOfArray (MutableArray ixs _) = ixs
boundsOfByteArray (MutableByteArray ixs _) = ixs
readArray :: Ix ix => MutableArray s ix elt -> ix -> ST s elt
readCharArray :: Ix ix => MutableByteArray s ix -> ix -> ST s Char
readIntArray :: Ix ix => MutableByteArray s ix -> ix -> ST s Int
readAddrArray :: Ix ix => MutableByteArray s ix -> ix -> ST s Addr
readFloatArray :: Ix ix => MutableByteArray s ix -> ix -> ST s Float
readDoubleArray :: Ix ix => MutableByteArray s ix -> ix -> ST s Double
{-# SPECIALIZE readArray :: MutableArray s Int elt -> Int -> ST s elt,
MutableArray s IPr elt -> IPr -> ST s elt
#-}
{-# SPECIALIZE readCharArray :: MutableByteArray s Int -> Int -> ST s Char #-}
{-# SPECIALIZE readIntArray :: MutableByteArray s Int -> Int -> ST s Int #-}
{-# SPECIALIZE readAddrArray :: MutableByteArray s Int -> Int -> ST s Addr #-}
--NO:{-# SPECIALIZE readFloatArray :: MutableByteArray s Int -> Int -> ST s Float #-}
{-# SPECIALIZE readDoubleArray :: MutableByteArray s Int -> Int -> ST s Double #-}
readArray (MutableArray ixs arr#) n = ST $ \ (S# s#) ->
case (index ixs n) of { I# n# ->
case readArray# arr# n# s# of { StateAndPtr# s2# r ->
(r, S# s2#)}}
readCharArray (MutableByteArray ixs barr#) n = ST $ \ (S# s#) ->
case (index ixs n) of { I# n# ->
case readCharArray# barr# n# s# of { StateAndChar# s2# r# ->
(C# r#, S# s2#)}}
readIntArray (MutableByteArray ixs barr#) n = ST $ \ (S# s#) ->
case (index ixs n) of { I# n# ->
case readIntArray# barr# n# s# of { StateAndInt# s2# r# ->
(I# r#, S# s2#)}}
readAddrArray (MutableByteArray ixs barr#) n = ST $ \ (S# s#) ->
case (index ixs n) of { I# n# ->
case readAddrArray# barr# n# s# of { StateAndAddr# s2# r# ->
(A# r#, S# s2#)}}
readFloatArray (MutableByteArray ixs barr#) n = ST $ \ (S# s#) ->
case (index ixs n) of { I# n# ->
case readFloatArray# barr# n# s# of { StateAndFloat# s2# r# ->
(F# r#, S# s2#)}}
readDoubleArray (MutableByteArray ixs barr#) n = ST $ \ (S# s#) ->
case (index ixs n) of { I# n# ->
case readDoubleArray# barr# n# s# of { StateAndDouble# s2# r# ->
(D# r#, S# s2#)}}
--Indexing of ordinary @Arrays@ is standard Haskell and isn't defined here.
indexCharArray :: Ix ix => ByteArray ix -> ix -> Char
indexIntArray :: Ix ix => ByteArray ix -> ix -> Int
indexAddrArray :: Ix ix => ByteArray ix -> ix -> Addr
indexFloatArray :: Ix ix => ByteArray ix -> ix -> Float
indexDoubleArray :: Ix ix => ByteArray ix -> ix -> Double
{-# SPECIALIZE indexCharArray :: ByteArray Int -> Int -> Char #-}
{-# SPECIALIZE indexIntArray :: ByteArray Int -> Int -> Int #-}
{-# SPECIALIZE indexAddrArray :: ByteArray Int -> Int -> Addr #-}
--NO:{-# SPECIALIZE indexFloatArray :: ByteArray Int -> Int -> Float #-}
{-# SPECIALIZE indexDoubleArray :: ByteArray Int -> Int -> Double #-}
indexCharArray (ByteArray ixs barr#) n
= case (index ixs n) of { I# n# ->
case indexCharArray# barr# n# of { r# ->
(C# r#)}}
indexIntArray (ByteArray ixs barr#) n
= case (index ixs n) of { I# n# ->
case indexIntArray# barr# n# of { r# ->
(I# r#)}}
indexAddrArray (ByteArray ixs barr#) n
= case (index ixs n) of { I# n# ->
case indexAddrArray# barr# n# of { r# ->
(A# r#)}}
indexFloatArray (ByteArray ixs barr#) n
= case (index ixs n) of { I# n# ->
case indexFloatArray# barr# n# of { r# ->
(F# r#)}}
indexDoubleArray (ByteArray ixs barr#) n
= case (index ixs n) of { I# n# ->
case indexDoubleArray# barr# n# of { r# ->
(D# r#)}}
--Indexing off @Addrs@ is similar, and therefore given here.
