summaryrefslogtreecommitdiff
path: root/ghc/rts/GC.c
blob: a13cd33afadd346ed79e20ac72235ea4e62887eb (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645
2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
2679
2680
2681
2682
2683
2684
2685
2686
2687
2688
2689
2690
2691
2692
2693
2694
2695
2696
2697
2698
2699
2700
2701
2702
2703
2704
2705
2706
2707
2708
2709
2710
2711
2712
2713
2714
2715
2716
2717
2718
2719
2720
2721
2722
2723
2724
2725
2726
2727
2728
2729
2730
2731
2732
2733
2734
2735
2736
2737
2738
2739
2740
2741
2742
2743
2744
2745
2746
2747
2748
2749
2750
2751
2752
2753
2754
2755
2756
2757
2758
2759
2760
2761
2762
2763
2764
2765
2766
2767
2768
2769
2770
2771
2772
2773
2774
2775
2776
2777
2778
2779
2780
2781
2782
2783
2784
2785
2786
2787
2788
2789
2790
2791
2792
2793
2794
2795
2796
2797
2798
2799
2800
2801
2802
2803
2804
2805
2806
2807
2808
2809
2810
2811
2812
2813
2814
2815
2816
2817
2818
2819
2820
2821
2822
2823
2824
2825
2826
2827
2828
2829
2830
2831
2832
2833
2834
2835
2836
2837
2838
2839
2840
2841
2842
2843
2844
2845
2846
2847
2848
2849
2850
2851
2852
2853
2854
2855
2856
2857
2858
2859
2860
2861
2862
2863
2864
2865
2866
2867
2868
2869
2870
2871
2872
2873
2874
2875
2876
2877
2878
2879
2880
2881
2882
2883
2884
2885
2886
2887
2888
2889
2890
2891
2892
2893
2894
2895
2896
2897
2898
2899
2900
2901
2902
2903
2904
2905
2906
2907
2908
2909
2910
2911
2912
2913
2914
2915
2916
2917
2918
2919
2920
2921
2922
2923
2924
2925
2926
2927
2928
2929
2930
2931
2932
2933
2934
2935
2936
2937
2938
2939
2940
2941
2942
2943
2944
2945
2946
2947
2948
2949
2950
2951
2952
2953
2954
2955
2956
2957
2958
2959
2960
2961
2962
2963
2964
2965
2966
2967
2968
2969
2970
2971
2972
2973
2974
2975
2976
2977
2978
2979
2980
2981
2982
2983
2984
2985
2986
2987
2988
2989
2990
2991
2992
2993
2994
2995
2996
2997
2998
2999
3000
3001
3002
3003
3004
3005
3006
3007
3008
3009
3010
3011
3012
3013
3014
3015
3016
3017
3018
3019
3020
3021
3022
3023
3024
3025
3026
3027
3028
3029
3030
3031
3032
3033
3034
3035
3036
3037
3038
3039
3040
3041
3042
3043
3044
3045
3046
3047
3048
3049
3050
3051
3052
3053
3054
3055
3056
3057
3058
3059
3060
3061
3062
3063
3064
3065
3066
3067
3068
3069
3070
3071
3072
3073
3074
3075
3076
3077
3078
3079
3080
3081
3082
3083
3084
3085
3086
3087
3088
3089
3090
3091
3092
3093
3094
3095
3096
3097
3098
3099
3100
3101
3102
3103
3104
3105
3106
3107
3108
3109
3110
3111
3112
3113
3114
3115
3116
3117
3118
3119
3120
3121
3122
3123
3124
3125
3126
3127
3128
3129
3130
3131
3132
3133
3134
3135
3136
3137
3138
3139
3140
3141
3142
3143
3144
3145
3146
3147
3148
3149
3150
3151
3152
3153
3154
3155
3156
3157
3158
3159
3160
3161
3162
3163
3164
3165
3166
3167
3168
3169
3170
3171
3172
3173
3174
3175
3176
3177
3178
3179
3180
3181
3182
3183
3184
3185
3186
3187
3188
3189
3190
3191
3192
3193
3194
3195
3196
3197
3198
3199
3200
3201
3202
3203
3204
3205
3206
3207
3208
3209
3210
3211
3212
3213
3214
3215
3216
3217
3218
3219
3220
3221
3222
3223
3224
3225
3226
3227
3228
3229
3230
3231
3232
3233
3234
3235
3236
3237
3238
3239
3240
3241
3242
3243
3244
3245
3246
3247
3248
3249
3250
3251
3252
3253
3254
3255
3256
3257
3258
3259
3260
3261
3262
3263
3264
3265
3266
3267
3268
3269
3270
3271
3272
3273
3274
3275
3276
3277
3278
3279
3280
3281
3282
3283
3284
3285
3286
3287
3288
3289
3290
3291
3292
3293
3294
3295
3296
3297
3298
3299
3300
3301
3302
3303
3304
3305
3306
3307
3308
3309
3310
3311
3312
3313
3314
3315
3316
3317
3318
3319
3320
3321
3322
3323
3324
3325
3326
3327
3328
3329
3330
3331
3332
3333
3334
3335
3336
3337
3338
3339
3340
3341
3342
3343
3344
3345
3346
3347
3348
3349
3350
3351
3352
3353
3354
3355
3356
3357
3358
3359
3360
3361
3362
3363
3364
3365
3366
3367
3368
3369
3370
3371
3372
3373
3374
3375
3376
3377
3378
3379
3380
3381
3382
3383
3384
3385
3386
3387
3388
3389
3390
3391
3392
3393
3394
3395
3396
3397
3398
3399
3400
3401
3402
3403
3404
3405
3406
3407
3408
3409
3410
3411
3412
3413
3414
3415
3416
3417
3418
3419
3420
3421
3422
3423
3424
3425
3426
3427
3428
3429
3430
3431
3432
3433
3434
3435
3436
3437
3438
3439
3440
3441
3442
3443
3444
3445
3446
3447
3448
3449
3450
3451
3452
3453
3454
3455
3456
3457
3458
3459
3460
3461
3462
3463
3464
3465
3466
3467
3468
3469
3470
3471
3472
3473
3474
3475
3476
3477
3478
3479
3480
3481
3482
3483
3484
3485
3486
3487
3488
3489
3490
3491
3492
3493
3494
3495
3496
3497
3498
3499
3500
3501
3502
3503
3504
3505
3506
3507
3508
3509
3510
3511
3512
3513
3514
3515
3516
3517
3518
3519
3520
3521
3522
3523
3524
3525
3526
3527
3528
3529
3530
3531
3532
3533
3534
3535
3536
3537
3538
3539
3540
3541
3542
3543
3544
3545
3546
3547
3548
3549
3550
3551
3552
3553
3554
3555
3556
3557
3558
3559
3560
3561
3562
3563
3564
3565
3566
3567
3568
3569
3570
3571
3572
3573
3574
3575
3576
3577
3578
3579
3580
3581
3582
3583
3584
3585
3586
3587
3588
3589
3590
3591
3592
3593
3594
3595
3596
3597
3598
3599
3600
3601
3602
3603
3604
3605
3606
3607
3608
3609
3610
3611
3612
3613
3614
3615
3616
3617
3618
3619
3620
3621
3622
3623
3624
3625
3626
3627
3628
3629
3630
3631
3632
3633
3634
3635
3636
3637
3638
3639
3640
3641
3642
3643
3644
3645
3646
3647
3648
3649
3650
3651
3652
3653
3654
3655
3656
3657
3658
3659
3660
3661
3662
3663
3664
3665
3666
3667
3668
3669
3670
3671
3672
3673
3674
3675
3676
3677
3678
3679
3680
3681
3682
3683
3684
3685
3686
3687
3688
3689
3690
3691
3692
3693
3694
3695
3696
3697
3698
3699
3700
3701
3702
3703
3704
3705
3706
3707
3708
3709
3710
3711
3712
3713
3714
3715
3716
3717
3718
3719
3720
3721
3722
3723
3724
3725
3726
3727
3728
3729
3730
3731
3732
3733
3734
3735
3736
3737
3738
3739
3740
3741
3742
3743
3744
3745
3746
3747
3748
3749
3750
3751
3752
3753
3754
3755
3756
3757
3758
3759
3760
3761
3762
3763
3764
3765
3766
3767
3768
3769
3770
3771
3772
3773
3774
3775
3776
3777
3778
3779
3780
3781
3782
3783
3784
3785
3786
3787
3788
3789
3790
3791
3792
3793
3794
3795
3796
3797
3798
3799
3800
3801
3802
3803
3804
3805
3806
3807
3808
3809
3810
3811
3812
3813
3814
3815
3816
3817
3818
3819
3820
3821
3822
3823
3824
3825
3826
3827
3828
3829
3830
3831
3832
3833
3834
3835
3836
3837
3838
3839
3840
3841
3842
3843
3844
3845
3846
3847
3848
3849
3850
3851
3852
3853
3854
3855
3856
3857
3858
3859
3860
3861
3862
3863
3864
3865
3866
3867
3868
3869
3870
3871
3872
3873
3874
3875
3876
3877
3878
3879
3880
3881
3882
3883
3884
3885
3886
3887
3888
3889
3890
3891
3892
3893
3894
3895
3896
3897
3898
3899
3900
3901
3902
3903
3904
3905
3906
3907
3908
3909
3910
3911
3912
3913
3914
3915
3916
3917
3918
3919
3920
3921
3922
3923
3924
3925
3926
3927
3928
3929
3930
3931
3932
3933
3934
3935
3936
3937
3938
3939
3940
3941
3942
3943
3944
3945
3946
3947
3948
3949
3950
3951
3952
3953
3954
3955
3956
3957
3958
3959
3960
3961
3962
3963
3964
3965
3966
3967
3968
3969
3970
3971
3972
3973
3974
3975
3976
3977
3978
3979
3980
3981
3982
3983
3984
3985
3986
3987
3988
3989
3990
3991
3992
3993
3994
3995
3996
3997
3998
3999
4000
4001
4002
4003
4004
4005
4006
4007
4008
4009
4010
4011
4012
4013
4014
4015
4016
4017
4018
4019
4020
4021
4022
4023
4024
4025
4026
4027
4028
4029
4030
4031
4032
4033
4034
4035
4036
4037
4038
4039
4040
4041
4042
4043
4044
4045
4046
4047
4048
4049
4050
4051
4052
4053
4054
4055
4056
4057
4058
4059
4060
4061
4062
4063
4064
4065
4066
4067
4068
4069
4070
4071
4072
4073
4074
4075
4076
4077
4078
4079
4080
4081
4082
4083
4084
4085
4086
4087
4088
4089
4090
4091
4092
4093
4094
4095
4096
4097
4098
4099
4100
4101
4102
4103
4104
4105
4106
4107
4108
4109
4110
4111
4112
4113
4114
4115
4116
4117
4118
4119
4120
4121
4122
4123
4124
4125
4126
4127
4128
4129
4130
4131
4132
4133
4134
4135
4136
4137
4138
4139
4140
4141
4142
4143
4144
4145
4146
4147
4148
4149
4150
4151
4152
4153
4154
4155
4156
4157
4158
4159
4160
4161
4162
4163
4164
4165
4166
4167
4168
4169
4170
4171
4172
4173
4174
4175
4176
4177
4178
4179
4180
4181
4182
4183
4184
4185
4186
4187
4188
4189
4190
4191
4192
4193
4194
4195
4196
4197
4198
4199
4200
4201
4202
4203
4204
4205
4206
4207
4208
4209
4210
4211
4212
4213
4214
4215
4216
4217
4218
4219
4220
4221
4222
4223
4224
4225
4226
4227
4228
4229
4230
4231
4232
4233
4234
4235
4236
4237
4238
4239
4240
4241
4242
4243
4244
4245
4246
4247
4248
4249
4250
4251
4252
4253
4254
4255
4256
4257
4258
4259
4260
4261
4262
4263
4264
4265
4266
4267
4268
4269
4270
4271
4272
4273
4274
4275
4276
4277
4278
4279
4280
4281
4282
4283
4284
4285
4286
4287
4288
4289
4290
4291
4292
4293
4294
4295
4296
4297
4298
4299
4300
4301
4302
4303
4304
4305
4306
4307
4308
4309
4310
4311
4312
4313
4314
4315
4316
4317
4318
4319
4320
4321
4322
4323
4324
4325
4326
4327
4328
4329
4330
4331
4332
4333
4334
4335
4336
4337
4338
4339
4340
4341
4342
4343
4344
4345
4346
4347
4348
4349
4350
4351
4352
4353
4354
4355
4356
4357
4358
4359
4360
4361
4362
4363
4364
4365
4366
4367
4368
4369
4370
4371
4372
4373
4374
4375
4376
4377
4378
4379
4380
4381
4382
4383
4384
4385
4386
4387
4388
4389
4390
4391
4392
4393
4394
4395
4396
4397
4398
4399
4400
4401
4402
4403
4404
4405
4406
4407
4408
4409
4410
4411
4412
4413
4414
4415
4416
4417
4418
4419
4420
4421
4422
4423
4424
4425
4426
4427
4428
4429
4430
4431
4432
4433
4434
4435
4436
4437
4438
4439
4440
4441
4442
4443
4444
4445
4446
4447
4448
4449
4450
4451
4452
4453
4454
4455
4456
4457
4458
4459
4460
4461
4462
4463
4464
4465
4466
4467
4468
4469
4470
4471
4472
4473
4474
4475
4476
4477
4478
4479
4480
4481
4482
4483
4484
4485
4486
4487
4488
4489
4490
4491
4492
4493
4494
4495
4496
4497
4498
4499
4500
4501
4502
4503
4504
4505
4506
4507
4508
4509
4510
4511
4512
4513
4514
4515
4516
4517
4518
4519
4520
4521
4522
4523
4524
4525
4526
4527
4528
4529
4530
4531
4532
4533
4534
4535
4536
4537
4538
4539
4540
4541
4542
4543
4544
4545
4546
4547
4548
4549
4550
4551
4552
4553
4554
4555
4556
4557
4558
4559
4560
4561
4562
4563
4564
4565
4566
4567
4568
4569
4570
4571
4572
4573
4574
4575
4576
4577
4578
4579
4580
4581
4582
4583
4584
4585
4586
4587
4588
4589
4590
4591
4592
4593
4594
4595
4596
4597
4598
4599
4600
4601
4602
4603
4604
4605
4606
4607
4608
4609
4610
4611
4612
4613
4614
4615
4616
4617
4618
4619
4620
4621
4622
4623
4624
4625
4626
4627
4628
4629
4630
4631
4632
4633
4634
4635
4636
4637
4638
4639
4640
4641
4642
4643
4644
4645
4646
4647
4648
4649
4650
4651
4652
4653
4654
4655
4656
4657
4658
4659
4660
4661
4662
4663
4664
4665
4666
4667
4668
4669
4670
4671
4672
4673
4674
4675
4676
4677
4678
4679
4680
4681
4682
4683
4684
4685
4686
4687
4688
4689
4690
4691
4692
4693
4694
4695
4696
4697
4698
4699
4700
4701
4702
4703
4704
4705
4706
4707
4708
4709
4710
4711
4712
4713
4714
4715
4716
4717
4718
4719
/* -----------------------------------------------------------------------------
 *
 * (c) The GHC Team 1998-2003
 *
 * Generational garbage collector
 *
 * ---------------------------------------------------------------------------*/

#include "PosixSource.h"
#include "Rts.h"
#include "RtsFlags.h"
#include "RtsUtils.h"
#include "Apply.h"
#include "OSThreads.h"
#include "Storage.h"
#include "LdvProfile.h"
#include "Updates.h"
#include "Stats.h"
#include "Schedule.h"
#include "Sanity.h"
#include "BlockAlloc.h"
#include "MBlock.h"
#include "ProfHeap.h"
#include "SchedAPI.h"
#include "Weak.h"
#include "Prelude.h"
#include "ParTicky.h"		// ToDo: move into Rts.h
#include "GCCompact.h"
#include "RtsSignals.h"
#include "STM.h"
#if defined(GRAN) || defined(PAR)
# include "GranSimRts.h"
# include "ParallelRts.h"
# include "FetchMe.h"
# if defined(DEBUG)
#  include "Printer.h"
#  include "ParallelDebug.h"
# endif
#endif
#include "HsFFI.h"
#include "Linker.h"
#if defined(RTS_GTK_FRONTPANEL)
#include "FrontPanel.h"
#endif

#include "RetainerProfile.h"

#include <string.h>

// Turn off inlining when debugging - it obfuscates things
#ifdef DEBUG
# undef  STATIC_INLINE
# define STATIC_INLINE static
#endif

/* STATIC OBJECT LIST.
 *
 * During GC:
 * We maintain a linked list of static objects that are still live.
 * The requirements for this list are:
 *
 *  - we need to scan the list while adding to it, in order to
 *    scavenge all the static objects (in the same way that
 *    breadth-first scavenging works for dynamic objects).
 *
 *  - we need to be able to tell whether an object is already on
 *    the list, to break loops.
 *
 * Each static object has a "static link field", which we use for
 * linking objects on to the list.  We use a stack-type list, consing
 * objects on the front as they are added (this means that the
 * scavenge phase is depth-first, not breadth-first, but that
 * shouldn't matter).  
 *
 * A separate list is kept for objects that have been scavenged
 * already - this is so that we can zero all the marks afterwards.
 *
 * An object is on the list if its static link field is non-zero; this
 * means that we have to mark the end of the list with '1', not NULL.  
 *
 * Extra notes for generational GC:
 *
 * Each generation has a static object list associated with it.  When
 * collecting generations up to N, we treat the static object lists
 * from generations > N as roots.
 *
 * We build up a static object list while collecting generations 0..N,
 * which is then appended to the static object list of generation N+1.
 */
static StgClosure* static_objects;      // live static objects
StgClosure* scavenged_static_objects;   // static objects scavenged so far

/* N is the oldest generation being collected, where the generations
 * are numbered starting at 0.  A major GC (indicated by the major_gc
 * flag) is when we're collecting all generations.  We only attempt to
 * deal with static objects and GC CAFs when doing a major GC.
 */
static nat N;
static rtsBool major_gc;

/* Youngest generation that objects should be evacuated to in
 * evacuate().  (Logically an argument to evacuate, but it's static
 * a lot of the time so we optimise it into a global variable).
 */
static nat evac_gen;

/* Whether to do eager promotion or not.
 */
static rtsBool eager_promotion;

/* Weak pointers
 */
StgWeak *old_weak_ptr_list; // also pending finaliser list

/* Which stage of processing various kinds of weak pointer are we at?
 * (see traverse_weak_ptr_list() below for discussion).
 */
typedef enum { WeakPtrs, WeakThreads, WeakDone } WeakStage;
static WeakStage weak_stage;

/* List of all threads during GC
 */
static StgTSO *old_all_threads;
StgTSO *resurrected_threads;

/* Flag indicating failure to evacuate an object to the desired
 * generation.
 */
static rtsBool failed_to_evac;

/* Saved nursery (used for 2-space collector only)
 */
static bdescr *saved_nursery;
static nat saved_n_blocks;
  
/* Data used for allocation area sizing.
 */
static lnat new_blocks;		 // blocks allocated during this GC 
static lnat new_scavd_blocks;	 // ditto, but depth-first blocks
static lnat g0s0_pcnt_kept = 30; // percentage of g0s0 live at last minor GC 

/* Used to avoid long recursion due to selector thunks
 */
static lnat thunk_selector_depth = 0;
#define MAX_THUNK_SELECTOR_DEPTH 8

/* Mut-list stats */
#ifdef DEBUG
static nat 
    mutlist_MUTVARS,
    mutlist_MUTARRS,
    mutlist_OTHERS;
#endif

/* -----------------------------------------------------------------------------
   Static function declarations
   -------------------------------------------------------------------------- */

static bdescr *     gc_alloc_block          ( step *stp );
static void         mark_root               ( StgClosure **root );

// Use a register argument for evacuate, if available.
#if __GNUC__ >= 2
#define REGPARM1 __attribute__((regparm(1)))
#else
#define REGPARM1
#endif

REGPARM1 static StgClosure * evacuate (StgClosure *q);

static void         zero_static_object_list ( StgClosure* first_static );

static rtsBool      traverse_weak_ptr_list  ( void );
static void         mark_weak_ptr_list      ( StgWeak **list );

static StgClosure * eval_thunk_selector     ( nat field, StgSelector * p );


static void    scavenge                ( step * );
static void    scavenge_mark_stack     ( void );
static void    scavenge_stack          ( StgPtr p, StgPtr stack_end );
static rtsBool scavenge_one            ( StgPtr p );
static void    scavenge_large          ( step * );
static void    scavenge_static         ( void );
static void    scavenge_mutable_list   ( generation *g );

static void    scavenge_large_bitmap   ( StgPtr p, 
					 StgLargeBitmap *large_bitmap, 
					 nat size );

#if 0 && defined(DEBUG)
static void         gcCAFs                  ( void );
#endif

/* -----------------------------------------------------------------------------
   inline functions etc. for dealing with the mark bitmap & stack.
   -------------------------------------------------------------------------- */

#define MARK_STACK_BLOCKS 4

static bdescr *mark_stack_bdescr;
static StgPtr *mark_stack;
static StgPtr *mark_sp;
static StgPtr *mark_splim;

// Flag and pointers used for falling back to a linear scan when the
// mark stack overflows.
static rtsBool mark_stack_overflowed;
static bdescr *oldgen_scan_bd;
static StgPtr  oldgen_scan;

STATIC_INLINE rtsBool
mark_stack_empty(void)
{
    return mark_sp == mark_stack;
}

STATIC_INLINE rtsBool
mark_stack_full(void)
{
    return mark_sp >= mark_splim;
}

STATIC_INLINE void
reset_mark_stack(void)
{
    mark_sp = mark_stack;
}

STATIC_INLINE void
push_mark_stack(StgPtr p)
{
    *mark_sp++ = p;
}

STATIC_INLINE StgPtr
pop_mark_stack(void)
{
    return *--mark_sp;
}

/* -----------------------------------------------------------------------------
   Allocate a new to-space block in the given step.
   -------------------------------------------------------------------------- */

static bdescr *
gc_alloc_block(step *stp)
{
    bdescr *bd = allocBlock();
    bd->gen_no = stp->gen_no;
    bd->step = stp;
    bd->link = NULL;

    // blocks in to-space in generations up to and including N
    // get the BF_EVACUATED flag.
    if (stp->gen_no <= N) {
	bd->flags = BF_EVACUATED;
    } else {
	bd->flags = 0;
    }

    // Start a new to-space block, chain it on after the previous one.
    if (stp->hp_bd != NULL) {
	stp->hp_bd->free = stp->hp;
	stp->hp_bd->link = bd;
    }

    stp->hp_bd = bd;
    stp->hp    = bd->start;
    stp->hpLim = stp->hp + BLOCK_SIZE_W;

    stp->n_blocks++;
    new_blocks++;

    return bd;
}

static bdescr *
gc_alloc_scavd_block(step *stp)
{
    bdescr *bd = allocBlock();
    bd->gen_no = stp->gen_no;
    bd->step = stp;

    // blocks in to-space in generations up to and including N
    // get the BF_EVACUATED flag.
    if (stp->gen_no <= N) {
	bd->flags = BF_EVACUATED;
    } else {
	bd->flags = 0;
    }

    bd->link = stp->blocks;
    stp->blocks = bd;

    if (stp->scavd_hp != NULL) {
	Bdescr(stp->scavd_hp)->free = stp->scavd_hp;
    }
    stp->scavd_hp    = bd->start;
    stp->scavd_hpLim = stp->scavd_hp + BLOCK_SIZE_W;

    stp->n_blocks++;
    new_scavd_blocks++;

    return bd;
}

/* -----------------------------------------------------------------------------
   GarbageCollect

   Rough outline of the algorithm: for garbage collecting generation N
   (and all younger generations):

     - follow all pointers in the root set.  the root set includes all 
       mutable objects in all generations (mutable_list).

     - for each pointer, evacuate the object it points to into either

       + to-space of the step given by step->to, which is the next
         highest step in this generation or the first step in the next
         generation if this is the last step.

       + to-space of generations[evac_gen]->steps[0], if evac_gen != 0.
         When we evacuate an object we attempt to evacuate
         everything it points to into the same generation - this is
         achieved by setting evac_gen to the desired generation.  If
         we can't do this, then an entry in the mut list has to
         be made for the cross-generation pointer.

       + if the object is already in a generation > N, then leave
         it alone.

     - repeatedly scavenge to-space from each step in each generation
       being collected until no more objects can be evacuated.
      
     - free from-space in each step, and set from-space = to-space.

   Locks held: all capabilities are held throughout GarbageCollect().

   -------------------------------------------------------------------------- */

void
GarbageCollect ( void (*get_roots)(evac_fn), rtsBool force_major_gc )
{
  bdescr *bd;
  step *stp;
  lnat live, allocated, copied = 0, scavd_copied = 0;
  lnat oldgen_saved_blocks = 0;
  nat g, s, i;

  ACQUIRE_SM_LOCK;

#ifdef PROFILING
  CostCentreStack *prev_CCS;
#endif

#if defined(DEBUG) && defined(GRAN)
  IF_DEBUG(gc, debugBelch("@@ Starting garbage collection at %ld (%lx)\n", 
		     Now, Now));
#endif

#if defined(RTS_USER_SIGNALS)
  // block signals
  blockUserSignals();
#endif

  // tell the STM to discard any cached closures its hoping to re-use
  stmPreGCHook();

  // tell the stats department that we've started a GC 
  stat_startGC();

#ifdef DEBUG
  // check for memory leaks if DEBUG is on 
  memInventory();
#endif

#ifdef DEBUG
  mutlist_MUTVARS = 0;
  mutlist_MUTARRS = 0;
  mutlist_OTHERS = 0;
#endif

  // Init stats and print par specific (timing) info 
  PAR_TICKY_PAR_START();

  // attribute any costs to CCS_GC 
#ifdef PROFILING
  prev_CCS = CCCS;
  CCCS = CCS_GC;
#endif

  /* Approximate how much we allocated.  
   * Todo: only when generating stats? 
   */
  allocated = calcAllocated();

  /* Figure out which generation to collect
   */
  if (force_major_gc) {
    N = RtsFlags.GcFlags.generations - 1;
    major_gc = rtsTrue;
  } else {
    N = 0;
    for (g = 0; g < RtsFlags.GcFlags.generations; g++) {
      if (generations[g].steps[0].n_blocks +
	  generations[g].steps[0].n_large_blocks
	  >= generations[g].max_blocks) {
        N = g;
      }
    }
    major_gc = (N == RtsFlags.GcFlags.generations-1);
  }

#ifdef RTS_GTK_FRONTPANEL
  if (RtsFlags.GcFlags.frontpanel) {
      updateFrontPanelBeforeGC(N);
  }
#endif

  // check stack sanity *before* GC (ToDo: check all threads) 
#if defined(GRAN)
  // ToDo!: check sanity  IF_DEBUG(sanity, checkTSOsSanity());
#endif
  IF_DEBUG(sanity, checkFreeListSanity());

  /* Initialise the static object lists
   */
  static_objects = END_OF_STATIC_LIST;
  scavenged_static_objects = END_OF_STATIC_LIST;

  /* Save the nursery if we're doing a two-space collection.
   * g0s0->blocks will be used for to-space, so we need to get the
   * nursery out of the way.
   */
  if (RtsFlags.GcFlags.generations == 1) {
      saved_nursery = g0s0->blocks;
      saved_n_blocks = g0s0->n_blocks;
      g0s0->blocks = NULL;
      g0s0->n_blocks = 0;
  }

  /* Keep a count of how many new blocks we allocated during this GC
   * (used for resizing the allocation area, later).
   */
  new_blocks = 0;
  new_scavd_blocks = 0;

  // Initialise to-space in all the generations/steps that we're
  // collecting.
  //
  for (g = 0; g <= N; g++) {

    // throw away the mutable list.  Invariant: the mutable list
    // always has at least one block; this means we can avoid a check for
    // NULL in recordMutable().
    if (g != 0) {
	freeChain(generations[g].mut_list);
	generations[g].mut_list = allocBlock();
	for (i = 0; i < n_capabilities; i++) {
	    freeChain(capabilities[i].mut_lists[g]);
	    capabilities[i].mut_lists[g] = allocBlock();
	}
    }

    for (s = 0; s < generations[g].n_steps; s++) {

      // generation 0, step 0 doesn't need to-space 
      if (g == 0 && s == 0 && RtsFlags.GcFlags.generations > 1) { 
	continue; 
      }

      stp = &generations[g].steps[s];
      ASSERT(stp->gen_no == g);

      // start a new to-space for this step.
      stp->old_blocks   = stp->blocks;
      stp->n_old_blocks = stp->n_blocks;

      // allocate the first to-space block; extra blocks will be
      // chained on as necessary.
      stp->hp_bd     = NULL;
      bd = gc_alloc_block(stp);
      stp->blocks      = bd;
      stp->n_blocks    = 1;
      stp->scan        = bd->start;
      stp->scan_bd     = bd;

      // allocate a block for "already scavenged" objects.  This goes
      // on the front of the stp->blocks list, so it won't be
      // traversed by the scavenging sweep.
      gc_alloc_scavd_block(stp);

      // initialise the large object queues.
      stp->new_large_objects = NULL;
      stp->scavenged_large_objects = NULL;
      stp->n_scavenged_large_blocks = 0;

      // mark the large objects as not evacuated yet 
      for (bd = stp->large_objects; bd; bd = bd->link) {
	bd->flags &= ~BF_EVACUATED;
      }

      // for a compacted step, we need to allocate the bitmap
      if (stp->is_compacted) {
	  nat bitmap_size; // in bytes
	  bdescr *bitmap_bdescr;
	  StgWord *bitmap;

	  bitmap_size = stp->n_old_blocks * BLOCK_SIZE / (sizeof(W_)*BITS_PER_BYTE);

	  if (bitmap_size > 0) {
	      bitmap_bdescr = allocGroup((lnat)BLOCK_ROUND_UP(bitmap_size) 
					 / BLOCK_SIZE);
	      stp->bitmap = bitmap_bdescr;
	      bitmap = bitmap_bdescr->start;
	      
	      IF_DEBUG(gc, debugBelch("bitmap_size: %d, bitmap: %p",
				   bitmap_size, bitmap););
	      
	      // don't forget to fill it with zeros!
	      memset(bitmap, 0, bitmap_size);
	      
	      // For each block in this step, point to its bitmap from the
	      // block descriptor.
	      for (bd=stp->old_blocks; bd != NULL; bd = bd->link) {
		  bd->u.bitmap = bitmap;
		  bitmap += BLOCK_SIZE_W / (sizeof(W_)*BITS_PER_BYTE);

		  // Also at this point we set the BF_COMPACTED flag
		  // for this block.  The invariant is that
		  // BF_COMPACTED is always unset, except during GC
		  // when it is set on those blocks which will be
		  // compacted.
		  bd->flags |= BF_COMPACTED;
	      }
	  }
      }
    }
  }

  /* make sure the older generations have at least one block to
   * allocate into (this makes things easier for copy(), see below).
   */
  for (g = N+1; g < RtsFlags.GcFlags.generations; g++) {
    for (s = 0; s < generations[g].n_steps; s++) {
      stp = &generations[g].steps[s];
      if (stp->hp_bd == NULL) {
	  ASSERT(stp->blocks == NULL);
	  bd = gc_alloc_block(stp);
	  stp->blocks = bd;
	  stp->n_blocks = 1;
      }
      if (stp->scavd_hp == NULL) {
	  gc_alloc_scavd_block(stp);
	  stp->n_blocks++;
      }
      /* Set the scan pointer for older generations: remember we
       * still have to scavenge objects that have been promoted. */
      stp->scan = stp->hp;
      stp->scan_bd = stp->hp_bd;
      stp->new_large_objects = NULL;
      stp->scavenged_large_objects = NULL;
      stp->n_scavenged_large_blocks = 0;
    }

    /* Move the private mutable lists from each capability onto the
     * main mutable list for the generation.
     */
    for (i = 0; i < n_capabilities; i++) {
	for (bd = capabilities[i].mut_lists[g]; 
	     bd->link != NULL; bd = bd->link) {
	    /* nothing */
	}
	bd->link = generations[g].mut_list;
	generations[g].mut_list = capabilities[i].mut_lists[g];
	capabilities[i].mut_lists[g] = allocBlock();
    }
  }

  /* Allocate a mark stack if we're doing a major collection.
   */
  if (major_gc) {
      mark_stack_bdescr = allocGroup(MARK_STACK_BLOCKS);
      mark_stack = (StgPtr *)mark_stack_bdescr->start;
      mark_sp    = mark_stack;
      mark_splim = mark_stack + (MARK_STACK_BLOCKS * BLOCK_SIZE_W);
  } else {
      mark_stack_bdescr = NULL;
  }

  eager_promotion = rtsTrue; // for now

  /* -----------------------------------------------------------------------
   * follow all the roots that we know about:
   *   - mutable lists from each generation > N
   * we want to *scavenge* these roots, not evacuate them: they're not
   * going to move in this GC.
   * Also: do them in reverse generation order.  This is because we
   * often want to promote objects that are pointed to by older
   * generations early, so we don't have to repeatedly copy them.
   * Doing the generations in reverse order ensures that we don't end
   * up in the situation where we want to evac an object to gen 3 and
   * it has already been evaced to gen 2.
   */
  { 
    int st;
    for (g = RtsFlags.GcFlags.generations-1; g > N; g--) {
      generations[g].saved_mut_list = generations[g].mut_list;
      generations[g].mut_list = allocBlock(); 
        // mut_list always has at least one block.
    }

    for (g = RtsFlags.GcFlags.generations-1; g > N; g--) {
      IF_PAR_DEBUG(verbose, printMutableList(&generations[g]));
      scavenge_mutable_list(&generations[g]);
      evac_gen = g;
      for (st = generations[g].n_steps-1; st >= 0; st--) {
	scavenge(&generations[g].steps[st]);
      }
    }
  }

  /* follow roots from the CAF list (used by GHCi)
   */
  evac_gen = 0;
  markCAFs(mark_root);

  /* follow all the roots that the application knows about.
   */
  evac_gen = 0;
  get_roots(mark_root);

#if defined(PAR)
  /* And don't forget to mark the TSO if we got here direct from
   * Haskell! */
  /* Not needed in a seq version?
  if (CurrentTSO) {
    CurrentTSO = (StgTSO *)MarkRoot((StgClosure *)CurrentTSO);
  }
  */

  // Mark the entries in the GALA table of the parallel system 
  markLocalGAs(major_gc);
  // Mark all entries on the list of pending fetches 
  markPendingFetches(major_gc);
#endif

  /* Mark the weak pointer list, and prepare to detect dead weak
   * pointers.
   */
  mark_weak_ptr_list(&weak_ptr_list);
  old_weak_ptr_list = weak_ptr_list;
  weak_ptr_list = NULL;
  weak_stage = WeakPtrs;

  /* The all_threads list is like the weak_ptr_list.  
   * See traverse_weak_ptr_list() for the details.
   */
  old_all_threads = all_threads;
  all_threads = END_TSO_QUEUE;
  resurrected_threads = END_TSO_QUEUE;

  /* Mark the stable pointer table.
   */
  markStablePtrTable(mark_root);

  /* -------------------------------------------------------------------------
   * Repeatedly scavenge all the areas we know about until there's no
   * more scavenging to be done.
   */
  { 
    rtsBool flag;
  loop:
    flag = rtsFalse;

    // scavenge static objects 
    if (major_gc && static_objects != END_OF_STATIC_LIST) {
	IF_DEBUG(sanity, checkStaticObjects(static_objects));
	scavenge_static();
    }

    /* When scavenging the older generations:  Objects may have been
     * evacuated from generations <= N into older generations, and we
     * need to scavenge these objects.  We're going to try to ensure that
     * any evacuations that occur move the objects into at least the
     * same generation as the object being scavenged, otherwise we
     * have to create new entries on the mutable list for the older
     * generation.
     */

    // scavenge each step in generations 0..maxgen 
    { 
      long gen;
      int st; 

    loop2:
      // scavenge objects in compacted generation
      if (mark_stack_overflowed || oldgen_scan_bd != NULL ||
	  (mark_stack_bdescr != NULL && !mark_stack_empty())) {
	  scavenge_mark_stack();
	  flag = rtsTrue;
      }

      for (gen = RtsFlags.GcFlags.generations; --gen >= 0; ) {
	for (st = generations[gen].n_steps; --st >= 0; ) {
	  if (gen == 0 && st == 0 && RtsFlags.GcFlags.generations > 1) { 
	    continue; 
	  }
	  stp = &generations[gen].steps[st];
	  evac_gen = gen;
	  if (stp->hp_bd != stp->scan_bd || stp->scan < stp->hp) {
	    scavenge(stp);
	    flag = rtsTrue;
	    goto loop2;
	  }
	  if (stp->new_large_objects != NULL) {
	    scavenge_large(stp);
	    flag = rtsTrue;
	    goto loop2;
	  }
	}
      }
    }

    if (flag) { goto loop; }

    // must be last...  invariant is that everything is fully
    // scavenged at this point.
    if (traverse_weak_ptr_list()) { // returns rtsTrue if evaced something 
      goto loop;
    }
  }