indexCharOffAddr :: Addr -> Int -> Char
indexIntOffAddr :: Addr -> Int -> Int
indexAddrOffAddr :: Addr -> Int -> Addr
indexFloatOffAddr :: Addr -> Int -> Float
indexDoubleOffAddr :: Addr -> Int -> Double
indexCharOffAddr (A# addr#) n
= case n of { I# n# ->
case indexCharOffAddr# addr# n# of { r# ->
(C# r#)}}
indexIntOffAddr (A# addr#) n
= case n of { I# n# ->
case indexIntOffAddr# addr# n# of { r# ->
(I# r#)}}
indexAddrOffAddr (A# addr#) n
= case n of { I# n# ->
case indexAddrOffAddr# addr# n# of { r# ->
(A# r#)}}
indexFloatOffAddr (A# addr#) n
= case n of { I# n# ->
case indexFloatOffAddr# addr# n# of { r# ->
(F# r#)}}
indexDoubleOffAddr (A# addr#) n
= case n of { I# n# ->
case indexDoubleOffAddr# addr# n# of { r# ->
(D# r#)}}
writeArray :: Ix ix => MutableArray s ix elt -> ix -> elt -> ST s ()
writeCharArray :: Ix ix => MutableByteArray s ix -> ix -> Char -> ST s ()
writeIntArray :: Ix ix => MutableByteArray s ix -> ix -> Int -> ST s ()
writeAddrArray :: Ix ix => MutableByteArray s ix -> ix -> Addr -> ST s ()
writeFloatArray :: Ix ix => MutableByteArray s ix -> ix -> Float -> ST s ()
writeDoubleArray :: Ix ix => MutableByteArray s ix -> ix -> Double -> ST s ()
{-# SPECIALIZE writeArray :: MutableArray s Int elt -> Int -> elt -> ST s (),
MutableArray s IPr elt -> IPr -> elt -> ST s ()
#-}
{-# SPECIALIZE writeCharArray :: MutableByteArray s Int -> Int -> Char -> ST s () #-}
{-# SPECIALIZE writeIntArray :: MutableByteArray s Int -> Int -> Int -> ST s () #-}
{-# SPECIALIZE writeAddrArray :: MutableByteArray s Int -> Int -> Addr -> ST s () #-}
--NO:{-# SPECIALIZE writeFloatArray :: MutableByteArray s Int -> Int -> Float -> ST s () #-}
{-# SPECIALIZE writeDoubleArray :: MutableByteArray s Int -> Int -> Double -> ST s () #-}
writeArray (MutableArray ixs arr#) n ele = ST $ \ (S# s#) ->
case index ixs n of { I# n# ->
case writeArray# arr# n# ele s# of { s2# ->
((), S# s2#)}}
writeCharArray (MutableByteArray ixs barr#) n (C# ele) = ST $ \ (S# s#) ->
case (index ixs n) of { I# n# ->
case writeCharArray# barr# n# ele s# of { s2# ->
((), S# s2#)}}
writeIntArray (MutableByteArray ixs barr#) n (I# ele) = ST $ \ (S# s#) ->
case (index ixs n) of { I# n# ->
case writeIntArray# barr# n# ele s# of { s2# ->
((), S# s2#)}}
writeAddrArray (MutableByteArray ixs barr#) n (A# ele) = ST $ \ (S# s#) ->
case (index ixs n) of { I# n# ->
case writeAddrArray# barr# n# ele s# of { s2# ->
((), S# s2#)}}
writeFloatArray (MutableByteArray ixs barr#) n (F# ele) = ST $ \ (S# s#) ->
case (index ixs n) of { I# n# ->
case writeFloatArray# barr# n# ele s# of { s2# ->
((), S# s2#)}}
writeDoubleArray (MutableByteArray ixs barr#) n (D# ele) = ST $ \ (S# s#) ->
case (index ixs n) of { I# n# ->
case writeDoubleArray# barr# n# ele s# of { s2# ->
((), S# s2#)}}
freezeArray :: Ix ix => MutableArray s ix elt -> ST s (Array ix elt)
freezeCharArray :: Ix ix => MutableByteArray s ix -> ST s (ByteArray ix)
freezeIntArray :: Ix ix => MutableByteArray s ix -> ST s (ByteArray ix)
freezeAddrArray :: Ix ix => MutableByteArray s ix -> ST s (ByteArray ix)
freezeFloatArray :: Ix ix => MutableByteArray s ix -> ST s (ByteArray ix)
freezeDoubleArray :: Ix ix => MutableByteArray s ix -> ST s (ByteArray ix)
{-# SPECIALISE freezeArray :: MutableArray s Int elt -> ST s (Array Int elt),
MutableArray s IPr elt -> ST s (Array IPr elt)
#-}
{-# SPECIALISE freezeCharArray :: MutableByteArray s Int -> ST s (ByteArray Int) #-}
freezeArray (MutableArray ixs@(ix_start, ix_end) arr#) = ST $ \ (S# s#) ->
let n# = case (if null (range ixs)
then 0
else (index ixs ix_end) + 1) of { I# x -> x }
in
case freeze arr# n# s# of { StateAndArray# s2# frozen# ->
(Array ixs frozen#, S# s2#)}
where
freeze :: MutableArray# s ele -- the thing
-> Int# -- size of thing to be frozen
-> State# s -- the Universe and everything
-> StateAndArray# s ele
freeze arr# n# s#
= case newArray# n# init s# of { StateAndMutableArray# s2# newarr1# ->
case copy 0# n# arr# newarr1# s2# of { StateAndMutableArray# s3# newarr2# ->
unsafeFreezeArray# newarr2# s3#
}}
where
init = error "freezeArray: element not copied"
copy :: Int# -> Int#
-> MutableArray# s ele -> MutableArray# s ele
-> State# s
-> StateAndMutableArray# s ele
copy cur# end# from# to# s#
| cur# ==# end#
= StateAndMutableArray# s# to#
| True
= case readArray# from# cur# s# of { StateAndPtr# s1# ele ->
case writeArray# to# cur# ele s1# of { s2# ->
copy (cur# +# 1#) end# from# to# s2#
}}
freezeCharArray (MutableByteArray ixs@(ix_start, ix_end) arr#) = ST $ \ (S# s#) ->
let n# = case (if null (range ixs)
then 0
else ((index ixs ix_end) + 1)) of { I# x -> x }
in
case freeze arr# n# s# of { StateAndByteArray# s2# frozen# ->
(ByteArray ixs frozen#, S# s2#) }
where
freeze :: MutableByteArray# s -- the thing
-> Int# -- size of thing to be frozen
-> State# s -- the Universe and everything
-> StateAndByteArray# s
freeze arr# n# s#
= case (newCharArray# n# s#) of { StateAndMutableByteArray# s2# newarr1# ->
case copy 0# n# arr# newarr1# s2# of { StateAndMutableByteArray# s3# newarr2# ->
unsafeFreezeByteArray# newarr2# s3#