  /* Update the pointers from the task list - these are
   * treated as weak pointers because we want to allow a main thread
   * to get a BlockedOnDeadMVar exception in the same way as any other
   * thread.  Note that the threads should all have been retained by
   * GC by virtue of being on the all_threads list, we're just
   * updating pointers here.
   */
  {
      Task *task;
      StgTSO *tso;
      for (task = all_tasks; task != NULL; task = task->all_link) {
	  if (!task->stopped && task->tso) {
	      ASSERT(task->tso->bound == task);
	      tso = (StgTSO *) isAlive((StgClosure *)task->tso);
	      if (tso == NULL) {
		  barf("task %p: main thread %d has been GC'd", 
#ifdef THREADED_RTS
		       (void *)task->id, 
#else
		       (void *)task,
#endif
		       task->tso->id);
	      }
	      task->tso = tso;
	  }
      }
  }

#if defined(PAR)
  // Reconstruct the Global Address tables used in GUM 
  rebuildGAtables(major_gc);
  IF_DEBUG(sanity, checkLAGAtable(rtsTrue/*check closures, too*/));
#endif

  // Now see which stable names are still alive.
  gcStablePtrTable();

  // Tidy the end of the to-space chains 
  for (g = 0; g < RtsFlags.GcFlags.generations; g++) {
      for (s = 0; s < generations[g].n_steps; s++) {
	  stp = &generations[g].steps[s];
	  if (!(g == 0 && s == 0 && RtsFlags.GcFlags.generations > 1)) {
	      ASSERT(Bdescr(stp->hp) == stp->hp_bd);
	      stp->hp_bd->free = stp->hp;
	      Bdescr(stp->scavd_hp)->free = stp->scavd_hp;
	  }
      }
  }

#ifdef PROFILING
  // We call processHeapClosureForDead() on every closure destroyed during
  // the current garbage collection, so we invoke LdvCensusForDead().
  if (RtsFlags.ProfFlags.doHeapProfile == HEAP_BY_LDV
      || RtsFlags.ProfFlags.bioSelector != NULL)
    LdvCensusForDead(N);
#endif

  // NO MORE EVACUATION AFTER THIS POINT!
  // Finally: compaction of the oldest generation.
  if (major_gc && oldest_gen->steps[0].is_compacted) {
      // save number of blocks for stats
      oldgen_saved_blocks = oldest_gen->steps[0].n_old_blocks;
      compact(get_roots);
  }

  IF_DEBUG(sanity, checkGlobalTSOList(rtsFalse));

  /* run through all the generations/steps and tidy up 
   */
  copied = new_blocks * BLOCK_SIZE_W;
  scavd_copied =  new_scavd_blocks * BLOCK_SIZE_W;
  for (g = 0; g < RtsFlags.GcFlags.generations; g++) {

    if (g <= N) {
      generations[g].collections++; // for stats 
    }

    // Count the mutable list as bytes "copied" for the purposes of
    // stats.  Every mutable list is copied during every GC.
    if (g > 0) {
	nat mut_list_size = 0;
	for (bd = generations[g].mut_list; bd != NULL; bd = bd->link) {
	    mut_list_size += bd->free - bd->start;
	}
	copied +=  mut_list_size;

	IF_DEBUG(gc, debugBelch("mut_list_size: %ld (%d vars, %d arrays, %d others)\n", mut_list_size * sizeof(W_), mutlist_MUTVARS, mutlist_MUTARRS, mutlist_OTHERS));
    }

    for (s = 0; s < generations[g].n_steps; s++) {
      bdescr *next;
      stp = &generations[g].steps[s];

      if (!(g == 0 && s == 0 && RtsFlags.GcFlags.generations > 1)) {
	// stats information: how much we copied 
	if (g <= N) {
	  copied -= stp->hp_bd->start + BLOCK_SIZE_W -
	    stp->hp_bd->free;
	  scavd_copied -= (P_)(BLOCK_ROUND_UP(stp->scavd_hp)) - stp->scavd_hp;
	}
      }

      // for generations we collected... 
      if (g <= N) {

	/* free old memory and shift to-space into from-space for all
	 * the collected steps (except the allocation area).  These
	 * freed blocks will probaby be quickly recycled.
	 */
	if (!(g == 0 && s == 0)) {
	    if (stp->is_compacted) {
		// for a compacted step, just shift the new to-space
		// onto the front of the now-compacted existing blocks.
		for (bd = stp->blocks; bd != NULL; bd = bd->link) {
		    bd->flags &= ~BF_EVACUATED;  // now from-space 
		}
		// tack the new blocks on the end of the existing blocks
		if (stp->old_blocks != NULL) {
		    for (bd = stp->old_blocks; bd != NULL; bd = next) {
			// NB. this step might not be compacted next
			// time, so reset the BF_COMPACTED flags.
			// They are set before GC if we're going to
			// compact.  (search for BF_COMPACTED above).
			bd->flags &= ~BF_COMPACTED;
			next = bd->link;
			if (next == NULL) {
			    bd->link = stp->blocks;
			}
		    }
		    stp->blocks = stp->old_blocks;
		}
		// add the new blocks to the block tally
		stp->n_blocks += stp->n_old_blocks;
		ASSERT(countBlocks(stp->blocks) == stp->n_blocks);
	    } else {
		freeChain(stp->old_blocks);
		for (bd = stp->blocks; bd != NULL; bd = bd->link) {
		    bd->flags &= ~BF_EVACUATED;	 // now from-space 
		}
	    }
	    stp->old_blocks = NULL;
	    stp->n_old_blocks = 0;
	}

	/* LARGE OBJECTS.  The current live large objects are chained on
	 * scavenged_large, having been moved during garbage
	 * collection from large_objects.  Any objects left on
	 * large_objects list are therefore dead, so we free them here.
	 */
	for (bd = stp->large_objects; bd != NULL; bd = next) {
	  next = bd->link;
	  freeGroup(bd);
	  bd = next;
	}

	// update the count of blocks used by large objects
	for (bd = stp->scavenged_large_objects; bd != NULL; bd = bd->link) {
	  bd->flags &= ~BF_EVACUATED;
	}
	stp->large_objects  = stp->scavenged_large_objects;
	stp->n_large_blocks = stp->n_scavenged_large_blocks;

      } else {
	// for older generations... 
	
	/* For older generations, we need to append the
	 * scavenged_large_object list (i.e. large objects that have been
	 * promoted during this GC) to the large_object list for that step.
	 */
	for (bd = stp->scavenged_large_objects; bd; bd = next) {
	  next = bd->link;
	  bd->flags &= ~BF_EVACUATED;
	  dbl_link_onto(bd, &stp->large_objects);
	}

	// add the new blocks we promoted during this GC 
	stp->n_large_blocks += stp->n_scavenged_large_blocks;
      }
    }
  }

  /* Reset the sizes of the older generations when we do a major
   * collection.
   *
   * CURRENT STRATEGY: make all generations except zero the same size.
   * We have to stay within the maximum heap size, and leave a certain
   * percentage of the maximum heap size available to allocate into.
   */
  if (major_gc && RtsFlags.GcFlags.generations > 1) {
      nat live, size, min_alloc;
      nat max  = RtsFlags.GcFlags.maxHeapSize;
      nat gens = RtsFlags.GcFlags.generations;

      // live in the oldest generations
      live = oldest_gen->steps[0].n_blocks +
	     oldest_gen->steps[0].n_large_blocks;

      // default max size for all generations except zero
      size = stg_max(live * RtsFlags.GcFlags.oldGenFactor,
		     RtsFlags.GcFlags.minOldGenSize);

      // minimum size for generation zero
      min_alloc = stg_max((RtsFlags.GcFlags.pcFreeHeap * max) / 200,
			  RtsFlags.GcFlags.minAllocAreaSize);

      // Auto-enable compaction when the residency reaches a
      // certain percentage of the maximum heap size (default: 30%).
      if (RtsFlags.GcFlags.generations > 1 &&
	  (RtsFlags.GcFlags.compact ||
	   (max > 0 &&
	    oldest_gen->steps[0].n_blocks > 
	    (RtsFlags.GcFlags.compactThreshold * max) / 100))) {
	  oldest_gen->steps[0].is_compacted = 1;
//	  debugBelch("compaction: on\n", live);
      } else {
	  oldest_gen->steps[0].is_compacted = 0;
//	  debugBelch("compaction: off\n", live);
      }

      // if we're going to go over the maximum heap size, reduce the
      // size of the generations accordingly.  The calculation is
      // different if compaction is turned on, because we don't need
      // to double the space required to collect the old generation.
      if (max != 0) {

	  // this test is necessary to ensure that the calculations
	  // below don't have any negative results - we're working
	  // with unsigned values here.
	  if (max < min_alloc) {
	      heapOverflow();
	  }

	  if (oldest_gen->steps[0].is_compacted) {
	      if ( (size + (size - 1) * (gens - 2) * 2) + min_alloc > max ) {
		  size = (max - min_alloc) / ((gens - 1) * 2 - 1);
	      }
	  } else {
	      if ( (size * (gens - 1) * 2) + min_alloc > max ) {
		  size = (max - min_alloc) / ((gens - 1) * 2);
	      }
	  }

	  if (size < live) {
	      heapOverflow();
	  }
      }

#if 0
      debugBelch("live: %d, min_alloc: %d, size : %d, max = %d\n", live,
	      min_alloc, size, max);
#endif

      for (g = 0; g < gens; g++) {
	  generations[g].max_blocks = size;
      }
  }

  // Guess the amount of live data for stats.
  live = calcLive();

  /* Free the small objects allocated via allocate(), since this will
   * all have been copied into G0S1 now.  
   */
  if (small_alloc_list != NULL) {
    freeChain(small_alloc_list);
  }
  small_alloc_list = NULL;
  alloc_blocks = 0;
  alloc_Hp = NULL;
  alloc_HpLim = NULL;
  alloc_blocks_lim = RtsFlags.GcFlags.minAllocAreaSize;

  // Start a new pinned_object_block
  pinned_object_block = NULL;

  /* Free the mark stack.
   */
  if (mark_stack_bdescr != NULL) {
      freeGroup(mark_stack_bdescr);
  }

  /* Free any bitmaps.
   */
  for (g = 0; g <= N; g++) {
      for (s = 0; s < generations[g].n_steps; s++) {
	  stp = &generations[g].steps[s];
	  if (stp->bitmap != NULL) {
	      freeGroup(stp->bitmap);
	      stp->bitmap = NULL;
	  }
      }
  }

  /* Two-space collector:
   * Free the old to-space, and estimate the amount of live data.
   */
  if (RtsFlags.GcFlags.generations == 1) {
    nat blocks;
    
    if (g0s0->old_blocks != NULL) {
      freeChain(g0s0->old_blocks);
    }
    for (bd = g0s0->blocks; bd != NULL; bd = bd->link) {
      bd->flags = 0;	// now from-space 
    }
    g0s0->old_blocks = g0s0->blocks;
    g0s0->n_old_blocks = g0s0->n_blocks;
    g0s0->blocks = saved_nursery;
    g0s0->n_blocks = saved_n_blocks;

    /* For a two-space collector, we need to resize the nursery. */
    
    /* set up a new nursery.  Allocate a nursery size based on a
     * function of the amount of live data (by default a factor of 2)
     * Use the blocks from the old nursery if possible, freeing up any
     * left over blocks.
     *
     * If we get near the maximum heap size, then adjust our nursery
     * size accordingly.  If the nursery is the same size as the live
     * data (L), then we need 3L bytes.  We can reduce the size of the
     * nursery to bring the required memory down near 2L bytes.
     * 
     * A normal 2-space collector would need 4L bytes to give the same
     * performance we get from 3L bytes, reducing to the same
     * performance at 2L bytes.
     */
    blocks = g0s0->n_old_blocks;

    if ( RtsFlags.GcFlags.maxHeapSize != 0 &&
	 blocks * RtsFlags.GcFlags.oldGenFactor * 2 > 
	   RtsFlags.GcFlags.maxHeapSize ) {
      long adjusted_blocks;  // signed on purpose 
      int pc_free; 
      
      adjusted_blocks = (RtsFlags.GcFlags.maxHeapSize - 2 * blocks);
      IF_DEBUG(gc, debugBelch("@@ Near maximum heap size of 0x%x blocks, blocks = %d, adjusted to %ld", RtsFlags.GcFlags.maxHeapSize, blocks, adjusted_blocks));
      pc_free = adjusted_blocks * 100 / RtsFlags.GcFlags.maxHeapSize;
      if (pc_free < RtsFlags.GcFlags.pcFreeHeap) /* might even be < 0 */ {
	heapOverflow();
      }
      blocks = adjusted_blocks;
      
    } else {
      blocks *= RtsFlags.GcFlags.oldGenFactor;
      if (blocks < RtsFlags.GcFlags.minAllocAreaSize) {
	blocks = RtsFlags.GcFlags.minAllocAreaSize;
      }
    }
    resizeNurseries(blocks);
    
  } else {
    /* Generational collector:
     * If the user has given us a suggested heap size, adjust our
     * allocation area to make best use of the memory available.
     */

    if (RtsFlags.GcFlags.heapSizeSuggestion) {
      long blocks;
      nat needed = calcNeeded(); 	// approx blocks needed at next GC 

      /* Guess how much will be live in generation 0 step 0 next time.
       * A good approximation is obtained by finding the
       * percentage of g0s0 that was live at the last minor GC.
       */
      if (N == 0) {
	g0s0_pcnt_kept = (new_blocks * 100) / countNurseryBlocks();
      }

      /* Estimate a size for the allocation area based on the
       * information available.  We might end up going slightly under
       * or over the suggested heap size, but we should be pretty
       * close on average.
       *
       * Formula:            suggested - needed
       *                ----------------------------
       *                    1 + g0s0_pcnt_kept/100
       *
       * where 'needed' is the amount of memory needed at the next
       * collection for collecting all steps except g0s0.
       */
      blocks = 
	(((long)RtsFlags.GcFlags.heapSizeSuggestion - (long)needed) * 100) /
	(100 + (long)g0s0_pcnt_kept);
      
      if (blocks < (long)RtsFlags.GcFlags.minAllocAreaSize) {
	blocks = RtsFlags.GcFlags.minAllocAreaSize;
      }
      
      resizeNurseries((nat)blocks);

    } else {
      // we might have added extra large blocks to the nursery, so
      // resize back to minAllocAreaSize again.
      resizeNurseriesFixed(RtsFlags.GcFlags.minAllocAreaSize);
    }
  }

 // mark the garbage collected CAFs as dead 
#if 0 && defined(DEBUG) // doesn't work at the moment 
  if (major_gc) { gcCAFs(); }
#endif
  
#ifdef PROFILING
  // resetStaticObjectForRetainerProfiling() must be called before
  // zeroing below.
  resetStaticObjectForRetainerProfiling();
#endif

  // zero the scavenged static object list 
  if (major_gc) {
    zero_static_object_list(scavenged_static_objects);
  }

  // Reset the nursery
  resetNurseries();

  // start any pending finalizers 
  RELEASE_SM_LOCK;
  scheduleFinalizers(last_free_capability, old_weak_ptr_list);
  ACQUIRE_SM_LOCK;
  
  // send exceptions to any threads which were about to die 
  RELEASE_SM_LOCK;
  resurrectThreads(resurrected_threads);
  ACQUIRE_SM_LOCK;

  // Update the stable pointer hash table.
  updateStablePtrTable(major_gc);

  // check sanity after GC 
  IF_DEBUG(sanity, checkSanity());

  // extra GC trace info 
  IF_DEBUG(gc, statDescribeGens());

#ifdef DEBUG
  // symbol-table based profiling 
  /*  heapCensus(to_blocks); */ /* ToDo */
#endif

  // restore enclosing cost centre 
#ifdef PROFILING
  CCCS = prev_CCS;
#endif

#ifdef DEBUG
  // check for memory leaks if DEBUG is on 
  memInventory();
#endif

#ifdef RTS_GTK_FRONTPANEL
  if (RtsFlags.GcFlags.frontpanel) {
      updateFrontPanelAfterGC( N, live );
  }
#endif

  // ok, GC over: tell the stats department what happened. 
  stat_endGC(allocated, live, copied, scavd_copied, N);

#if defined(RTS_USER_SIGNALS)
  // unblock signals again
  unblockUserSignals();
#endif

  RELEASE_SM_LOCK;

  //PAR_TICKY_TP();
}


/* -----------------------------------------------------------------------------
   Weak Pointers

   traverse_weak_ptr_list is called possibly many times during garbage
   collection.  It returns a flag indicating whether it did any work
   (i.e. called evacuate on any live pointers).

   Invariant: traverse_weak_ptr_list is called when the heap is in an
   idempotent state.  That means that there are no pending
   evacuate/scavenge operations.  This invariant helps the weak
   pointer code decide which weak pointers are dead - if there are no
   new live weak pointers, then all the currently unreachable ones are
   dead.

   For generational GC: we just don't try to finalize weak pointers in
   older generations than the one we're collecting.  This could
   probably be optimised by keeping per-generation lists of weak
   pointers, but for a few weak pointers this scheme will work.

   There are three distinct stages to processing weak pointers:

   - weak_stage == WeakPtrs

     We process all the weak pointers whos keys are alive (evacuate
     their values and finalizers), and repeat until we can find no new
     live keys.  If no live keys are found in this pass, then we
     evacuate the finalizers of all the dead weak pointers in order to
     run them.

   - weak_stage == WeakThreads

     Now, we discover which *threads* are still alive.  Pointers to
     threads from the all_threads and main thread lists are the
     weakest of all: a pointers from the finalizer of a dead weak
     pointer can keep a thread alive.  Any threads found to be unreachable
     are evacuated and placed on the resurrected_threads list so we 
     can send them a signal later.

   - weak_stage == WeakDone

     No more evacuation is done.

   -------------------------------------------------------------------------- */

static rtsBool 
traverse_weak_ptr_list(void)
{
  StgWeak *w, **last_w, *next_w;
  StgClosure *new;
  rtsBool flag = rtsFalse;

  switch (weak_stage) {

  case WeakDone:
      return rtsFalse;

  case WeakPtrs:
      /* doesn't matter where we evacuate values/finalizers to, since
       * these pointers are treated as roots (iff the keys are alive).
       */
      evac_gen = 0;
      
      last_w = &old_weak_ptr_list;
      for (w = old_weak_ptr_list; w != NULL; w = next_w) {
	  
	  /* There might be a DEAD_WEAK on the list if finalizeWeak# was
	   * called on a live weak pointer object.  Just remove it.
	   */
	  if (w->header.info == &stg_DEAD_WEAK_info) {
	      next_w = ((StgDeadWeak *)w)->link;
	      *last_w = next_w;
	      continue;
	  }
	  
	  switch (get_itbl(w)->type) {

	  case EVACUATED:
	      next_w = (StgWeak *)((StgEvacuated *)w)->evacuee;
	      *last_w = next_w;
	      continue;

	  case WEAK:
	      /* Now, check whether the key is reachable.
	       */
	      new = isAlive(w->key);
	      if (new != NULL) {
		  w->key = new;
		  // evacuate the value and finalizer 
		  w->value = evacuate(w->value);
		  w->finalizer = evacuate(w->finalizer);
		  // remove this weak ptr from the old_weak_ptr list 
		  *last_w = w->link;
		  // and put it on the new weak ptr list 
		  next_w  = w->link;
		  w->link = weak_ptr_list;
		  weak_ptr_list = w;
		  flag = rtsTrue;
		  IF_DEBUG(weak, debugBelch("Weak pointer still alive at %p -> %p", 
				       w, w->key));
		  continue;
	      }
	      else {
		  last_w = &(w->link);
		  next_w = w->link;
		  continue;
	      }

	  default:
	      barf("traverse_weak_ptr_list: not WEAK");
	  }
      }
      
      /* If we didn't make any changes, then we can go round and kill all
       * the dead weak pointers.  The old_weak_ptr list is used as a list
       * of pending finalizers later on.
       */
      if (flag == rtsFalse) {
	  for (w = old_weak_ptr_list; w; w = w->link) {
	      w->finalizer = evacuate(w->finalizer);
	  }

	  // Next, move to the WeakThreads stage after fully
	  // scavenging the finalizers we've just evacuated.
	  weak_stage = WeakThreads;
      }

      return rtsTrue;

  case WeakThreads:
      /* Now deal with the all_threads list, which behaves somewhat like
       * the weak ptr list.  If we discover any threads that are about to
       * become garbage, we wake them up and administer an exception.
       */
      {
	  StgTSO *t, *tmp, *next, **prev;
	  
	  prev = &old_all_threads;
	  for (t = old_all_threads; t != END_TSO_QUEUE; t = next) {
	      
	      tmp = (StgTSO *)isAlive((StgClosure *)t);
	      
	      if (tmp != NULL) {
		  t = tmp;
	      }
	      
	      ASSERT(get_itbl(t)->type == TSO);
	      switch (t->what_next) {
	      case ThreadRelocated:
		  next = t->link;
		  *prev = next;
		  continue;
	      case ThreadKilled:
	      case ThreadComplete:
		  // finshed or died.  The thread might still be alive, but we
		  // don't keep it on the all_threads list.  Don't forget to
		  // stub out its global_link field.
		  next = t->global_link;
		  t->global_link = END_TSO_QUEUE;
		  *prev = next;
		  continue;
	      default:
		  ;
	      }
	      
	      // Threads blocked on black holes: if the black hole
	      // is alive, then the thread is alive too.
	      if (tmp == NULL && t->why_blocked == BlockedOnBlackHole) {
		  if (isAlive(t->block_info.closure)) {
		      t = (StgTSO *)evacuate((StgClosure *)t);
		      tmp = t;
		      flag = rtsTrue;
		  }
	      }

	      if (tmp == NULL) {
		  // not alive (yet): leave this thread on the
		  // old_all_threads list.
		  prev = &(t->global_link);
		  next = t->global_link;
	      } 
	      else {
		  // alive: move this thread onto the all_threads list.
		  next = t->global_link;
		  t->global_link = all_threads;
		  all_threads  = t;
		  *prev = next;
	      }
	  }
      }
      
      /* If we evacuated any threads, we need to go back to the scavenger.
       */
      if (flag) return rtsTrue;

      /* And resurrect any threads which were about to become garbage.
       */
      {
	  StgTSO *t, *tmp, *next;
	  for (t = old_all_threads; t != END_TSO_QUEUE; t = next) {
	      next = t->global_link;
	      tmp = (StgTSO *)evacuate((StgClosure *)t);
	      tmp->global_link = resurrected_threads;
	      resurrected_threads = tmp;
	  }
      }
      
      /* Finally, we can update the blackhole_queue.  This queue
       * simply strings together TSOs blocked on black holes, it is
       * not intended to keep anything alive.  Hence, we do not follow
       * pointers on the blackhole_queue until now, when we have
       * determined which TSOs are otherwise reachable.  We know at
       * this point that all TSOs have been evacuated, however.
       */
      { 
	  StgTSO **pt;
	  for (pt = &blackhole_queue; *pt != END_TSO_QUEUE; pt = &((*pt)->link)) {
	      *pt = (StgTSO *)isAlive((StgClosure *)*pt);
	      ASSERT(*pt != NULL);
	  }
      }

      weak_stage = WeakDone;  // *now* we're done,
      return rtsTrue;         // but one more round of scavenging, please

  default:
      barf("traverse_weak_ptr_list");
      return rtsTrue;
  }

}

/* -----------------------------------------------------------------------------
   After GC, the live weak pointer list may have forwarding pointers
   on it, because a weak pointer object was evacuated after being
   moved to the live weak pointer list.  We remove those forwarding
   pointers here.

   Also, we don't consider weak pointer objects to be reachable, but
   we must nevertheless consider them to be "live" and retain them.
   Therefore any weak pointer objects which haven't as yet been
   evacuated need to be evacuated now.
   -------------------------------------------------------------------------- */


static void
mark_weak_ptr_list ( StgWeak **list )
{
  StgWeak *w, **last_w;

  last_w = list;
  for (w = *list; w; w = w->link) {
      // w might be WEAK, EVACUATED, or DEAD_WEAK (actually CON_STATIC) here
      ASSERT(w->header.info == &stg_DEAD_WEAK_info 
	     || get_itbl(w)->type == WEAK || get_itbl(w)->type == EVACUATED);
      w = (StgWeak *)evacuate((StgClosure *)w);
      *last_w = w;
      last_w = &(w->link);
  }
}

/* -----------------------------------------------------------------------------
   isAlive determines whether the given closure is still alive (after
   a garbage collection) or not.  It returns the new address of the
   closure if it is alive, or NULL otherwise.

   NOTE: Use it before compaction only!
   -------------------------------------------------------------------------- */


StgClosure *
isAlive(StgClosure *p)
{
  const StgInfoTable *info;
  bdescr *bd;

  while (1) {

    ASSERT(LOOKS_LIKE_CLOSURE_PTR(p));
    info = get_itbl(p);

    // ignore static closures 
    //
    // ToDo: for static closures, check the static link field.
    // Problem here is that we sometimes don't set the link field, eg.
    // for static closures with an empty SRT or CONSTR_STATIC_NOCAFs.
    //
    if (!HEAP_ALLOCED(p)) {
	return p;
    }

    // ignore closures in generations that we're not collecting. 
    bd = Bdescr((P_)p);
    if (bd->gen_no > N) {
	return p;
    }

    // if it's a pointer into to-space, then we're done
    if (bd->flags & BF_EVACUATED) {
	return p;
    }

    // large objects use the evacuated flag
    if (bd->flags & BF_LARGE) {
	return NULL;
    }

    // check the mark bit for compacted steps
    if ((bd->flags & BF_COMPACTED) && is_marked((P_)p,bd)) {
	return p;
    }

    switch (info->type) {

    case IND:
    case IND_STATIC:
    case IND_PERM:
    case IND_OLDGEN:		// rely on compatible layout with StgInd 
    case IND_OLDGEN_PERM:
      // follow indirections 
      p = ((StgInd *)p)->indirectee;
      continue;

    case EVACUATED:
      // alive! 
      return ((StgEvacuated *)p)->evacuee;

    case TSO:
      if (((StgTSO *)p)->what_next == ThreadRelocated) {
	p = (StgClosure *)((StgTSO *)p)->link;
	continue;
      } 
      return NULL;

    default:
      // dead. 
      return NULL;
    }
  }
}

static void
mark_root(StgClosure **root)
{
  *root = evacuate(*root);
}

STATIC_INLINE void 
upd_evacuee(StgClosure *p, StgClosure *dest)
{
    // not true: (ToDo: perhaps it should be)
    // ASSERT(Bdescr((P_)dest)->flags & BF_EVACUATED);
    SET_INFO(p, &stg_EVACUATED_info);
    ((StgEvacuated *)p)->evacuee = dest;
}


STATIC_INLINE StgClosure *
copy(StgClosure *src, nat size, step *stp)
{
  StgPtr to, from;
  nat i;
#ifdef PROFILING
  // @LDV profiling
  nat size_org = size;
#endif

  TICK_GC_WORDS_COPIED(size);
  /* Find out where we're going, using the handy "to" pointer in 
   * the step of the source object.  If it turns out we need to
   * evacuate to an older generation, adjust it here (see comment
   * by evacuate()).
   */
  if (stp->gen_no < evac_gen) {
      if (eager_promotion) {
	  stp = &generations[evac_gen].steps[0];
      } else {
	  failed_to_evac = rtsTrue;
      }
  }

  /* chain a new block onto the to-space for the destination step if
   * necessary.
   */
  if (stp->hp + size >= stp->hpLim) {
    gc_alloc_block(stp);
  }

  to = stp->hp;
  from = (StgPtr)src;
  stp->hp = to + size;
  for (i = 0; i < size; i++) { // unroll for small i
      to[i] = from[i];
  }
  upd_evacuee((StgClosure *)from,(StgClosure *)to);

#ifdef PROFILING
  // We store the size of the just evacuated object in the LDV word so that
  // the profiler can guess the position of the next object later.
  SET_EVACUAEE_FOR_LDV(from, size_org);
#endif
  return (StgClosure *)to;
}

// Same as copy() above, except the object will be allocated in memory
// that will not be scavenged.  Used for object that have no pointer
// fields.
STATIC_INLINE StgClosure *
copy_noscav(StgClosure *src, nat size, step *stp)
{
  StgPtr to, from;
  nat i;
#ifdef PROFILING
  // @LDV profiling
  nat size_org = size;
#endif

  TICK_GC_WORDS_COPIED(size);
  /* Find out where we're going, using the handy "to" pointer in 
   * the step of the source object.  If it turns out we need to
   * evacuate to an older generation, adjust it here (see comment
   * by evacuate()).
   */
  if (stp->gen_no < evac_gen) {
      if (eager_promotion) {
	  stp = &generations[evac_gen].steps[0];
      } else {
	  failed_to_evac = rtsTrue;
      }
  }

  /* chain a new block onto the to-space for the destination step if
   * necessary.
   */
  if (stp->scavd_hp + size >= stp->scavd_hpLim) {
    gc_alloc_scavd_block(stp);
  }

  to = stp->scavd_hp;
  from = (StgPtr)src;
  stp->scavd_hp = to + size;
  for (i = 0; i < size; i++) { // unroll for small i
      to[i] = from[i];
  }
  upd_evacuee((StgClosure *)from,(StgClosure *)to);

#ifdef PROFILING
  // We store the size of the just evacuated object in the LDV word so that
  // the profiler can guess the position of the next object later.
  SET_EVACUAEE_FOR_LDV(from, size_org);
#endif
  return (StgClosure *)to;
}

/* Special version of copy() for when we only want to copy the info
 * pointer of an object, but reserve some padding after it.  This is
 * used to optimise evacuation of BLACKHOLEs.
 */


static StgClosure *
copyPart(StgClosure *src, nat size_to_reserve, nat size_to_copy, step *stp)
{
  P_ dest, to, from;
#ifdef PROFILING
  // @LDV profiling
  nat size_to_copy_org = size_to_copy;
#endif

  TICK_GC_WORDS_COPIED(size_to_copy);
  if (stp->gen_no < evac_gen) {
      if (eager_promotion) {
	  stp = &generations[evac_gen].steps[0];
      } else {
	  failed_to_evac = rtsTrue;
      }
  }

  if (stp->hp + size_to_reserve >= stp->hpLim) {
    gc_alloc_block(stp);
  }

  for(to = stp->hp, from = (P_)src; size_to_copy>0; --size_to_copy) {
    *to++ = *from++;
  }
  
  dest = stp->hp;
  stp->hp += size_to_reserve;
  upd_evacuee(src,(StgClosure *)dest);
#ifdef PROFILING
  // We store the size of the just evacuated object in the LDV word so that
  // the profiler can guess the position of the next object later.
  // size_to_copy_org is wrong because the closure already occupies size_to_reserve
  // words.
  SET_EVACUAEE_FOR_LDV(src, size_to_reserve);
  // fill the slop
  if (size_to_reserve - size_to_copy_org > 0)
    LDV_FILL_SLOP(stp->hp - 1, (int)(size_to_reserve - size_to_copy_org)); 
#endif
  return (StgClosure *)dest;
}


/* -----------------------------------------------------------------------------
   Evacuate a large object

   This just consists of removing the object from the (doubly-linked)
   step->large_objects list, and linking it on to the (singly-linked)
   step->new_large_objects list, from where it will be scavenged later.

   Convention: bd->flags has BF_EVACUATED set for a large object
   that has been evacuated, or unset otherwise.
   -------------------------------------------------------------------------- */


STATIC_INLINE void
evacuate_large(StgPtr p)
{
  bdescr *bd = Bdescr(p);
  step *stp;

  // object must be at the beginning of the block (or be a ByteArray)
  ASSERT(get_itbl((StgClosure *)p)->type == ARR_WORDS ||
	 (((W_)p & BLOCK_MASK) == 0));

  // already evacuated? 
  if (bd->flags & BF_EVACUATED) { 
    /* Don't forget to set the failed_to_evac flag if we didn't get
     * the desired destination (see comments in evacuate()).
     */
    if (bd->gen_no < evac_gen) {
      failed_to_evac = rtsTrue;
      TICK_GC_FAILED_PROMOTION();
    }
    return;
  }

  stp = bd->step;
  // remove from large_object list 
  if (bd->u.back) {
    bd->u.back->link = bd->link;
  } else { // first object in the list 
    stp->large_objects = bd->link;
  }
  if (bd->link) {
    bd->link->u.back = bd->u.back;
  }
  
  /* link it on to the evacuated large object list of the destination step
   */
  stp = bd->step->to;
  if (stp->gen_no < evac_gen) {
      if (eager_promotion) {
	  stp = &generations[evac_gen].steps[0];
      } else {
	  failed_to_evac = rtsTrue;
      }
  }

  bd->step = stp;
  bd->gen_no = stp->gen_no;
  bd->link = stp->new_large_objects;
  stp->new_large_objects = bd;
  bd->flags |= BF_EVACUATED;
}

/* -----------------------------------------------------------------------------
   Evacuate

   This is called (eventually) for every live object in the system.

   The caller to evacuate specifies a desired generation in the
   evac_gen global variable.  The following conditions apply to
   evacuating an object which resides in generation M when we're
   collecting up to generation N

   if  M >= evac_gen 
           if  M > N     do nothing
	   else          evac to step->to

   if  M < evac_gen      evac to evac_gen, step 0

   if the object is already evacuated, then we check which generation
   it now resides in.

   if  M >= evac_gen     do nothing
   if  M <  evac_gen     set failed_to_evac flag to indicate that we
                         didn't manage to evacuate this object into evac_gen.


   OPTIMISATION NOTES:

   evacuate() is the single most important function performance-wise
   in the GC.  Various things have been tried to speed it up, but as
   far as I can tell the code generated by gcc 3.2 with -O2 is about
   as good as it's going to get.  We pass the argument to evacuate()
   in a register using the 'regparm' attribute (see the prototype for
   evacuate() near the top of this file).

   Changing evacuate() to take an (StgClosure **) rather than
   returning the new pointer seems attractive, because we can avoid
   writing back the pointer when it hasn't changed (eg. for a static
   object, or an object in a generation > N).  However, I tried it and
   it doesn't help.  One reason is that the (StgClosure **) pointer
   gets spilled to the stack inside evacuate(), resulting in far more
   extra reads/writes than we save.
   -------------------------------------------------------------------------- */

REGPARM1 static StgClosure *
evacuate(StgClosure *q)
{
#if defined(PAR)
  StgClosure *to;
#endif
  bdescr *bd = NULL;
  step *stp;
  const StgInfoTable *info;

loop:
  ASSERT(LOOKS_LIKE_CLOSURE_PTR(q));

  if (!HEAP_ALLOCED(q)) {

      if (!major_gc) return q;

      info = get_itbl(q);
      switch (info->type) {

      case THUNK_STATIC:
	  if (info->srt_bitmap != 0 && 
	      *THUNK_STATIC_LINK((StgClosure *)q) == NULL) {
	      *THUNK_STATIC_LINK((StgClosure *)q) = static_objects;
	      static_objects = (StgClosure *)q;
	  }
	  return q;
	  
      case FUN_STATIC:
	  if (info->srt_bitmap != 0 && 
	      *FUN_STATIC_LINK((StgClosure *)q) == NULL) {
	      *FUN_STATIC_LINK((StgClosure *)q) = static_objects;
	      static_objects = (StgClosure *)q;
	  }
	  return q;
	  
      case IND_STATIC:
	  /* If q->saved_info != NULL, then it's a revertible CAF - it'll be
	   * on the CAF list, so don't do anything with it here (we'll
	   * scavenge it later).
	   */
	  if (((StgIndStatic *)q)->saved_info == NULL
	      && *IND_STATIC_LINK((StgClosure *)q) == NULL) {
	      *IND_STATIC_LINK((StgClosure *)q) = static_objects;
	      static_objects = (StgClosure *)q;
	  }
	  return q;
	  
      case CONSTR_STATIC:
	  if (*STATIC_LINK(info,(StgClosure *)q) == NULL) {
	      *STATIC_LINK(info,(StgClosure *)q) = static_objects;
	      static_objects = (StgClosure *)q;
	  }
	  return q;
	  
      case CONSTR_INTLIKE:
      case CONSTR_CHARLIKE:
      case CONSTR_NOCAF_STATIC:
	  /* no need to put these on the static linked list, they don't need
	   * to be scavenged.
	   */
	  return q;
	  
      default:
	  barf("evacuate(static): strange closure type %d", (int)(info->type));
      }
  }

  bd = Bdescr((P_)q);

  if (bd->gen_no > N) {
      /* Can't evacuate this object, because it's in a generation
       * older than the ones we're collecting.  Let's hope that it's
       * in evac_gen or older, or we will have to arrange to track
       * this pointer using the mutable list.
       */
      if (bd->gen_no < evac_gen) {
	  // nope 
	  failed_to_evac = rtsTrue;
	  TICK_GC_FAILED_PROMOTION();
      }
      return q;
  }

  if ((bd->flags & (BF_LARGE | BF_COMPACTED | BF_EVACUATED)) != 0) {

      /* pointer into to-space: just return it.  This normally
       * shouldn't happen, but alllowing it makes certain things
       * slightly easier (eg. the mutable list can contain the same
       * object twice, for example).
       */
      if (bd->flags & BF_EVACUATED) {
	  if (bd->gen_no < evac_gen) {
	      failed_to_evac = rtsTrue;
	      TICK_GC_FAILED_PROMOTION();
	  }
	  return q;
      }