}}
where
copy :: Int# -> Int#
-> MutableByteArray# s -> MutableByteArray# s
-> State# s
-> StateAndMutableByteArray# s
copy cur# end# from# to# s#
| cur# ==# end#
= StateAndMutableByteArray# s# to#
| True
= case (readCharArray# from# cur# s#) of { StateAndChar# s1# ele ->
case (writeCharArray# to# cur# ele s1#) of { s2# ->
copy (cur# +# 1#) end# from# to# s2#
}}
freezeIntArray (MutableByteArray ixs@(ix_start, ix_end) arr#) = ST $ \ (S# s#) ->
let n# = case (if null (range ixs)
then 0
else ((index ixs ix_end) + 1)) of { I# x -> x }
in
case freeze arr# n# s# of { StateAndByteArray# s2# frozen# ->
(ByteArray ixs frozen#, S# s2#) }
where
freeze :: MutableByteArray# s -- the thing
-> Int# -- size of thing to be frozen
-> State# s -- the Universe and everything
-> StateAndByteArray# s
freeze arr# n# s#
= case (newIntArray# n# s#) of { StateAndMutableByteArray# s2# newarr1# ->
case copy 0# n# arr# newarr1# s2# of { StateAndMutableByteArray# s3# newarr2# ->
unsafeFreezeByteArray# newarr2# s3#
}}
where
copy :: Int# -> Int#
-> MutableByteArray# s -> MutableByteArray# s
-> State# s
-> StateAndMutableByteArray# s
copy cur# end# from# to# s#
| cur# ==# end#
= StateAndMutableByteArray# s# to#
| True
= case (readIntArray# from# cur# s#) of { StateAndInt# s1# ele ->
case (writeIntArray# to# cur# ele s1#) of { s2# ->
copy (cur# +# 1#) end# from# to# s2#
}}
freezeAddrArray (MutableByteArray ixs@(ix_start, ix_end) arr#) = ST $ \ (S# s#) ->
let n# = case (if null (range ixs)
then 0
else ((index ixs ix_end) + 1)) of { I# x -> x }
in
case freeze arr# n# s# of { StateAndByteArray# s2# frozen# ->
(ByteArray ixs frozen#, S# s2#) }
where
freeze :: MutableByteArray# s -- the thing
-> Int# -- size of thing to be frozen
-> State# s -- the Universe and everything
-> StateAndByteArray# s
freeze arr# n# s#
= case (newAddrArray# n# s#) of { StateAndMutableByteArray# s2# newarr1# ->
case copy 0# n# arr# newarr1# s2# of { StateAndMutableByteArray# s3# newarr2# ->
unsafeFreezeByteArray# newarr2# s3#
}}
where
copy :: Int# -> Int#
-> MutableByteArray# s -> MutableByteArray# s
-> State# s
-> StateAndMutableByteArray# s
copy cur# end# from# to# s#
| cur# ==# end#
= StateAndMutableByteArray# s# to#
| True
= case (readAddrArray# from# cur# s#) of { StateAndAddr# s1# ele ->
case (writeAddrArray# to# cur# ele s1#) of { s2# ->
copy (cur# +# 1#) end# from# to# s2#
}}
freezeFloatArray (MutableByteArray ixs@(ix_start, ix_end) arr#) = ST $ \ (S# s#) ->
let n# = case (if null (range ixs)
then 0
else ((index ixs ix_end) + 1)) of { I# x -> x }
in
case freeze arr# n# s# of { StateAndByteArray# s2# frozen# ->
(ByteArray ixs frozen#, S# s2#) }
where
freeze :: MutableByteArray# s -- the thing
-> Int# -- size of thing to be frozen
-> State# s -- the Universe and everything
-> StateAndByteArray# s
freeze arr# n# s#
= case (newFloatArray# n# s#) of { StateAndMutableByteArray# s2# newarr1# ->
case copy 0# n# arr# newarr1# s2# of { StateAndMutableByteArray# s3# newarr2# ->
unsafeFreezeByteArray# newarr2# s3#
}}
where
copy :: Int# -> Int#
-> MutableByteArray# s -> MutableByteArray# s
-> State# s
-> StateAndMutableByteArray# s
copy cur# end# from# to# s#
| cur# ==# end#
= StateAndMutableByteArray# s# to#
| True
= case (readFloatArray# from# cur# s#) of { StateAndFloat# s1# ele ->
case (writeFloatArray# to# cur# ele s1#) of { s2# ->
copy (cur# +# 1#) end# from# to# s2#
}}
freezeDoubleArray (MutableByteArray ixs@(ix_start, ix_end) arr#) = ST $ \ (S# s#) ->
let n# = case (if null (range ixs)
then 0
else ((index ixs ix_end) + 1)) of { I# x -> x }
in
case freeze arr# n# s# of { StateAndByteArray# s2# frozen# ->
(ByteArray ixs frozen#, S# s2#) }
where
freeze :: MutableByteArray# s -- the thing
-> Int# -- size of thing to be frozen
-> State# s -- the Universe and everything
-> StateAndByteArray# s
freeze arr# n# s#
= case (newDoubleArray# n# s#) of { StateAndMutableByteArray# s2# newarr1# ->
case copy 0# n# arr# newarr1# s2# of { StateAndMutableByteArray# s3# newarr2# ->
unsafeFreezeByteArray# newarr2# s3#
}}
where
copy :: Int# -> Int#
-> MutableByteArray# s -> MutableByteArray# s
-> State# s
-> StateAndMutableByteArray# s
copy cur# end# from# to# s#
| cur# ==# end#
= StateAndMutableByteArray# s# to#
| True
= case (readDoubleArray# from# cur# s#) of { StateAndDouble# s1# ele ->
case (writeDoubleArray# to# cur# ele s1#) of { s2# ->
copy (cur# +# 1#) end# from# to# s2#
}}
unsafeFreezeArray :: Ix ix => MutableArray s ix elt -> ST s (Array ix elt)
unsafeFreezeByteArray :: Ix ix => MutableByteArray s ix -> ST s (ByteArray ix)
{-# SPECIALIZE unsafeFreezeByteArray :: MutableByteArray s Int -> ST s (ByteArray Int)
#-}
unsafeFreezeArray (MutableArray ixs arr#) = ST $ \ (S# s#) ->
case unsafeFreezeArray# arr# s# of { StateAndArray# s2# frozen# ->
(Array ixs frozen#, S# s2#) }
unsafeFreezeByteArray (MutableByteArray ixs arr#) = ST $ \ (S# s#) ->
case unsafeFreezeByteArray# arr# s# of { StateAndByteArray# s2# frozen# ->
(ByteArray ixs frozen#, S# s2#) }
--This takes a immutable array, and copies it into a mutable array, in a
--hurry.