      /* evacuate large objects by re-linking them onto a different list.
       */
      if (bd->flags & BF_LARGE) {
	  info = get_itbl(q);
	  if (info->type == TSO && 
	      ((StgTSO *)q)->what_next == ThreadRelocated) {
	      q = (StgClosure *)((StgTSO *)q)->link;
	      goto loop;
	  }
	  evacuate_large((P_)q);
	  return q;
      }
      
      /* If the object is in a step that we're compacting, then we
       * need to use an alternative evacuate procedure.
       */
      if (bd->flags & BF_COMPACTED) {
	  if (!is_marked((P_)q,bd)) {
	      mark((P_)q,bd);
	      if (mark_stack_full()) {
		  mark_stack_overflowed = rtsTrue;
		  reset_mark_stack();
	      }
	      push_mark_stack((P_)q);
	  }
	  return q;
      }
  }
      
  stp = bd->step->to;

  info = get_itbl(q);
  
  switch (info->type) {

  case MUT_VAR_CLEAN:
  case MUT_VAR_DIRTY:
  case MVAR:
      return copy(q,sizeW_fromITBL(info),stp);

  case CONSTR_0_1:
  { 
      StgWord w = (StgWord)q->payload[0];
      if (q->header.info == Czh_con_info &&
	  // unsigned, so always true:  (StgChar)w >= MIN_CHARLIKE &&  
	  (StgChar)w <= MAX_CHARLIKE) {
	  return (StgClosure *)CHARLIKE_CLOSURE((StgChar)w);
      }
      if (q->header.info == Izh_con_info &&
	  (StgInt)w >= MIN_INTLIKE && (StgInt)w <= MAX_INTLIKE) {
	  return (StgClosure *)INTLIKE_CLOSURE((StgInt)w);
      }
      // else
      return copy_noscav(q,sizeofW(StgHeader)+1,stp);
  }

  case FUN_0_1:
  case FUN_1_0:
  case CONSTR_1_0:
    return copy(q,sizeofW(StgHeader)+1,stp);

  case THUNK_1_0:
  case THUNK_0_1:
    return copy(q,sizeofW(StgThunk)+1,stp);

  case THUNK_1_1:
  case THUNK_2_0:
  case THUNK_0_2:
#ifdef NO_PROMOTE_THUNKS
    if (bd->gen_no == 0 && 
	bd->step->no != 0 &&
	bd->step->no == generations[bd->gen_no].n_steps-1) {
      stp = bd->step;
    }
#endif
    return copy(q,sizeofW(StgThunk)+2,stp);

  case FUN_1_1:
  case FUN_2_0:
  case CONSTR_1_1:
  case CONSTR_2_0:
  case FUN_0_2:
    return copy(q,sizeofW(StgHeader)+2,stp);

  case CONSTR_0_2:
    return copy_noscav(q,sizeofW(StgHeader)+2,stp);

  case THUNK:
    return copy(q,thunk_sizeW_fromITBL(info),stp);

  case FUN:
  case CONSTR:
  case IND_PERM:
  case IND_OLDGEN_PERM:
  case WEAK:
  case STABLE_NAME:
    return copy(q,sizeW_fromITBL(info),stp);

  case BCO:
      return copy(q,bco_sizeW((StgBCO *)q),stp);

  case CAF_BLACKHOLE:
  case SE_CAF_BLACKHOLE:
  case SE_BLACKHOLE:
  case BLACKHOLE:
    return copyPart(q,BLACKHOLE_sizeW(),sizeofW(StgHeader),stp);

  case THUNK_SELECTOR:
    {
	StgClosure *p;
	const StgInfoTable *info_ptr;

	if (thunk_selector_depth > MAX_THUNK_SELECTOR_DEPTH) {
	    return copy(q,THUNK_SELECTOR_sizeW(),stp);
	}

	// stashed away for LDV profiling, see below
	info_ptr = q->header.info;

	p = eval_thunk_selector(info->layout.selector_offset,
				(StgSelector *)q);

	if (p == NULL) {
	    return copy(q,THUNK_SELECTOR_sizeW(),stp);
	} else {
	    StgClosure *val;
	    // q is still BLACKHOLE'd.
	    thunk_selector_depth++;
	    val = evacuate(p);
	    thunk_selector_depth--;

#ifdef PROFILING
	    // For the purposes of LDV profiling, we have destroyed
	    // the original selector thunk.
	    SET_INFO(q, info_ptr);
	    LDV_RECORD_DEAD_FILL_SLOP_DYNAMIC(q);
#endif

	    // Update the THUNK_SELECTOR with an indirection to the
	    // EVACUATED closure now at p.  Why do this rather than
	    // upd_evacuee(q,p)?  Because we have an invariant that an
	    // EVACUATED closure always points to an object in the
	    // same or an older generation (required by the short-cut
	    // test in the EVACUATED case, below).
	    SET_INFO(q, &stg_IND_info);
	    ((StgInd *)q)->indirectee = p;

	    // For the purposes of LDV profiling, we have created an
	    // indirection.
	    LDV_RECORD_CREATE(q);

	    return val;
	}
    }

  case IND:
  case IND_OLDGEN:
    // follow chains of indirections, don't evacuate them 
    q = ((StgInd*)q)->indirectee;
    goto loop;

  case RET_BCO:
  case RET_SMALL:
  case RET_VEC_SMALL:
  case RET_BIG:
  case RET_VEC_BIG:
  case RET_DYN:
  case UPDATE_FRAME:
  case STOP_FRAME:
  case CATCH_FRAME:
  case CATCH_STM_FRAME:
  case CATCH_RETRY_FRAME:
  case ATOMICALLY_FRAME:
    // shouldn't see these 
    barf("evacuate: stack frame at %p\n", q);

  case PAP:
      return copy(q,pap_sizeW((StgPAP*)q),stp);

  case AP:
      return copy(q,ap_sizeW((StgAP*)q),stp);

  case AP_STACK:
      return copy(q,ap_stack_sizeW((StgAP_STACK*)q),stp);

  case EVACUATED:
    /* Already evacuated, just return the forwarding address.
     * HOWEVER: if the requested destination generation (evac_gen) is
     * older than the actual generation (because the object was
     * already evacuated to a younger generation) then we have to
     * set the failed_to_evac flag to indicate that we couldn't 
     * manage to promote the object to the desired generation.
     */
    /* 
     * Optimisation: the check is fairly expensive, but we can often
     * shortcut it if either the required generation is 0, or the
     * current object (the EVACUATED) is in a high enough generation.
     * We know that an EVACUATED always points to an object in the
     * same or an older generation.  stp is the lowest step that the
     * current object would be evacuated to, so we only do the full
     * check if stp is too low.
     */
    if (evac_gen > 0 && stp->gen_no < evac_gen) {  // optimisation 
      StgClosure *p = ((StgEvacuated*)q)->evacuee;
      if (HEAP_ALLOCED(p) && Bdescr((P_)p)->gen_no < evac_gen) {
	failed_to_evac = rtsTrue;
	TICK_GC_FAILED_PROMOTION();
      }
    }
    return ((StgEvacuated*)q)->evacuee;

  case ARR_WORDS:
      // just copy the block 
      return copy_noscav(q,arr_words_sizeW((StgArrWords *)q),stp);

  case MUT_ARR_PTRS_CLEAN:
  case MUT_ARR_PTRS_DIRTY:
  case MUT_ARR_PTRS_FROZEN:
  case MUT_ARR_PTRS_FROZEN0:
      // just copy the block 
      return copy(q,mut_arr_ptrs_sizeW((StgMutArrPtrs *)q),stp);

  case TSO:
    {
      StgTSO *tso = (StgTSO *)q;

      /* Deal with redirected TSOs (a TSO that's had its stack enlarged).
       */
      if (tso->what_next == ThreadRelocated) {
	q = (StgClosure *)tso->link;
	goto loop;
      }

      /* To evacuate a small TSO, we need to relocate the update frame
       * list it contains.  
       */
      {
	  StgTSO *new_tso;
	  StgPtr p, q;

	  new_tso = (StgTSO *)copyPart((StgClosure *)tso,
				       tso_sizeW(tso),
				       sizeofW(StgTSO), stp);
	  move_TSO(tso, new_tso);
	  for (p = tso->sp, q = new_tso->sp;
	       p < tso->stack+tso->stack_size;) {
	      *q++ = *p++;
	  }
	  
	  return (StgClosure *)new_tso;
      }
    }

#if defined(PAR)
  case RBH:
    {
      //StgInfoTable *rip = get_closure_info(q, &size, &ptrs, &nonptrs, &vhs, str);
      to = copy(q,BLACKHOLE_sizeW(),stp); 
      //ToDo: derive size etc from reverted IP
      //to = copy(q,size,stp);
      IF_DEBUG(gc,
	       debugBelch("@@ evacuate: RBH %p (%s) to %p (%s)",
		     q, info_type(q), to, info_type(to)));
      return to;
    }

  case BLOCKED_FETCH:
    ASSERT(sizeofW(StgBlockedFetch) >= MIN_PAYLOD_SIZE);
    to = copy(q,sizeofW(StgBlockedFetch),stp);
    IF_DEBUG(gc,
	     debugBelch("@@ evacuate: %p (%s) to %p (%s)",
		   q, info_type(q), to, info_type(to)));
    return to;

# ifdef DIST    
  case REMOTE_REF:
# endif
  case FETCH_ME:
    ASSERT(sizeofW(StgBlockedFetch) >= MIN_PAYLOAD_SIZE);
    to = copy(q,sizeofW(StgFetchMe),stp);
    IF_DEBUG(gc,
	     debugBelch("@@ evacuate: %p (%s) to %p (%s)",
		   q, info_type(q), to, info_type(to)));
    return to;

  case FETCH_ME_BQ:
    ASSERT(sizeofW(StgBlockedFetch) >= MIN_PAYLOAD_SIZE);
    to = copy(q,sizeofW(StgFetchMeBlockingQueue),stp);
    IF_DEBUG(gc,
	     debugBelch("@@ evacuate: %p (%s) to %p (%s)",
		   q, info_type(q), to, info_type(to)));
    return to;
#endif

  case TREC_HEADER: 
    return copy(q,sizeofW(StgTRecHeader),stp);

  case TVAR_WAIT_QUEUE:
    return copy(q,sizeofW(StgTVarWaitQueue),stp);

  case TVAR:
    return copy(q,sizeofW(StgTVar),stp);
    
  case TREC_CHUNK:
    return copy(q,sizeofW(StgTRecChunk),stp);

  default:
    barf("evacuate: strange closure type %d", (int)(info->type));
  }

  barf("evacuate");
}

/* -----------------------------------------------------------------------------
   Evaluate a THUNK_SELECTOR if possible.

   returns: NULL if we couldn't evaluate this THUNK_SELECTOR, or
   a closure pointer if we evaluated it and this is the result.  Note
   that "evaluating" the THUNK_SELECTOR doesn't necessarily mean
   reducing it to HNF, just that we have eliminated the selection.
   The result might be another thunk, or even another THUNK_SELECTOR.

   If the return value is non-NULL, the original selector thunk has
   been BLACKHOLE'd, and should be updated with an indirection or a
   forwarding pointer.  If the return value is NULL, then the selector
   thunk is unchanged.

   ***
   ToDo: the treatment of THUNK_SELECTORS could be improved in the
   following way (from a suggestion by Ian Lynagh):

   We can have a chain like this:

      sel_0 --> (a,b)
                 |
                 |-----> sel_0 --> (a,b)
                                    |
                                    |-----> sel_0 --> ...

   and the depth limit means we don't go all the way to the end of the
   chain, which results in a space leak.  This affects the recursive
   call to evacuate() in the THUNK_SELECTOR case in evacuate(): *not*
   the recursive call to eval_thunk_selector() in
   eval_thunk_selector().

   We could eliminate the depth bound in this case, in the following
   way:

      - traverse the chain once to discover the *value* of the 
        THUNK_SELECTOR.  Mark all THUNK_SELECTORS that we
        visit on the way as having been visited already (somehow).

      - in a second pass, traverse the chain again updating all
        THUNK_SEELCTORS that we find on the way with indirections to
        the value.

      - if we encounter a "marked" THUNK_SELECTOR in a normal 
        evacuate(), we konw it can't be updated so just evac it.

   Program that illustrates the problem:

	foo [] = ([], [])
	foo (x:xs) = let (ys, zs) = foo xs
	             in if x >= 0 then (x:ys, zs) else (ys, x:zs)

	main = bar [1..(100000000::Int)]
	bar xs = (\(ys, zs) -> print ys >> print zs) (foo xs)

   -------------------------------------------------------------------------- */

static inline rtsBool
is_to_space ( StgClosure *p )
{
    bdescr *bd;

    bd = Bdescr((StgPtr)p);
    if (HEAP_ALLOCED(p) &&
	((bd->flags & BF_EVACUATED) 
	 || ((bd->flags & BF_COMPACTED) &&
	     is_marked((P_)p,bd)))) {
	return rtsTrue;
    } else {
	return rtsFalse;
    }
}    

static StgClosure *
eval_thunk_selector( nat field, StgSelector * p )
{
    StgInfoTable *info;
    const StgInfoTable *info_ptr;
    StgClosure *selectee;
    
    selectee = p->selectee;

    // Save the real info pointer (NOTE: not the same as get_itbl()).
    info_ptr = p->header.info;

    // If the THUNK_SELECTOR is in a generation that we are not
    // collecting, then bail out early.  We won't be able to save any
    // space in any case, and updating with an indirection is trickier
    // in an old gen.
    if (Bdescr((StgPtr)p)->gen_no > N) {
	return NULL;
    }

    // BLACKHOLE the selector thunk, since it is now under evaluation.
    // This is important to stop us going into an infinite loop if
    // this selector thunk eventually refers to itself.
    SET_INFO(p,&stg_BLACKHOLE_info);

selector_loop:

    // We don't want to end up in to-space, because this causes
    // problems when the GC later tries to evacuate the result of
    // eval_thunk_selector().  There are various ways this could
    // happen:
    //
    // 1. following an IND_STATIC
    //
    // 2. when the old generation is compacted, the mark phase updates
    //    from-space pointers to be to-space pointers, and we can't
    //    reliably tell which we're following (eg. from an IND_STATIC).
    // 
    // 3. compacting GC again: if we're looking at a constructor in
    //    the compacted generation, it might point directly to objects
    //    in to-space.  We must bale out here, otherwise doing the selection
    //    will result in a to-space pointer being returned.
    //
    //  (1) is dealt with using a BF_EVACUATED test on the
    //  selectee. (2) and (3): we can tell if we're looking at an
    //  object in the compacted generation that might point to
    //  to-space objects by testing that (a) it is BF_COMPACTED, (b)
    //  the compacted generation is being collected, and (c) the
    //  object is marked.  Only a marked object may have pointers that
    //  point to to-space objects, because that happens when
    //  scavenging.
    //
    //  The to-space test is now embodied in the in_to_space() inline
    //  function, as it is re-used below.
    //
    if (is_to_space(selectee)) {
	goto bale_out;
    }

    info = get_itbl(selectee);
    switch (info->type) {
      case CONSTR:
      case CONSTR_1_0:
      case CONSTR_0_1:
      case CONSTR_2_0:
      case CONSTR_1_1:
      case CONSTR_0_2:
      case CONSTR_STATIC:
      case CONSTR_NOCAF_STATIC:
	  // check that the size is in range 
	  ASSERT(field <  (StgWord32)(info->layout.payload.ptrs + 
				      info->layout.payload.nptrs));
	  
	  // Select the right field from the constructor, and check
	  // that the result isn't in to-space.  It might be in
	  // to-space if, for example, this constructor contains
	  // pointers to younger-gen objects (and is on the mut-once
	  // list).
	  //
	  { 
	      StgClosure *q;
	      q = selectee->payload[field];
	      if (is_to_space(q)) {
		  goto bale_out;
	      } else {
		  return q;
	      }
	  }

      case IND:
      case IND_PERM:
      case IND_OLDGEN:
      case IND_OLDGEN_PERM:
      case IND_STATIC:
	  selectee = ((StgInd *)selectee)->indirectee;
	  goto selector_loop;

      case EVACUATED:
	  // We don't follow pointers into to-space; the constructor
	  // has already been evacuated, so we won't save any space
	  // leaks by evaluating this selector thunk anyhow.
	  break;

      case THUNK_SELECTOR:
      {
	  StgClosure *val;

	  // check that we don't recurse too much, re-using the
	  // depth bound also used in evacuate().
	  if (thunk_selector_depth >= MAX_THUNK_SELECTOR_DEPTH) {
	      break;
	  }
	  thunk_selector_depth++;

	  val = eval_thunk_selector(info->layout.selector_offset, 
				    (StgSelector *)selectee);

	  thunk_selector_depth--;

	  if (val == NULL) { 
	      break;
	  } else {
	      // We evaluated this selector thunk, so update it with
	      // an indirection.  NOTE: we don't use UPD_IND here,
	      // because we are guaranteed that p is in a generation
	      // that we are collecting, and we never want to put the
	      // indirection on a mutable list.
#ifdef PROFILING
	      // For the purposes of LDV profiling, we have destroyed
	      // the original selector thunk.
	      SET_INFO(p, info_ptr);
	      LDV_RECORD_DEAD_FILL_SLOP_DYNAMIC(selectee);
#endif
	      ((StgInd *)selectee)->indirectee = val;
	      SET_INFO(selectee,&stg_IND_info);

	      // For the purposes of LDV profiling, we have created an
	      // indirection.
	      LDV_RECORD_CREATE(selectee);

	      selectee = val;
	      goto selector_loop;
	  }
      }

      case AP:
      case AP_STACK:
      case THUNK:
      case THUNK_1_0:
      case THUNK_0_1:
      case THUNK_2_0:
      case THUNK_1_1:
      case THUNK_0_2:
      case THUNK_STATIC:
      case CAF_BLACKHOLE:
      case SE_CAF_BLACKHOLE:
      case SE_BLACKHOLE:
      case BLACKHOLE:
#if defined(PAR)
      case RBH:
      case BLOCKED_FETCH:
# ifdef DIST    
      case REMOTE_REF:
# endif
      case FETCH_ME:
      case FETCH_ME_BQ:
#endif
	  // not evaluated yet 
	  break;
    
      default:
	barf("eval_thunk_selector: strange selectee %d",
	     (int)(info->type));
    }

bale_out:
    // We didn't manage to evaluate this thunk; restore the old info pointer
    SET_INFO(p, info_ptr);
    return NULL;
}

/* -----------------------------------------------------------------------------
   move_TSO is called to update the TSO structure after it has been
   moved from one place to another.
   -------------------------------------------------------------------------- */

void
move_TSO (StgTSO *src, StgTSO *dest)
{
    ptrdiff_t diff;

    // relocate the stack pointer... 
    diff = (StgPtr)dest - (StgPtr)src; // In *words* 
    dest->sp = (StgPtr)dest->sp + diff;
}

/* Similar to scavenge_large_bitmap(), but we don't write back the
 * pointers we get back from evacuate().
 */
static void
scavenge_large_srt_bitmap( StgLargeSRT *large_srt )
{
    nat i, b, size;
    StgWord bitmap;
    StgClosure **p;
    
    b = 0;
    bitmap = large_srt->l.bitmap[b];
    size   = (nat)large_srt->l.size;
    p      = (StgClosure **)large_srt->srt;
    for (i = 0; i < size; ) {
	if ((bitmap & 1) != 0) {
	    evacuate(*p);
	}
	i++;
	p++;
	if (i % BITS_IN(W_) == 0) {
	    b++;
	    bitmap = large_srt->l.bitmap[b];
	} else {
	    bitmap = bitmap >> 1;
	}
    }
}

/* evacuate the SRT.  If srt_bitmap is zero, then there isn't an
 * srt field in the info table.  That's ok, because we'll
 * never dereference it.
 */
STATIC_INLINE void
scavenge_srt (StgClosure **srt, nat srt_bitmap)
{
  nat bitmap;
  StgClosure **p;

  bitmap = srt_bitmap;
  p = srt;

  if (bitmap == (StgHalfWord)(-1)) {  
      scavenge_large_srt_bitmap( (StgLargeSRT *)srt );
      return;
  }

  while (bitmap != 0) {
      if ((bitmap & 1) != 0) {
#ifdef ENABLE_WIN32_DLL_SUPPORT
	  // Special-case to handle references to closures hiding out in DLLs, since
	  // double indirections required to get at those. The code generator knows
	  // which is which when generating the SRT, so it stores the (indirect)
	  // reference to the DLL closure in the table by first adding one to it.
	  // We check for this here, and undo the addition before evacuating it.
	  // 
	  // If the SRT entry hasn't got bit 0 set, the SRT entry points to a
	  // closure that's fixed at link-time, and no extra magic is required.
	  if ( (unsigned long)(*srt) & 0x1 ) {
	      evacuate(*stgCast(StgClosure**,(stgCast(unsigned long, *srt) & ~0x1)));
	  } else {
	      evacuate(*p);
	  }
#else
	  evacuate(*p);
#endif
      }
      p++;
      bitmap = bitmap >> 1;
  }
}


STATIC_INLINE void
scavenge_thunk_srt(const StgInfoTable *info)
{
    StgThunkInfoTable *thunk_info;

    if (!major_gc) return;

    thunk_info = itbl_to_thunk_itbl(info);
    scavenge_srt((StgClosure **)GET_SRT(thunk_info), thunk_info->i.srt_bitmap);
}

STATIC_INLINE void
scavenge_fun_srt(const StgInfoTable *info)
{
    StgFunInfoTable *fun_info;

    if (!major_gc) return;
  
    fun_info = itbl_to_fun_itbl(info);
    scavenge_srt((StgClosure **)GET_FUN_SRT(fun_info), fun_info->i.srt_bitmap);
}

/* -----------------------------------------------------------------------------
   Scavenge a TSO.
   -------------------------------------------------------------------------- */

static void
scavengeTSO (StgTSO *tso)
{
    if (   tso->why_blocked == BlockedOnMVar
	|| tso->why_blocked == BlockedOnBlackHole
	|| tso->why_blocked == BlockedOnException
#if defined(PAR)
	|| tso->why_blocked == BlockedOnGA
	|| tso->why_blocked == BlockedOnGA_NoSend
#endif
	) {
	tso->block_info.closure = evacuate(tso->block_info.closure);
    }
    if ( tso->blocked_exceptions != NULL ) {
	tso->blocked_exceptions = 
	    (StgTSO *)evacuate((StgClosure *)tso->blocked_exceptions);
    }
    
    // We don't always chase the link field: TSOs on the blackhole
    // queue are not automatically alive, so the link field is a
    // "weak" pointer in that case.
    if (tso->why_blocked != BlockedOnBlackHole) {
	tso->link = (StgTSO *)evacuate((StgClosure *)tso->link);
    }

    // scavange current transaction record
    tso->trec = (StgTRecHeader *)evacuate((StgClosure *)tso->trec);
    
    // scavenge this thread's stack 
    scavenge_stack(tso->sp, &(tso->stack[tso->stack_size]));
}

/* -----------------------------------------------------------------------------
   Blocks of function args occur on the stack (at the top) and
   in PAPs.
   -------------------------------------------------------------------------- */

STATIC_INLINE StgPtr
scavenge_arg_block (StgFunInfoTable *fun_info, StgClosure **args)
{
    StgPtr p;
    StgWord bitmap;
    nat size;

    p = (StgPtr)args;
    switch (fun_info->f.fun_type) {
    case ARG_GEN:
	bitmap = BITMAP_BITS(fun_info->f.b.bitmap);
	size = BITMAP_SIZE(fun_info->f.b.bitmap);
	goto small_bitmap;
    case ARG_GEN_BIG:
	size = GET_FUN_LARGE_BITMAP(fun_info)->size;
	scavenge_large_bitmap(p, GET_FUN_LARGE_BITMAP(fun_info), size);
	p += size;
	break;
    default:
	bitmap = BITMAP_BITS(stg_arg_bitmaps[fun_info->f.fun_type]);
	size = BITMAP_SIZE(stg_arg_bitmaps[fun_info->f.fun_type]);
    small_bitmap:
	while (size > 0) {
	    if ((bitmap & 1) == 0) {
		*p = (StgWord)(StgPtr)evacuate((StgClosure *)*p);
	    }
	    p++;
	    bitmap = bitmap >> 1;
	    size--;
	}
	break;
    }
    return p;
}

STATIC_INLINE StgPtr
scavenge_PAP_payload (StgClosure *fun, StgClosure **payload, StgWord size)
{
    StgPtr p;
    StgWord bitmap;
    StgFunInfoTable *fun_info;
    
    fun_info = get_fun_itbl(fun);
    ASSERT(fun_info->i.type != PAP);
    p = (StgPtr)payload;

    switch (fun_info->f.fun_type) {
    case ARG_GEN:
	bitmap = BITMAP_BITS(fun_info->f.b.bitmap);
	goto small_bitmap;
    case ARG_GEN_BIG:
	scavenge_large_bitmap(p, GET_FUN_LARGE_BITMAP(fun_info), size);
	p += size;
	break;
    case ARG_BCO:
	scavenge_large_bitmap((StgPtr)payload, BCO_BITMAP(fun), size);
	p += size;
	break;
    default:
	bitmap = BITMAP_BITS(stg_arg_bitmaps[fun_info->f.fun_type]);
    small_bitmap:
	while (size > 0) {
	    if ((bitmap & 1) == 0) {
		*p = (StgWord)(StgPtr)evacuate((StgClosure *)*p);
	    }
	    p++;
	    bitmap = bitmap >> 1;
	    size--;
	}
	break;
    }
    return p;
}

STATIC_INLINE StgPtr
scavenge_PAP (StgPAP *pap)
{
    pap->fun = evacuate(pap->fun);
    return scavenge_PAP_payload (pap->fun, pap->payload, pap->n_args);
}

STATIC_INLINE StgPtr
scavenge_AP (StgAP *ap)
{
    ap->fun = evacuate(ap->fun);
    return scavenge_PAP_payload (ap->fun, ap->payload, ap->n_args);
}

/* -----------------------------------------------------------------------------
   Scavenge a given step until there are no more objects in this step
   to scavenge.

   evac_gen is set by the caller to be either zero (for a step in a
   generation < N) or G where G is the generation of the step being
   scavenged.  

   We sometimes temporarily change evac_gen back to zero if we're
   scavenging a mutable object where early promotion isn't such a good
   idea.  
   -------------------------------------------------------------------------- */

static void
scavenge(step *stp)
{
  StgPtr p, q;
  StgInfoTable *info;
  bdescr *bd;
  nat saved_evac_gen = evac_gen;

  p = stp->scan;
  bd = stp->scan_bd;

  failed_to_evac = rtsFalse;

  /* scavenge phase - standard breadth-first scavenging of the
   * evacuated objects 
   */

  while (bd != stp->hp_bd || p < stp->hp) {

    // If we're at the end of this block, move on to the next block 
    if (bd != stp->hp_bd && p == bd->free) {
      bd = bd->link;
      p = bd->start;
      continue;
    }

    ASSERT(LOOKS_LIKE_CLOSURE_PTR(p));
    info = get_itbl((StgClosure *)p);
    
    ASSERT(thunk_selector_depth == 0);

    q = p;
    switch (info->type) {

    case MVAR:
    { 
	StgMVar *mvar = ((StgMVar *)p);
	evac_gen = 0;
	mvar->head = (StgTSO *)evacuate((StgClosure *)mvar->head);
	mvar->tail = (StgTSO *)evacuate((StgClosure *)mvar->tail);
	mvar->value = evacuate((StgClosure *)mvar->value);
	evac_gen = saved_evac_gen;
	failed_to_evac = rtsTrue; // mutable.
	p += sizeofW(StgMVar);
	break;
    }

    case FUN_2_0:
	scavenge_fun_srt(info);
	((StgClosure *)p)->payload[1] = evacuate(((StgClosure *)p)->payload[1]);
	((StgClosure *)p)->payload[0] = evacuate(((StgClosure *)p)->payload[0]);
	p += sizeofW(StgHeader) + 2;
	break;

    case THUNK_2_0:
	scavenge_thunk_srt(info);
	((StgThunk *)p)->payload[1] = evacuate(((StgThunk *)p)->payload[1]);
	((StgThunk *)p)->payload[0] = evacuate(((StgThunk *)p)->payload[0]);
	p += sizeofW(StgThunk) + 2;
	break;

    case CONSTR_2_0:
	((StgClosure *)p)->payload[1] = evacuate(((StgClosure *)p)->payload[1]);
	((StgClosure *)p)->payload[0] = evacuate(((StgClosure *)p)->payload[0]);
	p += sizeofW(StgHeader) + 2;
	break;
	
    case THUNK_1_0:
	scavenge_thunk_srt(info);
	((StgThunk *)p)->payload[0] = evacuate(((StgThunk *)p)->payload[0]);
	p += sizeofW(StgThunk) + 1;
	break;
	
    case FUN_1_0:
	scavenge_fun_srt(info);
    case CONSTR_1_0:
	((StgClosure *)p)->payload[0] = evacuate(((StgClosure *)p)->payload[0]);
	p += sizeofW(StgHeader) + 1;
	break;
	
    case THUNK_0_1:
	scavenge_thunk_srt(info);
	p += sizeofW(StgThunk) + 1;
	break;
	
    case FUN_0_1:
	scavenge_fun_srt(info);
    case CONSTR_0_1:
	p += sizeofW(StgHeader) + 1;
	break;
	
    case THUNK_0_2:
	scavenge_thunk_srt(info);
	p += sizeofW(StgThunk) + 2;
	break;
	
    case FUN_0_2:
	scavenge_fun_srt(info);
    case CONSTR_0_2:
	p += sizeofW(StgHeader) + 2;
	break;
	
    case THUNK_1_1:
	scavenge_thunk_srt(info);
	((StgThunk *)p)->payload[0] = evacuate(((StgThunk *)p)->payload[0]);
	p += sizeofW(StgThunk) + 2;
	break;

    case FUN_1_1:
	scavenge_fun_srt(info);
    case CONSTR_1_1:
	((StgClosure *)p)->payload[0] = evacuate(((StgClosure *)p)->payload[0]);
	p += sizeofW(StgHeader) + 2;
	break;
	
    case FUN:
	scavenge_fun_srt(info);
	goto gen_obj;

    case THUNK:
    {
	StgPtr end;

	scavenge_thunk_srt(info);
	end = (P_)((StgThunk *)p)->payload + info->layout.payload.ptrs;
	for (p = (P_)((StgThunk *)p)->payload; p < end; p++) {
	    *p = (StgWord)(StgPtr)evacuate((StgClosure *)*p);
	}
	p += info->layout.payload.nptrs;
	break;
    }
	
    gen_obj:
    case CONSTR:
    case WEAK:
    case STABLE_NAME:
    {
	StgPtr end;

	end = (P_)((StgClosure *)p)->payload + info->layout.payload.ptrs;
	for (p = (P_)((StgClosure *)p)->payload; p < end; p++) {
	    *p = (StgWord)(StgPtr)evacuate((StgClosure *)*p);
	}
	p += info->layout.payload.nptrs;
	break;
    }

    case BCO: {
	StgBCO *bco = (StgBCO *)p;
	bco->instrs = (StgArrWords *)evacuate((StgClosure *)bco->instrs);
	bco->literals = (StgArrWords *)evacuate((StgClosure *)bco->literals);
	bco->ptrs = (StgMutArrPtrs *)evacuate((StgClosure *)bco->ptrs);
	bco->itbls = (StgArrWords *)evacuate((StgClosure *)bco->itbls);
	p += bco_sizeW(bco);
	break;
    }

    case IND_PERM:
      if (stp->gen->no != 0) {
#ifdef PROFILING
        // @LDV profiling
        // No need to call LDV_recordDead_FILL_SLOP_DYNAMIC() because an 
        // IND_OLDGEN_PERM closure is larger than an IND_PERM closure.
        LDV_recordDead((StgClosure *)p, sizeofW(StgInd));
#endif        
        // 
        // Todo: maybe use SET_HDR() and remove LDV_RECORD_CREATE()?
        //
	SET_INFO(((StgClosure *)p), &stg_IND_OLDGEN_PERM_info);

        // We pretend that p has just been created.
        LDV_RECORD_CREATE((StgClosure *)p);
      }
	// fall through 
    case IND_OLDGEN_PERM:
	((StgInd *)p)->indirectee = evacuate(((StgInd *)p)->indirectee);
	p += sizeofW(StgInd);
	break;

    case MUT_VAR_CLEAN:
    case MUT_VAR_DIRTY: {
	rtsBool saved_eager_promotion = eager_promotion;

	eager_promotion = rtsFalse;
	((StgMutVar *)p)->var = evacuate(((StgMutVar *)p)->var);
	eager_promotion = saved_eager_promotion;

	if (failed_to_evac) {
	    ((StgClosure *)q)->header.info = &stg_MUT_VAR_DIRTY_info;
	} else {
	    ((StgClosure *)q)->header.info = &stg_MUT_VAR_CLEAN_info;
	}
	p += sizeofW(StgMutVar);
	break;
    }

    case CAF_BLACKHOLE:
    case SE_CAF_BLACKHOLE:
    case SE_BLACKHOLE:
    case BLACKHOLE:
	p += BLACKHOLE_sizeW();
	break;

    case THUNK_SELECTOR:
    { 
	StgSelector *s = (StgSelector *)p;
	s->selectee = evacuate(s->selectee);
	p += THUNK_SELECTOR_sizeW();
	break;
    }

    // A chunk of stack saved in a heap object
    case AP_STACK:
    {
	StgAP_STACK *ap = (StgAP_STACK *)p;

	ap->fun = evacuate(ap->fun);
	scavenge_stack((StgPtr)ap->payload, (StgPtr)ap->payload + ap->size);
	p = (StgPtr)ap->payload + ap->size;
	break;
    }

    case PAP:
	p = scavenge_PAP((StgPAP *)p);
	break;

    case AP:
	p = scavenge_AP((StgAP *)p);
	break;

    case ARR_WORDS:
	// nothing to follow 
	p += arr_words_sizeW((StgArrWords *)p);
	break;

    case MUT_ARR_PTRS_CLEAN:
    case MUT_ARR_PTRS_DIRTY:
	// follow everything 
    {
	StgPtr next;
	rtsBool saved_eager;

	// We don't eagerly promote objects pointed to by a mutable
	// array, but if we find the array only points to objects in
	// the same or an older generation, we mark it "clean" and
	// avoid traversing it during minor GCs.
	saved_eager = eager_promotion;
	eager_promotion = rtsFalse;
	next = p + mut_arr_ptrs_sizeW((StgMutArrPtrs*)p);
	for (p = (P_)((StgMutArrPtrs *)p)->payload; p < next; p++) {
	    *p = (StgWord)(StgPtr)evacuate((StgClosure *)*p);
	}
	eager_promotion = saved_eager;

	if (failed_to_evac) {
	    ((StgClosure *)q)->header.info = &stg_MUT_ARR_PTRS_DIRTY_info;
	} else {
	    ((StgClosure *)q)->header.info = &stg_MUT_ARR_PTRS_CLEAN_info;
	}

	failed_to_evac = rtsTrue; // always put it on the mutable list.
	break;
    }

    case MUT_ARR_PTRS_FROZEN:
    case MUT_ARR_PTRS_FROZEN0:
	// follow everything 
    {
	StgPtr next;

	next = p + mut_arr_ptrs_sizeW((StgMutArrPtrs*)p);
	for (p = (P_)((StgMutArrPtrs *)p)->payload; p < next; p++) {
	    *p = (StgWord)(StgPtr)evacuate((StgClosure *)*p);
	}

	// If we're going to put this object on the mutable list, then
	// set its info ptr to MUT_ARR_PTRS_FROZEN0 to indicate that.
	if (failed_to_evac) {
	    ((StgClosure *)q)->header.info = &stg_MUT_ARR_PTRS_FROZEN0_info;
	} else {
	    ((StgClosure *)q)->header.info = &stg_MUT_ARR_PTRS_FROZEN_info;
	}
	break;
    }

    case TSO:
    { 
	StgTSO *tso = (StgTSO *)p;
	rtsBool saved_eager = eager_promotion;

	eager_promotion = rtsFalse;
	scavengeTSO(tso);
	eager_promotion = saved_eager;

	if (failed_to_evac) {
	    tso->flags |= TSO_DIRTY;
	} else {
	    tso->flags &= ~TSO_DIRTY;
	}

	failed_to_evac = rtsTrue; // always on the mutable list
	p += tso_sizeW(tso);
	break;
    }