{-# SPECIALISE thawArray :: Array Int elt -> ST s (MutableArray s Int elt),
Array IPr elt -> ST s (MutableArray s IPr elt)
#-}
thawArray (Array ixs@(ix_start, ix_end) arr#) = ST $ \ (S# s#) ->
let n# = case (if null (range ixs)
then 0
else (index ixs ix_end) + 1) of { I# x -> x }
in
case thaw arr# n# s# of { StateAndMutableArray# s2# thawed# ->
(MutableArray ixs thawed#, S# s2#)}
where
thaw :: Array# ele -- the thing
-> Int# -- size of thing to be thawed
-> State# s -- the Universe and everything
-> StateAndMutableArray# s ele
thaw arr# n# s#
= case newArray# n# init s# of { StateAndMutableArray# s2# newarr1# ->
copy 0# n# arr# newarr1# s2# }
where
init = error "thawArray: element not copied"
copy :: Int# -> Int#
-> Array# ele
-> MutableArray# s ele
-> State# s
-> StateAndMutableArray# s ele
copy cur# end# from# to# s#
| cur# ==# end#
= StateAndMutableArray# s# to#
| True
= case indexArray# from# cur# of { Lift ele ->
case writeArray# to# cur# ele s# of { s1# ->
copy (cur# +# 1#) end# from# to# s1#
}}
sameMutableArray :: MutableArray s ix elt -> MutableArray s ix elt -> Bool
sameMutableByteArray :: MutableByteArray s ix -> MutableByteArray s ix -> Bool
sameMutableArray (MutableArray _ arr1#) (MutableArray _ arr2#)
= sameMutableArray# arr1# arr2#
sameMutableByteArray (MutableByteArray _ arr1#) (MutableByteArray _ arr2#)
= sameMutableByteArray# arr1# arr2#
{- =============================================================
** VARIABLES, including MVars and IVars
-}
--************************************************************************
-- Variables
type MutableVar s a = MutableArray s Int a
newVar :: a -> ST s (MutableVar s a)
readVar :: MutableVar s a -> ST s a
writeVar :: MutableVar s a -> a -> ST s ()
sameVar :: MutableVar s a -> MutableVar s a -> Bool
newVar init = ST $ \ (S# s#) ->
case (newArray# 1# init s#) of { StateAndMutableArray# s2# arr# ->
(MutableArray vAR_IXS arr#, S# s2#) }
where
vAR_IXS = error "newVar: Shouldn't access `bounds' of a MutableVar\n"
readVar (MutableArray _ var#) = ST $ \ (S# s#) ->
case readArray# var# 0# s# of { StateAndPtr# s2# r ->
(r, S# s2#) }
writeVar (MutableArray _ var#) val = ST $ \ (S# s#) ->
case writeArray# var# 0# val s# of { s2# ->
((), S# s2#) }
sameVar (MutableArray _ var1#) (MutableArray _ var2#)
= sameMutableArray# var1# var2#
--%************************************************************************
--%* *
--\subsection[PreludeGlaST-mvars]{M-Structures}
--%* *
--%************************************************************************
{-
M-Vars are rendezvous points for concurrent threads. They begin
empty, and any attempt to read an empty M-Var blocks. When an M-Var
is written, a single blocked thread may be freed. Reading an M-Var
toggles its state from full back to empty. Therefore, any value
written to an M-Var may only be read once. Multiple reads and writes
are allowed, but there must be at least one read between any two
writes.
-}
data MVar a = MVar (SynchVar# RealWorld a)
newEmptyMVar :: IO (MVar a)
newEmptyMVar = IO $ ST $ \ (S# s#) ->
case newSynchVar# s# of
StateAndSynchVar# s2# svar# -> (Right (MVar svar#), S# s2#)
takeMVar :: MVar a -> IO a
takeMVar (MVar mvar#) = IO $ ST $ \ (S# s#) ->
case takeMVar# mvar# s# of
StateAndPtr# s2# r -> (Right r, S# s2#)
putMVar :: MVar a -> a -> IO ()
putMVar (MVar mvar#) x = IO $ ST $ \ (S# s#) ->
case putMVar# mvar# x s# of
s2# -> (Right (), S# s2#)
newMVar :: a -> IO (MVar a)
newMVar value =
newEmptyMVar >>= \ mvar ->
putMVar mvar value >>
return mvar
readMVar :: MVar a -> IO a
readMVar mvar =
takeMVar mvar >>= \ value ->
putMVar mvar value >>
return value
swapMVar :: MVar a -> a -> IO a
swapMVar mvar new =
takeMVar mvar >>= \ old ->
putMVar mvar new >>
return old
--%************************************************************************
--%* *
--\subsection[PreludeGlaST-ivars]{I-Structures}
--%* *
--%************************************************************************
{-
I-Vars are write-once variables. They start out empty, and any threads that
attempt to read them will block until they are filled. Once they are written,
any blocked threads are freed, and additional reads are permitted. Attempting
to write a value to a full I-Var results in a runtime error.
-}
data IVar a = IVar (SynchVar# RealWorld a)
newIVar :: IO (IVar a)
newIVar = IO $ ST $ \ (S# s#) ->
case newSynchVar# s# of
StateAndSynchVar# s2# svar# -> (Right (IVar svar#), S# s2#)
readIVar :: IVar a -> IO a
readIVar (IVar ivar#) = IO $ ST $ \ (S# s#) ->
case readIVar# ivar# s# of
StateAndPtr# s2# r -> (Right r, S# s2#)
writeIVar :: IVar a -> a -> IO ()
writeIVar (IVar ivar#) x = IO $ ST $ \ (S# s#) ->
case writeIVar# ivar# x s# of
s2# -> (Right (), S# s2#)
{- =============================================================
** THREAD WAITING
-}
{-
@threadDelay@ delays rescheduling of a thread until the indicated
number of microseconds have elapsed. Generally, the microseconds are
counted by the context switch timer, which ticks in virtual time;
however, when there are no runnable threads, we don't accumulate any
virtual time, so we start ticking in real time. (The granularity is
the effective resolution of the context switch timer, so it is
affected by the RTS -C option.)
@threadWait@ delays rescheduling of a thread until input on the
specified file descriptor is available for reading (just like select).
-}
threadDelay, threadWaitRead, threadWaitWrite :: Int -> IO ()
threadDelay (I# x#) = IO $ ST $ \ (S# s#) ->
case delay# x# s# of
s2# -> (Right (), S# s2#)
threadWaitRead (I# x#) = IO $ ST $ \ (S# s#) ->
case waitRead# x# s# of
s2# -> (Right (), S# s2#)
threadWaitWrite (I# x#) = IO $ ST $ \ (S# s#) ->
case waitWrite# x# s# of
s2# -> (Right (), S# s2#)
{- =============================================================
** OTHER SUPPORT FUNCTIONS
3 flavors, basically: string support, error/trace-ish, and read/show-ish.
-}
seq, par, fork :: Eval a => a -> b -> b
{-# INLINE seq #-}
{-# INLINE par #-}
{-# INLINE fork #-}
#ifdef __CONCURRENT_HASKELL__
seq x y = case (seq# x) of { 0# -> parError; _ -> y }
par x y = case (par# x) of { 0# -> parError; _ -> y }
fork x y = case (fork# x) of { 0# -> parError; _ -> y }
#else
seq x y = y
par x y = y
fork x y = y
#endif
-- string-support functions:
---------------------------------------------------------------
--------------------------------------------------------------------------
packStringForC__ :: [Char] -> ByteArray# -- calls injected by compiler
unpackPS__ :: Addr# -> [Char] -- calls injected by compiler
unpackPS2__ :: Addr# -> Int# -> [Char] -- calls injected by compiler
unpackAppendPS__ :: Addr# -> [Char] -> [Char] -- ditto?
unpackFoldrPS__ :: Addr# -> (Char -> a -> a) -> a -> a -- ditto?
packStringForC__ str = case (GHCps.packString str) of { PS bytes _ _ -> bytes}
unpackPS__ addr -- calls injected by compiler
= unpack 0#
where
unpack nh
| ch `eqChar#` '\0'# = []
| True = C# ch : unpack (nh +# 1#)
where
ch = indexCharOffAddr# addr nh
unpackAppendPS__ addr rest
= unpack 0#
where
unpack nh
| ch `eqChar#` '\0'# = rest
| True = C# ch : unpack (nh +# 1#)
where
ch = indexCharOffAddr# addr nh
unpackFoldrPS__ addr f z
= unpack 0#
where
unpack nh
| ch `eqChar#` '\0'# = z
| True = C# ch `f` unpack (nh +# 1#)
where
ch = indexCharOffAddr# addr nh
unpackPS2__ addr len -- calls injected by compiler
-- this one is for literal strings with NULs in them; rare.
= GHCps.unpackPS (GHCps.packCBytes (I# len) (A# addr))
---------------------------------------------------------------
-- injected literals:
---------------------------------------------------------------
integer_0, integer_1, integer_2, integer_m1 :: Integer
integer_0 = 0; integer_1 = 1; integer_2 = 2; integer_m1 = -1
---------------------------------------------------------------
-- error/trace-ish functions:
---------------------------------------------------------------
errorIO :: PrimIO () -> a
errorIO (ST io)
= case (errorIO# io) of
_ -> bottom
where
bottom = bottom -- Never evaluated
error__ :: (Addr{-FILE *-} -> PrimIO ()) -> String -> a
error__ msg_hdr s
#ifdef __PARALLEL_HASKELL__
= errorIO (msg_hdr sTDERR{-msg hdr-} >>
_ccall_ fflush sTDERR >>
fputs sTDERR s >>
_ccall_ fflush sTDERR >>
_ccall_ stg_exit (1::Int)
)
#else
= errorIO (msg_hdr sTDERR{-msg hdr-} >>
_ccall_ fflush sTDERR >>
fputs sTDERR s >>
_ccall_ fflush sTDERR >>
_ccall_ getErrorHandler >>= \ errorHandler ->
if errorHandler == (-1::Int) then
_ccall_ stg_exit (1::Int)
else
_casm_ ``%r = (StgStablePtr)(%0);'' errorHandler
>>= \ osptr ->
_ccall_ decrementErrorCount >>= \ () ->
deRefStablePtr osptr >>= \ oact ->
oact
)
#endif {- !parallel -}
where
sTDERR = (``stderr'' :: Addr)
---------------
fputs :: Addr{-FILE*-} -> String -> PrimIO Bool
fputs stream [] = return True
fputs stream (c : cs)
= _ccall_ stg_putc c stream >> -- stg_putc expands to putc
fputs stream cs -- (just does some casting stream)
---------------------------------------------------------------
-- ******** defn of `_trace' using Glasgow IO *******
{-# GENERATE_SPECS _trace a #-}
trace :: String -> a -> a
trace string expr
= unsafePerformPrimIO (
((_ccall_ PreTraceHook sTDERR{-msg-}):: PrimIO ()) >>
fputs sTDERR string >>
((_ccall_ PostTraceHook sTDERR{-msg-}):: PrimIO ()) >>
returnPrimIO expr )
where
sTDERR = (``stderr'' :: Addr)
---------------------------------------------------------------
-- read/show-ish functions:
---------------------------------------------------------------
{-# GENERATE_SPECS readList__ a #-}
readList__ :: ReadS a -> ReadS [a]
readList__ readx
= readParen False (\r -> [pr | ("[",s) <- lex r, pr <- readl s])
where readl s = [([],t) | ("]",t) <- lex s] ++
[(x:xs,u) | (x,t) <- readx s,
(xs,u) <- readl2 t]
readl2 s = [([],t) | ("]",t) <- lex s] ++
[(x:xs,v) | (",",t) <- lex s,
(x,u) <- readx t,
(xs,v) <- readl2 u]
{-# GENERATE_SPECS showList__ a #-}
showList__ :: (a -> ShowS) -> [a] -> ShowS
showList__ showx [] = showString "[]"
showList__ showx (x:xs) = showChar '[' . showx x . showl xs
where
showl [] = showChar ']'
showl (x:xs) = showString ", " . showx x . showl xs
showSpace :: ShowS
showSpace = {-showChar ' '-} \ xs -> ' ' : xs
-- ******************************************************************
-- This lexer is not completely faithful to the Haskell lexical syntax.