#if defined(PAR)
    case RBH:
    { 
#if 0
	nat size, ptrs, nonptrs, vhs;
	char str[80];
	StgInfoTable *rip = get_closure_info(p, &size, &ptrs, &nonptrs, &vhs, str);
#endif
	StgRBH *rbh = (StgRBH *)p;
	(StgClosure *)rbh->blocking_queue = 
	    evacuate((StgClosure *)rbh->blocking_queue);
	failed_to_evac = rtsTrue;  // mutable anyhow.
	IF_DEBUG(gc,
		 debugBelch("@@ scavenge: RBH %p (%s) (new blocking_queue link=%p)",
		       p, info_type(p), (StgClosure *)rbh->blocking_queue));
	// ToDo: use size of reverted closure here!
	p += BLACKHOLE_sizeW(); 
	break;
    }

    case BLOCKED_FETCH:
    { 
	StgBlockedFetch *bf = (StgBlockedFetch *)p;
	// follow the pointer to the node which is being demanded 
	(StgClosure *)bf->node = 
	    evacuate((StgClosure *)bf->node);
	// follow the link to the rest of the blocking queue 
	(StgClosure *)bf->link = 
	    evacuate((StgClosure *)bf->link);
	IF_DEBUG(gc,
		 debugBelch("@@ scavenge: %p (%s); node is now %p; exciting, isn't it",
		       bf, info_type((StgClosure *)bf), 
		       bf->node, info_type(bf->node)));
	p += sizeofW(StgBlockedFetch);
	break;
    }

#ifdef DIST
    case REMOTE_REF:
#endif
    case FETCH_ME:
	p += sizeofW(StgFetchMe);
	break; // nothing to do in this case

    case FETCH_ME_BQ:
    { 
	StgFetchMeBlockingQueue *fmbq = (StgFetchMeBlockingQueue *)p;
	(StgClosure *)fmbq->blocking_queue = 
	    evacuate((StgClosure *)fmbq->blocking_queue);
	IF_DEBUG(gc,
		 debugBelch("@@ scavenge: %p (%s) exciting, isn't it",
		       p, info_type((StgClosure *)p)));
	p += sizeofW(StgFetchMeBlockingQueue);
	break;
    }
#endif

    case TVAR_WAIT_QUEUE:
      {
	StgTVarWaitQueue *wq = ((StgTVarWaitQueue *) p);
	evac_gen = 0;
	wq->waiting_tso = (StgTSO *)evacuate((StgClosure*)wq->waiting_tso);
	wq->next_queue_entry = (StgTVarWaitQueue *)evacuate((StgClosure*)wq->next_queue_entry);
	wq->prev_queue_entry = (StgTVarWaitQueue *)evacuate((StgClosure*)wq->prev_queue_entry);
	evac_gen = saved_evac_gen;
	failed_to_evac = rtsTrue; // mutable
	p += sizeofW(StgTVarWaitQueue);
	break;
      }

    case TVAR:
      {
	StgTVar *tvar = ((StgTVar *) p);
	evac_gen = 0;
	tvar->current_value = evacuate((StgClosure*)tvar->current_value);
	tvar->first_wait_queue_entry = (StgTVarWaitQueue *)evacuate((StgClosure*)tvar->first_wait_queue_entry);
	evac_gen = saved_evac_gen;
	failed_to_evac = rtsTrue; // mutable
	p += sizeofW(StgTVar);
	break;
      }

    case TREC_HEADER:
      {
        StgTRecHeader *trec = ((StgTRecHeader *) p);
        evac_gen = 0;
	trec->enclosing_trec = (StgTRecHeader *)evacuate((StgClosure*)trec->enclosing_trec);
	trec->current_chunk = (StgTRecChunk *)evacuate((StgClosure*)trec->current_chunk);
	evac_gen = saved_evac_gen;
	failed_to_evac = rtsTrue; // mutable
	p += sizeofW(StgTRecHeader);
        break;
      }

    case TREC_CHUNK:
      {
	StgWord i;
	StgTRecChunk *tc = ((StgTRecChunk *) p);
	TRecEntry *e = &(tc -> entries[0]);
	evac_gen = 0;
	tc->prev_chunk = (StgTRecChunk *)evacuate((StgClosure*)tc->prev_chunk);
	for (i = 0; i < tc -> next_entry_idx; i ++, e++ ) {
	  e->tvar = (StgTVar *)evacuate((StgClosure*)e->tvar);
	  e->expected_value = evacuate((StgClosure*)e->expected_value);
	  e->new_value = evacuate((StgClosure*)e->new_value);
	}
	evac_gen = saved_evac_gen;
	failed_to_evac = rtsTrue; // mutable
	p += sizeofW(StgTRecChunk);
	break;
      }

    default:
	barf("scavenge: unimplemented/strange closure type %d @ %p", 
	     info->type, p);
    }

    /*
     * We need to record the current object on the mutable list if
     *  (a) It is actually mutable, or 
     *  (b) It contains pointers to a younger generation.
     * Case (b) arises if we didn't manage to promote everything that
     * the current object points to into the current generation.
     */
    if (failed_to_evac) {
	failed_to_evac = rtsFalse;
	if (stp->gen_no > 0) {
	    recordMutableGen((StgClosure *)q, stp->gen);
	}
    }
  }

  stp->scan_bd = bd;
  stp->scan = p;
}    

/* -----------------------------------------------------------------------------
   Scavenge everything on the mark stack.

   This is slightly different from scavenge():
      - we don't walk linearly through the objects, so the scavenger
        doesn't need to advance the pointer on to the next object.
   -------------------------------------------------------------------------- */

static void
scavenge_mark_stack(void)
{
    StgPtr p, q;
    StgInfoTable *info;
    nat saved_evac_gen;

    evac_gen = oldest_gen->no;
    saved_evac_gen = evac_gen;

linear_scan:
    while (!mark_stack_empty()) {
	p = pop_mark_stack();

	ASSERT(LOOKS_LIKE_CLOSURE_PTR(p));
	info = get_itbl((StgClosure *)p);
	
	q = p;
	switch (info->type) {
	    
	case MVAR:
	{
	    StgMVar *mvar = ((StgMVar *)p);
	    evac_gen = 0;
	    mvar->head = (StgTSO *)evacuate((StgClosure *)mvar->head);
	    mvar->tail = (StgTSO *)evacuate((StgClosure *)mvar->tail);
	    mvar->value = evacuate((StgClosure *)mvar->value);
	    evac_gen = saved_evac_gen;
	    failed_to_evac = rtsTrue; // mutable.
	    break;
	}

	case FUN_2_0:
	    scavenge_fun_srt(info);
	    ((StgClosure *)p)->payload[1] = evacuate(((StgClosure *)p)->payload[1]);
	    ((StgClosure *)p)->payload[0] = evacuate(((StgClosure *)p)->payload[0]);
	    break;

	case THUNK_2_0:
	    scavenge_thunk_srt(info);
	    ((StgThunk *)p)->payload[1] = evacuate(((StgThunk *)p)->payload[1]);
	    ((StgThunk *)p)->payload[0] = evacuate(((StgThunk *)p)->payload[0]);
	    break;

	case CONSTR_2_0:
	    ((StgClosure *)p)->payload[1] = evacuate(((StgClosure *)p)->payload[1]);
	    ((StgClosure *)p)->payload[0] = evacuate(((StgClosure *)p)->payload[0]);
	    break;
	
	case FUN_1_0:
	case FUN_1_1:
	    scavenge_fun_srt(info);
	    ((StgClosure *)p)->payload[0] = evacuate(((StgClosure *)p)->payload[0]);
	    break;

	case THUNK_1_0:
	case THUNK_1_1:
	    scavenge_thunk_srt(info);
	    ((StgThunk *)p)->payload[0] = evacuate(((StgThunk *)p)->payload[0]);
	    break;

	case CONSTR_1_0:
	case CONSTR_1_1:
	    ((StgClosure *)p)->payload[0] = evacuate(((StgClosure *)p)->payload[0]);
	    break;
	
	case FUN_0_1:
	case FUN_0_2:
	    scavenge_fun_srt(info);
	    break;

	case THUNK_0_1:
	case THUNK_0_2:
	    scavenge_thunk_srt(info);
	    break;

	case CONSTR_0_1:
	case CONSTR_0_2:
	    break;
	
	case FUN:
	    scavenge_fun_srt(info);
	    goto gen_obj;

	case THUNK:
	{
	    StgPtr end;
	    
	    scavenge_thunk_srt(info);
	    end = (P_)((StgThunk *)p)->payload + info->layout.payload.ptrs;
	    for (p = (P_)((StgThunk *)p)->payload; p < end; p++) {
		*p = (StgWord)(StgPtr)evacuate((StgClosure *)*p);
	    }
	    break;
	}
	
	gen_obj:
	case CONSTR:
	case WEAK:
	case STABLE_NAME:
	{
	    StgPtr end;
	    
	    end = (P_)((StgClosure *)p)->payload + info->layout.payload.ptrs;
	    for (p = (P_)((StgClosure *)p)->payload; p < end; p++) {
		*p = (StgWord)(StgPtr)evacuate((StgClosure *)*p);
	    }
	    break;
	}

	case BCO: {
	    StgBCO *bco = (StgBCO *)p;
	    bco->instrs = (StgArrWords *)evacuate((StgClosure *)bco->instrs);
	    bco->literals = (StgArrWords *)evacuate((StgClosure *)bco->literals);
	    bco->ptrs = (StgMutArrPtrs *)evacuate((StgClosure *)bco->ptrs);
	    bco->itbls = (StgArrWords *)evacuate((StgClosure *)bco->itbls);
	    break;
	}

	case IND_PERM:
	    // don't need to do anything here: the only possible case
	    // is that we're in a 1-space compacting collector, with
	    // no "old" generation.
	    break;

	case IND_OLDGEN:
	case IND_OLDGEN_PERM:
	    ((StgInd *)p)->indirectee = 
		evacuate(((StgInd *)p)->indirectee);
	    break;

	case MUT_VAR_CLEAN:
	case MUT_VAR_DIRTY: {
	    rtsBool saved_eager_promotion = eager_promotion;
	    
	    eager_promotion = rtsFalse;
	    ((StgMutVar *)p)->var = evacuate(((StgMutVar *)p)->var);
	    eager_promotion = saved_eager_promotion;
	    
	    if (failed_to_evac) {
		((StgClosure *)q)->header.info = &stg_MUT_VAR_DIRTY_info;
	    } else {
		((StgClosure *)q)->header.info = &stg_MUT_VAR_CLEAN_info;
	    }
	    break;
	}

	case CAF_BLACKHOLE:
	case SE_CAF_BLACKHOLE:
	case SE_BLACKHOLE:
	case BLACKHOLE:
	case ARR_WORDS:
	    break;

	case THUNK_SELECTOR:
	{ 
	    StgSelector *s = (StgSelector *)p;
	    s->selectee = evacuate(s->selectee);
	    break;
	}

	// A chunk of stack saved in a heap object
	case AP_STACK:
	{
	    StgAP_STACK *ap = (StgAP_STACK *)p;
	    
	    ap->fun = evacuate(ap->fun);
	    scavenge_stack((StgPtr)ap->payload, (StgPtr)ap->payload + ap->size);
	    break;
	}

	case PAP:
	    scavenge_PAP((StgPAP *)p);
	    break;

	case AP:
	    scavenge_AP((StgAP *)p);
	    break;
      
	case MUT_ARR_PTRS_CLEAN:
	case MUT_ARR_PTRS_DIRTY:
	    // follow everything 
	{
	    StgPtr next;
	    rtsBool saved_eager;

	    // We don't eagerly promote objects pointed to by a mutable
	    // array, but if we find the array only points to objects in
	    // the same or an older generation, we mark it "clean" and
	    // avoid traversing it during minor GCs.
	    saved_eager = eager_promotion;
	    eager_promotion = rtsFalse;
	    next = p + mut_arr_ptrs_sizeW((StgMutArrPtrs*)p);
	    for (p = (P_)((StgMutArrPtrs *)p)->payload; p < next; p++) {
		*p = (StgWord)(StgPtr)evacuate((StgClosure *)*p);
	    }
	    eager_promotion = saved_eager;

	    if (failed_to_evac) {
		((StgClosure *)q)->header.info = &stg_MUT_ARR_PTRS_DIRTY_info;
	    } else {
		((StgClosure *)q)->header.info = &stg_MUT_ARR_PTRS_CLEAN_info;
	    }

	    failed_to_evac = rtsTrue; // mutable anyhow.
	    break;
	}

	case MUT_ARR_PTRS_FROZEN:
	case MUT_ARR_PTRS_FROZEN0:
	    // follow everything 
	{
	    StgPtr next, q = p;
	    
	    next = p + mut_arr_ptrs_sizeW((StgMutArrPtrs*)p);
	    for (p = (P_)((StgMutArrPtrs *)p)->payload; p < next; p++) {
		*p = (StgWord)(StgPtr)evacuate((StgClosure *)*p);
	    }

	    // If we're going to put this object on the mutable list, then
	    // set its info ptr to MUT_ARR_PTRS_FROZEN0 to indicate that.
	    if (failed_to_evac) {
		((StgClosure *)q)->header.info = &stg_MUT_ARR_PTRS_FROZEN0_info;
	    } else {
		((StgClosure *)q)->header.info = &stg_MUT_ARR_PTRS_FROZEN_info;
	    }
	    break;
	}

	case TSO:
	{ 
	    StgTSO *tso = (StgTSO *)p;
	    rtsBool saved_eager = eager_promotion;

	    eager_promotion = rtsFalse;
	    scavengeTSO(tso);
	    eager_promotion = saved_eager;
	    
	    if (failed_to_evac) {
		tso->flags |= TSO_DIRTY;
	    } else {
		tso->flags &= ~TSO_DIRTY;
	    }
	    
	    failed_to_evac = rtsTrue; // always on the mutable list
	    break;
	}

#if defined(PAR)
	case RBH:
	{ 
#if 0
	    nat size, ptrs, nonptrs, vhs;
	    char str[80];
	    StgInfoTable *rip = get_closure_info(p, &size, &ptrs, &nonptrs, &vhs, str);
#endif
	    StgRBH *rbh = (StgRBH *)p;
	    bh->blocking_queue = 
		(StgTSO *)evacuate((StgClosure *)bh->blocking_queue);
	    failed_to_evac = rtsTrue;  // mutable anyhow.
	    IF_DEBUG(gc,
		     debugBelch("@@ scavenge: RBH %p (%s) (new blocking_queue link=%p)",
			   p, info_type(p), (StgClosure *)rbh->blocking_queue));
	    break;
	}
	
	case BLOCKED_FETCH:
	{ 
	    StgBlockedFetch *bf = (StgBlockedFetch *)p;
	    // follow the pointer to the node which is being demanded 
	    (StgClosure *)bf->node = 
		evacuate((StgClosure *)bf->node);
	    // follow the link to the rest of the blocking queue 
	    (StgClosure *)bf->link = 
		evacuate((StgClosure *)bf->link);
	    IF_DEBUG(gc,
		     debugBelch("@@ scavenge: %p (%s); node is now %p; exciting, isn't it",
			   bf, info_type((StgClosure *)bf), 
			   bf->node, info_type(bf->node)));
	    break;
	}

#ifdef DIST
	case REMOTE_REF:
#endif
	case FETCH_ME:
	    break; // nothing to do in this case

	case FETCH_ME_BQ:
	{ 
	    StgFetchMeBlockingQueue *fmbq = (StgFetchMeBlockingQueue *)p;
	    (StgClosure *)fmbq->blocking_queue = 
		evacuate((StgClosure *)fmbq->blocking_queue);
	    IF_DEBUG(gc,
		     debugBelch("@@ scavenge: %p (%s) exciting, isn't it",
			   p, info_type((StgClosure *)p)));
	    break;
	}
#endif /* PAR */

	case TVAR_WAIT_QUEUE:
	  {
	    StgTVarWaitQueue *wq = ((StgTVarWaitQueue *) p);
	    evac_gen = 0;
	    wq->waiting_tso = (StgTSO *)evacuate((StgClosure*)wq->waiting_tso);
	    wq->next_queue_entry = (StgTVarWaitQueue *)evacuate((StgClosure*)wq->next_queue_entry);
	    wq->prev_queue_entry = (StgTVarWaitQueue *)evacuate((StgClosure*)wq->prev_queue_entry);
	    evac_gen = saved_evac_gen;
	    failed_to_evac = rtsTrue; // mutable
	    break;
	  }
	  
	case TVAR:
	  {
	    StgTVar *tvar = ((StgTVar *) p);
	    evac_gen = 0;
	    tvar->current_value = evacuate((StgClosure*)tvar->current_value);
	    tvar->first_wait_queue_entry = (StgTVarWaitQueue *)evacuate((StgClosure*)tvar->first_wait_queue_entry);
	    evac_gen = saved_evac_gen;
	    failed_to_evac = rtsTrue; // mutable
	    break;
	  }
	  
	case TREC_CHUNK:
	  {
	    StgWord i;
	    StgTRecChunk *tc = ((StgTRecChunk *) p);
	    TRecEntry *e = &(tc -> entries[0]);
	    evac_gen = 0;
	    tc->prev_chunk = (StgTRecChunk *)evacuate((StgClosure*)tc->prev_chunk);
	    for (i = 0; i < tc -> next_entry_idx; i ++, e++ ) {
	      e->tvar = (StgTVar *)evacuate((StgClosure*)e->tvar);
	      e->expected_value = evacuate((StgClosure*)e->expected_value);
	      e->new_value = evacuate((StgClosure*)e->new_value);
	    }
	    evac_gen = saved_evac_gen;
	    failed_to_evac = rtsTrue; // mutable
	    break;
	  }

	case TREC_HEADER:
	  {
	    StgTRecHeader *trec = ((StgTRecHeader *) p);
	    evac_gen = 0;
	    trec->enclosing_trec = (StgTRecHeader *)evacuate((StgClosure*)trec->enclosing_trec);
	    trec->current_chunk = (StgTRecChunk *)evacuate((StgClosure*)trec->current_chunk);
	    evac_gen = saved_evac_gen;
	    failed_to_evac = rtsTrue; // mutable
	    break;
	  }

	default:
	    barf("scavenge_mark_stack: unimplemented/strange closure type %d @ %p", 
		 info->type, p);
	}

	if (failed_to_evac) {
	    failed_to_evac = rtsFalse;
	    if (evac_gen > 0) {
		recordMutableGen((StgClosure *)q, &generations[evac_gen]);
	    }
	}
	
	// mark the next bit to indicate "scavenged"
	mark(q+1, Bdescr(q));

    } // while (!mark_stack_empty())

    // start a new linear scan if the mark stack overflowed at some point
    if (mark_stack_overflowed && oldgen_scan_bd == NULL) {
	IF_DEBUG(gc, debugBelch("scavenge_mark_stack: starting linear scan"));
	mark_stack_overflowed = rtsFalse;
	oldgen_scan_bd = oldest_gen->steps[0].old_blocks;
	oldgen_scan = oldgen_scan_bd->start;
    }

    if (oldgen_scan_bd) {
	// push a new thing on the mark stack
    loop:
	// find a closure that is marked but not scavenged, and start
	// from there.
	while (oldgen_scan < oldgen_scan_bd->free 
	       && !is_marked(oldgen_scan,oldgen_scan_bd)) {
	    oldgen_scan++;
	}

	if (oldgen_scan < oldgen_scan_bd->free) {

	    // already scavenged?
	    if (is_marked(oldgen_scan+1,oldgen_scan_bd)) {
		oldgen_scan += sizeofW(StgHeader) + MIN_PAYLOAD_SIZE;
		goto loop;
	    }
	    push_mark_stack(oldgen_scan);
	    // ToDo: bump the linear scan by the actual size of the object
	    oldgen_scan += sizeofW(StgHeader) + MIN_PAYLOAD_SIZE;
	    goto linear_scan;
	}

	oldgen_scan_bd = oldgen_scan_bd->link;
	if (oldgen_scan_bd != NULL) {
	    oldgen_scan = oldgen_scan_bd->start;
	    goto loop;
	}
    }
}

/* -----------------------------------------------------------------------------
   Scavenge one object.