-- Current limitations:
-- Qualified names are not handled properly
-- A `--' does not terminate a symbol
-- Octal and hexidecimal numerics are not recognized as a single token
lex :: ReadS String
lex "" = [("","")]
lex (c:s) | isSpace c = lex (dropWhile isSpace s)
lex ('\'':s) = [('\'':ch++"'", t) | (ch,'\'':t) <- lexLitChar s,
ch /= "'" ]
lex ('"':s) = [('"':str, t) | (str,t) <- lexString s]
where
lexString ('"':s) = [("\"",s)]
lexString s = [(ch++str, u)
| (ch,t) <- lexStrItem s,
(str,u) <- lexString t ]
lexStrItem ('\\':'&':s) = [("\\&",s)]
lexStrItem ('\\':c:s) | isSpace c
= [("\\&",t) | '\\':t <- [dropWhile isSpace s]]
lexStrItem s = lexLitChar s
lex (c:s) | isSingle c = [([c],s)]
| isSym c = [(c:sym,t) | (sym,t) <- [span isSym s]]
| isAlpha c = [(c:nam,t) | (nam,t) <- [span isIdChar s]]
| isDigit c = [(c:ds++fe,t) | (ds,s) <- [span isDigit s],
(fe,t) <- lexFracExp s ]
| otherwise = [] -- bad character
where
isSingle c = c `elem` ",;()[]{}_`"
isSym c = c `elem` "!@#$%&*+./<=>?\\^|:-~"
isIdChar c = isAlphanum c || c `elem` "_'"
lexFracExp ('.':s) = [('.':ds++e,u) | (ds,t) <- lexDigits s,
(e,u) <- lexExp t]
lexFracExp s = [("",s)]
lexExp (e:s) | e `elem` "eE"
= [(e:c:ds,u) | (c:t) <- [s], c `elem` "+-",
(ds,u) <- lexDigits t] ++
[(e:ds,t) | (ds,t) <- lexDigits s]
lexExp s = [("",s)]
lexDigits :: ReadS String
lexDigits = nonnull isDigit
nonnull :: (Char -> Bool) -> ReadS String
nonnull p s = [(cs,t) | (cs@(_:_),t) <- [span p s]]
lexLitChar :: ReadS String
lexLitChar ('\\':s) = [('\\':esc, t) | (esc,t) <- lexEsc s]
where
lexEsc (c:s) | c `elem` "abfnrtv\\\"'" = [([c],s)]
lexEsc s@(d:_) | isDigit d = lexDigits s
lexEsc _ = []
lexLitChar (c:s) = [([c],s)]
lexLitChar "" = []
match :: (Eq a) => [a] -> [a] -> ([a],[a])
match (x:xs) (y:ys) | x == y = match xs ys
match xs ys = (xs,ys)
asciiTab = -- Using an array drags in the array module. listArray ('\NUL', ' ')
["NUL", "SOH", "STX", "ETX", "EOT", "ENQ", "ACK", "BEL",
"BS", "HT", "LF", "VT", "FF", "CR", "SO", "SI",
"DLE", "DC1", "DC2", "DC3", "DC4", "NAK", "SYN", "ETB",
"CAN", "EM", "SUB", "ESC", "FS", "GS", "RS", "US",
"SP"]
readLitChar :: ReadS Char
readLitChar ('\\':s) = readEsc s
where
readEsc ('a':s) = [('\a',s)]
readEsc ('b':s) = [('\b',s)]
readEsc ('f':s) = [('\f',s)]
readEsc ('n':s) = [('\n',s)]
readEsc ('r':s) = [('\r',s)]
readEsc ('t':s) = [('\t',s)]
readEsc ('v':s) = [('\v',s)]
readEsc ('\\':s) = [('\\',s)]
readEsc ('"':s) = [('"',s)]
readEsc ('\'':s) = [('\'',s)]
readEsc ('^':c:s) | c >= '@' && c <= '_'
= [(chr (ord c - ord '@'), s)]
readEsc s@(d:_) | isDigit d
= [(chr n, t) | (n,t) <- readDec s]
readEsc ('o':s) = [(chr n, t) | (n,t) <- readOct s]
readEsc ('x':s) = [(chr n, t) | (n,t) <- readHex s]
readEsc s@(c:_) | isUpper c
= let table = ('\DEL', "DEL") : zip ['\NUL'..] asciiTab
in case [(c,s') | (c, mne) <- table,
([],s') <- [match mne s]]
of (pr:_) -> [pr]
[] -> []
readEsc _ = []
readLitChar (c:s) = [(c,s)]
showLitChar :: Char -> ShowS
showLitChar c | c > '\DEL' = showChar '\\' . protectEsc isDigit (shows (ord c))
showLitChar '\DEL' = showString "\\DEL"
showLitChar '\\' = showString "\\\\"
showLitChar c | c >= ' ' = showChar c
showLitChar '\a' = showString "\\a"
showLitChar '\b' = showString "\\b"
showLitChar '\f' = showString "\\f"
showLitChar '\n' = showString "\\n"
showLitChar '\r' = showString "\\r"
showLitChar '\t' = showString "\\t"
showLitChar '\v' = showString "\\v"
showLitChar '\SO' = protectEsc (== 'H') (showString "\\SO")
showLitChar c = showString ('\\' : asciiTab!!ord c)
protectEsc p f = f . cont
where cont s@(c:_) | p c = "\\&" ++ s
cont s = s
-- ******************************************************************
{-# GENERATE_SPECS readDec a{Int#,Int,Integer} #-}
readDec :: (Integral a) => ReadS a
readDec = readInt 10 isDigit (\d -> ord d - ord_0)
{-# GENERATE_SPECS readOct a{Int#,Int,Integer} #-}
readOct :: (Integral a) => ReadS a
readOct = readInt 8 isOctDigit (\d -> ord d - ord_0)
{-# GENERATE_SPECS readHex a{Int#,Int,Integer} #-}
readHex :: (Integral a) => ReadS a
readHex = readInt 16 isHexDigit hex
where hex d = ord d - (if isDigit d then ord_0
else ord (if isUpper d then 'A' else 'a') - 10)
{-# GENERATE_SPECS readInt a{Int#,Int,Integer} #-}
readInt :: (Integral a) => a -> (Char -> Bool) -> (Char -> Int) -> ReadS a
readInt radix isDig digToInt s =
[(foldl1 (\n d -> n * radix + d) (map (fromInt . digToInt) ds), r)
| (ds,r) <- nonnull isDig s ]
showInt n r
= case quotRem n 10 of { (n', d) ->
case (chr (ord_0 + fromIntegral d)) of { C# c# -> -- stricter than necessary
let
r' = C# c# : r
in
if n' == 0 then r' else showInt n' r'
}}
-- ******************************************************************
{-# GENERATE_SPECS readSigned a{Int#,Double#,Int,Integer,Double} #-}
readSigned :: (Real a) => ReadS a -> ReadS a
readSigned readPos = readParen False read'
where read' r = read'' r ++
[(-x,t) | ("-",s) <- lex r,
(x,t) <- read'' s]
read'' r = [(n,s) | (str,s) <- lex r,
(n,"") <- readPos str]
{-# SPECIALIZE showSigned :: (Int -> ShowS) -> Int -> Int -> ShowS = showSigned_Int,
(Integer -> ShowS) -> Int -> Integer -> ShowS = showSigned_Integer #-}
{-# GENERATE_SPECS showSigned a{Double#,Double} #-}
showSigned :: (Real a) => (a -> ShowS) -> Int -> a -> ShowS
showSigned showPos p x = if x < 0 then showParen (p > 6)
(showChar '-' . showPos (-x))
else showPos x
showSigned_Int :: (Int -> ShowS) -> Int -> Int -> ShowS
showSigned_Int _ p n r
= -- from HBC version; support code follows
if n < 0 && p > 6 then '(':itos n++(')':r) else itos n ++ r
showSigned_Integer :: (Integer -> ShowS) -> Int -> Integer -> ShowS
showSigned_Integer _ p n r
= -- from HBC version; support code follows
if n < 0 && p > 6 then '(':jtos n++(')':r) else jtos n ++ r
-- ******************************************************************
itos# :: Int# -> String
itos# n =
if n `ltInt#` 0# then
if negateInt# n `ltInt#` 0# then
-- n is minInt, a difficult number
itos# (n `quotInt#` 10#) ++ itos' (negateInt# (n `remInt#` 10#)) []
else
'-':itos' (negateInt# n) []
else
itos' n []
where
itos' :: Int# -> String -> String
itos' n cs =
if n `ltInt#` 10# then
C# (chr# (n `plusInt#` ord# '0'#)) : cs
else
itos' (n `quotInt#` 10#) (C# (chr# (n `remInt#` 10# `plusInt#` ord# '0'#)) : cs)
itos :: Int -> String
itos (I# n) = itos# n
jtos :: Integer -> String
jtos n
= if n < 0 then
'-' : jtos' (-n) []
else
jtos' n []
jtos' :: Integer -> String -> String
jtos' n cs
= if n < 10 then
chr (fromInteger (n + ord_0)) : cs
else
jtos' (n `quot` 10) (chr (fromInteger (n `rem` 10 + ord_0)) : cs)
chr = (toEnum :: Int -> Char)
ord = (fromEnum :: Char -> Int)
ord_0 :: Num a => a
ord_0 = fromInt (ord '0')
-- ******************************************************************
-- The functions readFloat and showFloat below use rational arithmetic
-- to insure correct conversion between the floating-point radix and
-- decimal. It is often possible to use a higher-precision floating-
-- point type to obtain the same results.
{-# GENERATE_SPECS readFloat a{Double#,Double} #-}
readFloat :: (RealFloat a) => ReadS a
readFloat r = [(fromRational x, t) | (x, t) <- readRational r]
readRational :: ReadS Rational -- NB: doesn't handle leading "-"
readRational r
= [ ( (n%1)*10^^(k-d), t ) | (n,d,s) <- readFix r,
(k,t) <- readExp s]
where readFix r = [(read (ds++ds'), length ds', t)
| (ds,'.':s) <- lexDigits r,
(ds',t) <- lexDigits s ]
readExp (e:s) | e `elem` "eE" = readExp' s
readExp s = [(0,s)]
readExp' ('-':s) = [(-k,t) | (k,t) <- readDec s]
readExp' ('+':s) = readDec s
readExp' s = readDec s
readRational__ :: String -> Rational -- we export this one (non-std)
-- NB: *does* handle a leading "-"
readRational__ top_s
= case top_s of
'-' : xs -> - (read_me xs)
xs -> read_me xs
where
read_me s
= case [x | (x,t) <- readRational s, ("","") <- lex t] of
[x] -> x
[] -> error ("readRational__: no parse:" ++ top_s)
_ -> error ("readRational__: ambiguous parse:" ++ top_s)
-- The number of decimal digits m below is chosen to guarantee
-- read (show x) == x. See
-- Matula, D. W. A formalization of floating-point numeric base
-- conversion. IEEE Transactions on Computers C-19, 8 (1970 August),
-- 681-692.
zeros = repeat '0'
{-# GENERATE_SPECS showFloat a{Double#,Double} #-}
showFloat:: (RealFloat a) => a -> ShowS
showFloat x =
if x == 0 then showString ("0." ++ take (m-1) zeros)
else if e >= m-1 || e < 0 then showSci else showFix
where
showFix = showString whole . showChar '.' . showString frac
where (whole,frac) = splitAt (e+1) (show sig)
showSci = showChar d . showChar '.' . showString frac
. showChar 'e' . shows e
where (d:frac) = show sig
(m, sig, e) = if b == 10 then (w, s, n+w-1)
else (m', sig', e' )
m' = ceiling
((fromInt w * log (fromInteger b)) / log 10 :: Double)
+ 1
(sig', e') = if sig1 >= 10^m' then (round (t/10), e1+1)
else if sig1 < 10^(m'-1) then (round (t*10), e1-1)
else (sig1, e1 )
sig1 = round t
t = s%1 * (b%1)^^n * 10^^(m'-e1-1)
e1 = floor (logBase 10 x)
(s, n) = decodeFloat x
b = floatRadix x
w = floatDigits x
---------------------------------------------------------
-- definitions of the boxed PrimOps; these will be
-- used in the case of partial applications, etc.
plusInt (I# x) (I# y) = I# (plusInt# x y)
minusInt(I# x) (I# y) = I# (minusInt# x y)
timesInt(I# x) (I# y) = I# (timesInt# x y)
quotInt (I# x) (I# y) = I# (quotInt# x y)
remInt (I# x) (I# y) = I# (remInt# x y)
negateInt (I# x) = I# (negateInt# x)
gtInt (I# x) (I# y) = gtInt# x y
geInt (I# x) (I# y) = geInt# x y
eqInt (I# x) (I# y) = eqInt# x y
neInt (I# x) (I# y) = neInt# x y
ltInt (I# x) (I# y) = ltInt# x y
leInt (I# x) (I# y) = leInt# x y
-- definitions of the boxed PrimOps; these will be
-- used in the case of partial applications, etc.
plusFloat (F# x) (F# y) = F# (plusFloat# x y)
minusFloat (F# x) (F# y) = F# (minusFloat# x y)
timesFloat (F# x) (F# y) = F# (timesFloat# x y)
divideFloat (F# x) (F# y) = F# (divideFloat# x y)
negateFloat (F# x) = F# (negateFloat# x)
gtFloat (F# x) (F# y) = gtFloat# x y
geFloat (F# x) (F# y) = geFloat# x y
eqFloat (F# x) (F# y) = eqFloat# x y
neFloat (F# x) (F# y) = neFloat# x y
ltFloat (F# x) (F# y) = ltFloat# x y
leFloat (F# x) (F# y) = leFloat# x y
float2Int (F# x) = I# (float2Int# x)
int2Float (I# x) = F# (int2Float# x)
expFloat (F# x) = F# (expFloat# x)
logFloat (F# x) = F# (logFloat# x)
sqrtFloat (F# x) = F# (sqrtFloat# x)
sinFloat (F# x) = F# (sinFloat# x)
cosFloat (F# x) = F# (cosFloat# x)
tanFloat (F# x) = F# (tanFloat# x)
asinFloat (F# x) = F# (asinFloat# x)
acosFloat (F# x) = F# (acosFloat# x)
atanFloat (F# x) = F# (atanFloat# x)
sinhFloat (F# x) = F# (sinhFloat# x)
coshFloat (F# x) = F# (coshFloat# x)
tanhFloat (F# x) = F# (tanhFloat# x)
powerFloat (F# x) (F# y) = F# (powerFloat# x y)
-- definitions of the boxed PrimOps; these will be
-- used in the case of partial applications, etc.
plusDouble (D# x) (D# y) = D# (plusDouble# x y)
minusDouble (D# x) (D# y) = D# (minusDouble# x y)
timesDouble (D# x) (D# y) = D# (timesDouble# x y)
divideDouble (D# x) (D# y) = D# (divideDouble# x y)
negateDouble (D# x) = D# (negateDouble# x)
gtDouble (D# x) (D# y) = gtDouble# x y
geDouble (D# x) (D# y) = geDouble# x y
eqDouble (D# x) (D# y) = eqDouble# x y
neDouble (D# x) (D# y) = neDouble# x y
ltDouble (D# x) (D# y) = ltDouble# x y
leDouble (D# x) (D# y) = leDouble# x y
double2Int (D# x) = I# (double2Int# x)
int2Double (I# x) = D# (int2Double# x)
double2Float (D# x) = F# (double2Float# x)
float2Double (F# x) = D# (float2Double# x)
expDouble (D# x) = D# (expDouble# x)
logDouble (D# x) = D# (logDouble# x)
sqrtDouble (D# x) = D# (sqrtDouble# x)
sinDouble (D# x) = D# (sinDouble# x)
cosDouble (D# x) = D# (cosDouble# x)
tanDouble (D# x) = D# (tanDouble# x)
asinDouble (D# x) = D# (asinDouble# x)
acosDouble (D# x) = D# (acosDouble# x)
atanDouble (D# x) = D# (atanDouble# x)
sinhDouble (D# x) = D# (sinhDouble# x)
coshDouble (D# x) = D# (coshDouble# x)
tanhDouble (D# x) = D# (tanhDouble# x)
powerDouble (D# x) (D# y) = D# (powerDouble# x y)
---------------------------------------------------------
{-
[In response to a request by simonpj, Joe Fasel writes:]
A quite reasonable request! This code was added to the Prelude just
before the 1.2 release, when Lennart, working with an early version
of hbi, noticed that (read . show) was not the identity for
floating-point numbers. (There was a one-bit error about half the time.)
The original version of the conversion function was in fact simply
a floating-point divide, as you suggest above. The new version is,
I grant you, somewhat denser.
How's this?
Joe
-}
{-# GENERATE_SPECS fromRational__ a{Double#,Double} #-}
fromRational__ :: (RealFloat a) => Rational -> a
fromRational__ x = x'
where x' = f e
-- If the exponent of the nearest floating-point number to x
-- is e, then the significand is the integer nearest xb^(-e),
-- where b is the floating-point radix. We start with a good
-- guess for e, and if it is correct, the exponent of the
-- floating-point number we construct will again be e. If
-- not, one more iteration is needed.
f e = if e' == e then y else f e'
where y = encodeFloat (round (x * (1 % b)^^e)) e
(_,e') = decodeFloat y
b = floatRadix x'
-- We obtain a trial exponent by doing a floating-point
-- division of x's numerator by its denominator. The
-- result of this division may not itself be the ultimate
-- result, because of an accumulation of three rounding
-- errors.
(s,e) = decodeFloat (fromInteger (numerator x) `asTypeOf` x'
/ fromInteger (denominator x))
-------------------------------------------------------------------------
-- from/by Lennart, 94/09/26
-- Convert a Rational to a string that looks like a floating point number,
-- but without converting to any floating type (because of the possible overflow).
showRational :: Int -> Rational -> String
showRational n r =
if r == 0 then
"0.0"
else
let (r', e) = normalize r
in prR n r' e
startExpExp = 4 :: Int
-- make sure 1 <= r < 10
normalize :: Rational -> (Rational, Int)
normalize r = if r < 1 then
case norm startExpExp (1 / r) 0 of (r', e) -> (10 / r', -e-1)
else
norm startExpExp r 0
where norm :: Int -> Rational -> Int -> (Rational, Int)
-- Invariant: r*10^e == original r
norm 0 r e = (r, e)
norm ee r e =
let n = 10^ee
tn = 10^n
in if r >= tn then norm ee (r/tn) (e+n) else norm (ee-1) r e
drop0 "" = ""
drop0 (c:cs) = c : reverse (dropWhile (=='0') (reverse cs))
prR :: Int -> Rational -> Int -> String
prR n r e | r < 1 = prR n (r*10) (e-1) -- final adjustment
prR n r e | r >= 10 = prR n (r/10) (e+1)
prR n r e0 =
let s = show ((round (r * 10^n))::Integer)
e = e0+1
in if e > 0 && e < 8 then
take e s ++ "." ++ drop0 (drop e s)
else if e <= 0 && e > -3 then
"0." ++ take (-e) (repeat '0') ++ drop0 s
else
head s : "."++ drop0 (tail s) ++ "e" ++ show e0
|