   This is used for objects that are temporarily marked as mutable
   because they contain old-to-new generation pointers.  Only certain
   objects can have this property.
   -------------------------------------------------------------------------- */

static rtsBool
scavenge_one(StgPtr p)
{
    const StgInfoTable *info;
    nat saved_evac_gen = evac_gen;
    rtsBool no_luck;
    
    ASSERT(LOOKS_LIKE_CLOSURE_PTR(p));
    info = get_itbl((StgClosure *)p);
    
    switch (info->type) {
	
    case MVAR:
    { 
	StgMVar *mvar = ((StgMVar *)p);
	evac_gen = 0;
	mvar->head = (StgTSO *)evacuate((StgClosure *)mvar->head);
	mvar->tail = (StgTSO *)evacuate((StgClosure *)mvar->tail);
	mvar->value = evacuate((StgClosure *)mvar->value);
	evac_gen = saved_evac_gen;
	failed_to_evac = rtsTrue; // mutable.
	break;
    }

    case THUNK:
    case THUNK_1_0:
    case THUNK_0_1:
    case THUNK_1_1:
    case THUNK_0_2:
    case THUNK_2_0:
    {
	StgPtr q, end;
	
	end = (StgPtr)((StgThunk *)p)->payload + info->layout.payload.ptrs;
	for (q = (StgPtr)((StgThunk *)p)->payload; q < end; q++) {
	    *q = (StgWord)(StgPtr)evacuate((StgClosure *)*q);
	}
	break;
    }

    case FUN:
    case FUN_1_0:			// hardly worth specialising these guys
    case FUN_0_1:
    case FUN_1_1:
    case FUN_0_2:
    case FUN_2_0:
    case CONSTR:
    case CONSTR_1_0:
    case CONSTR_0_1:
    case CONSTR_1_1:
    case CONSTR_0_2:
    case CONSTR_2_0:
    case WEAK:
    case IND_PERM:
    {
	StgPtr q, end;
	
	end = (StgPtr)((StgClosure *)p)->payload + info->layout.payload.ptrs;
	for (q = (StgPtr)((StgClosure *)p)->payload; q < end; q++) {
	    *q = (StgWord)(StgPtr)evacuate((StgClosure *)*q);
	}
	break;
    }
    
    case MUT_VAR_CLEAN:
    case MUT_VAR_DIRTY: {
	StgPtr q = p;
	rtsBool saved_eager_promotion = eager_promotion;

	eager_promotion = rtsFalse;
	((StgMutVar *)p)->var = evacuate(((StgMutVar *)p)->var);
	eager_promotion = saved_eager_promotion;

	if (failed_to_evac) {
	    ((StgClosure *)q)->header.info = &stg_MUT_VAR_DIRTY_info;
	} else {
	    ((StgClosure *)q)->header.info = &stg_MUT_VAR_CLEAN_info;
	}
	break;
    }

    case CAF_BLACKHOLE:
    case SE_CAF_BLACKHOLE:
    case SE_BLACKHOLE:
    case BLACKHOLE:
	break;
	
    case THUNK_SELECTOR:
    { 
	StgSelector *s = (StgSelector *)p;
	s->selectee = evacuate(s->selectee);
	break;
    }
    
    case AP_STACK:
    {
	StgAP_STACK *ap = (StgAP_STACK *)p;

	ap->fun = evacuate(ap->fun);
	scavenge_stack((StgPtr)ap->payload, (StgPtr)ap->payload + ap->size);
	p = (StgPtr)ap->payload + ap->size;
	break;
    }

    case PAP:
	p = scavenge_PAP((StgPAP *)p);
	break;

    case AP:
	p = scavenge_AP((StgAP *)p);
	break;

    case ARR_WORDS:
	// nothing to follow 
	break;

    case MUT_ARR_PTRS_CLEAN:
    case MUT_ARR_PTRS_DIRTY:
    {
	StgPtr next, q;
	rtsBool saved_eager;

	// We don't eagerly promote objects pointed to by a mutable
	// array, but if we find the array only points to objects in
	// the same or an older generation, we mark it "clean" and
	// avoid traversing it during minor GCs.
	saved_eager = eager_promotion;
	eager_promotion = rtsFalse;
	q = p;
	next = p + mut_arr_ptrs_sizeW((StgMutArrPtrs*)p);
	for (p = (P_)((StgMutArrPtrs *)p)->payload; p < next; p++) {
	    *p = (StgWord)(StgPtr)evacuate((StgClosure *)*p);
	}
	eager_promotion = saved_eager;

	if (failed_to_evac) {
	    ((StgClosure *)q)->header.info = &stg_MUT_ARR_PTRS_DIRTY_info;
	} else {
	    ((StgClosure *)q)->header.info = &stg_MUT_ARR_PTRS_CLEAN_info;
	}

	failed_to_evac = rtsTrue;
	break;
    }

    case MUT_ARR_PTRS_FROZEN:
    case MUT_ARR_PTRS_FROZEN0:
    {
	// follow everything 
	StgPtr next, q=p;
      
	next = p + mut_arr_ptrs_sizeW((StgMutArrPtrs*)p);
	for (p = (P_)((StgMutArrPtrs *)p)->payload; p < next; p++) {
	    *p = (StgWord)(StgPtr)evacuate((StgClosure *)*p);
	}

	// If we're going to put this object on the mutable list, then
	// set its info ptr to MUT_ARR_PTRS_FROZEN0 to indicate that.
	if (failed_to_evac) {
	    ((StgClosure *)q)->header.info = &stg_MUT_ARR_PTRS_FROZEN0_info;
	} else {
	    ((StgClosure *)q)->header.info = &stg_MUT_ARR_PTRS_FROZEN_info;
	}
	break;
    }

    case TSO:
    {
	StgTSO *tso = (StgTSO *)p;
	rtsBool saved_eager = eager_promotion;

	eager_promotion = rtsFalse;
	scavengeTSO(tso);
	eager_promotion = saved_eager;

	if (failed_to_evac) {
	    tso->flags |= TSO_DIRTY;
	} else {
	    tso->flags &= ~TSO_DIRTY;
	}

	failed_to_evac = rtsTrue; // always on the mutable list
	break;
    }
  
#if defined(PAR)
    case RBH:
    { 
#if 0
	nat size, ptrs, nonptrs, vhs;
	char str[80];
	StgInfoTable *rip = get_closure_info(p, &size, &ptrs, &nonptrs, &vhs, str);
#endif
	StgRBH *rbh = (StgRBH *)p;
	(StgClosure *)rbh->blocking_queue = 
	    evacuate((StgClosure *)rbh->blocking_queue);
	failed_to_evac = rtsTrue;  // mutable anyhow.
	IF_DEBUG(gc,
		 debugBelch("@@ scavenge: RBH %p (%s) (new blocking_queue link=%p)",
		       p, info_type(p), (StgClosure *)rbh->blocking_queue));
	// ToDo: use size of reverted closure here!
	break;
    }

    case BLOCKED_FETCH:
    { 
	StgBlockedFetch *bf = (StgBlockedFetch *)p;
	// follow the pointer to the node which is being demanded 
	(StgClosure *)bf->node = 
	    evacuate((StgClosure *)bf->node);
	// follow the link to the rest of the blocking queue 
	(StgClosure *)bf->link = 
	    evacuate((StgClosure *)bf->link);
	IF_DEBUG(gc,
		 debugBelch("@@ scavenge: %p (%s); node is now %p; exciting, isn't it",
		       bf, info_type((StgClosure *)bf), 
		       bf->node, info_type(bf->node)));
	break;
    }

#ifdef DIST
    case REMOTE_REF:
#endif
    case FETCH_ME:
	break; // nothing to do in this case

    case FETCH_ME_BQ:
    { 
	StgFetchMeBlockingQueue *fmbq = (StgFetchMeBlockingQueue *)p;
	(StgClosure *)fmbq->blocking_queue = 
	    evacuate((StgClosure *)fmbq->blocking_queue);
	IF_DEBUG(gc,
		 debugBelch("@@ scavenge: %p (%s) exciting, isn't it",
		       p, info_type((StgClosure *)p)));
	break;
    }
#endif

    case TVAR_WAIT_QUEUE:
      {
	StgTVarWaitQueue *wq = ((StgTVarWaitQueue *) p);
	evac_gen = 0;
	wq->waiting_tso = (StgTSO *)evacuate((StgClosure*)wq->waiting_tso);
	wq->next_queue_entry = (StgTVarWaitQueue *)evacuate((StgClosure*)wq->next_queue_entry);
	wq->prev_queue_entry = (StgTVarWaitQueue *)evacuate((StgClosure*)wq->prev_queue_entry);
	evac_gen = saved_evac_gen;
	failed_to_evac = rtsTrue; // mutable
	break;
      }

    case TVAR:
      {
	StgTVar *tvar = ((StgTVar *) p);
	evac_gen = 0;
	tvar->current_value = evacuate((StgClosure*)tvar->current_value);
	tvar->first_wait_queue_entry = (StgTVarWaitQueue *)evacuate((StgClosure*)tvar->first_wait_queue_entry);
	evac_gen = saved_evac_gen;
	failed_to_evac = rtsTrue; // mutable
	break;
      }

    case TREC_HEADER:
      {
        StgTRecHeader *trec = ((StgTRecHeader *) p);
        evac_gen = 0;
	trec->enclosing_trec = (StgTRecHeader *)evacuate((StgClosure*)trec->enclosing_trec);
	trec->current_chunk = (StgTRecChunk *)evacuate((StgClosure*)trec->current_chunk);
	evac_gen = saved_evac_gen;
	failed_to_evac = rtsTrue; // mutable
        break;
      }

    case TREC_CHUNK:
      {
	StgWord i;
	StgTRecChunk *tc = ((StgTRecChunk *) p);
	TRecEntry *e = &(tc -> entries[0]);
	evac_gen = 0;
	tc->prev_chunk = (StgTRecChunk *)evacuate((StgClosure*)tc->prev_chunk);
	for (i = 0; i < tc -> next_entry_idx; i ++, e++ ) {
	  e->tvar = (StgTVar *)evacuate((StgClosure*)e->tvar);
	  e->expected_value = evacuate((StgClosure*)e->expected_value);
	  e->new_value = evacuate((StgClosure*)e->new_value);
	}
	evac_gen = saved_evac_gen;
	failed_to_evac = rtsTrue; // mutable
	break;
      }

    case IND_OLDGEN:
    case IND_OLDGEN_PERM:
    case IND_STATIC:
    {
	/* Careful here: a THUNK can be on the mutable list because
	 * it contains pointers to young gen objects.  If such a thunk
	 * is updated, the IND_OLDGEN will be added to the mutable
	 * list again, and we'll scavenge it twice.  evacuate()
	 * doesn't check whether the object has already been
	 * evacuated, so we perform that check here.
	 */
	StgClosure *q = ((StgInd *)p)->indirectee;
	if (HEAP_ALLOCED(q) && Bdescr((StgPtr)q)->flags & BF_EVACUATED) {
	    break;
	}
	((StgInd *)p)->indirectee = evacuate(q);
    }

#if 0 && defined(DEBUG)
      if (RtsFlags.DebugFlags.gc) 
      /* Debugging code to print out the size of the thing we just
       * promoted 
       */
      { 
	StgPtr start = gen->steps[0].scan;
	bdescr *start_bd = gen->steps[0].scan_bd;
	nat size = 0;
	scavenge(&gen->steps[0]);
	if (start_bd != gen->steps[0].scan_bd) {
	  size += (P_)BLOCK_ROUND_UP(start) - start;
	  start_bd = start_bd->link;
	  while (start_bd != gen->steps[0].scan_bd) {
	    size += BLOCK_SIZE_W;
	    start_bd = start_bd->link;
	  }
	  size += gen->steps[0].scan -
	    (P_)BLOCK_ROUND_DOWN(gen->steps[0].scan);
	} else {
	  size = gen->steps[0].scan - start;
	}
	debugBelch("evac IND_OLDGEN: %ld bytes", size * sizeof(W_));
      }
#endif
      break;

    default:
	barf("scavenge_one: strange object %d", (int)(info->type));
    }    

    no_luck = failed_to_evac;
    failed_to_evac = rtsFalse;
    return (no_luck);
}

/* -----------------------------------------------------------------------------
   Scavenging mutable lists.

   We treat the mutable list of each generation > N (i.e. all the
   generations older than the one being collected) as roots.  We also
   remove non-mutable objects from the mutable list at this point.
   -------------------------------------------------------------------------- */

static void
scavenge_mutable_list(generation *gen)
{
    bdescr *bd;
    StgPtr p, q;

    bd = gen->saved_mut_list;

    evac_gen = gen->no;
    for (; bd != NULL; bd = bd->link) {
	for (q = bd->start; q < bd->free; q++) {
	    p = (StgPtr)*q;
	    ASSERT(LOOKS_LIKE_CLOSURE_PTR(p));

#ifdef DEBUG	    
	    switch (get_itbl((StgClosure *)p)->type) {
	    case MUT_VAR_CLEAN:
		barf("MUT_VAR_CLEAN on mutable list");
	    case MUT_VAR_DIRTY:
		mutlist_MUTVARS++; break;
	    case MUT_ARR_PTRS_CLEAN:
	    case MUT_ARR_PTRS_DIRTY:
	    case MUT_ARR_PTRS_FROZEN:
	    case MUT_ARR_PTRS_FROZEN0:
		mutlist_MUTARRS++; break;
	    default:
		mutlist_OTHERS++; break;
	    }
#endif

	    // Check whether this object is "clean", that is it
	    // definitely doesn't point into a young generation.
	    // Clean objects don't need to be scavenged.  Some clean
	    // objects (MUT_VAR_CLEAN) are not kept on the mutable
	    // list at all; others, such as MUT_ARR_PTRS_CLEAN and
	    // TSO, are always on the mutable list.
	    //
	    switch (get_itbl((StgClosure *)p)->type) {
	    case MUT_ARR_PTRS_CLEAN:
		recordMutableGen((StgClosure *)p,gen);
		continue;
	    case TSO: {
		StgTSO *tso = (StgTSO *)p;
		if ((tso->flags & TSO_DIRTY) == 0) {
		    // A clean TSO: we don't have to traverse its
		    // stack.  However, we *do* follow the link field:
		    // we don't want to have to mark a TSO dirty just
		    // because we put it on a different queue.
		    if (tso->why_blocked != BlockedOnBlackHole) {
			tso->link = (StgTSO *)evacuate((StgClosure *)tso->link);
		    }
		    recordMutableGen((StgClosure *)p,gen);
		    continue;
		}
	    }
	    default:
		;
	    }

	    if (scavenge_one(p)) {
		// didn't manage to promote everything, so put the
		// object back on the list.
		recordMutableGen((StgClosure *)p,gen);
	    }
	}
    }

    // free the old mut_list
    freeChain(gen->saved_mut_list);
    gen->saved_mut_list = NULL;
}


static void
scavenge_static(void)
{
  StgClosure* p = static_objects;
  const StgInfoTable *info;

  /* Always evacuate straight to the oldest generation for static
   * objects */
  evac_gen = oldest_gen->no;

  /* keep going until we've scavenged all the objects on the linked
     list... */
  while (p != END_OF_STATIC_LIST) {

    ASSERT(LOOKS_LIKE_CLOSURE_PTR(p));
    info = get_itbl(p);
    /*
    if (info->type==RBH)
      info = REVERT_INFOPTR(info); // if it's an RBH, look at the orig closure
    */
    // make sure the info pointer is into text space 
    
    /* Take this object *off* the static_objects list,
     * and put it on the scavenged_static_objects list.
     */
    static_objects = *STATIC_LINK(info,p);
    *STATIC_LINK(info,p) = scavenged_static_objects;
    scavenged_static_objects = p;
    
    switch (info -> type) {
      
    case IND_STATIC:
      {
	StgInd *ind = (StgInd *)p;
	ind->indirectee = evacuate(ind->indirectee);

	/* might fail to evacuate it, in which case we have to pop it
	 * back on the mutable list of the oldest generation.  We
	 * leave it *on* the scavenged_static_objects list, though,
	 * in case we visit this object again.
	 */
	if (failed_to_evac) {
	  failed_to_evac = rtsFalse;
	  recordMutableGen((StgClosure *)p,oldest_gen);
	}
	break;
      }
      
    case THUNK_STATIC:
      scavenge_thunk_srt(info);
      break;

    case FUN_STATIC:
      scavenge_fun_srt(info);
      break;
      
    case CONSTR_STATIC:
      {	
	StgPtr q, next;
	
	next = (P_)p->payload + info->layout.payload.ptrs;
	// evacuate the pointers 
	for (q = (P_)p->payload; q < next; q++) {
	    *q = (StgWord)(StgPtr)evacuate((StgClosure *)*q);
	}
	break;
      }
      
    default:
      barf("scavenge_static: strange closure %d", (int)(info->type));
    }

    ASSERT(failed_to_evac == rtsFalse);

    /* get the next static object from the list.  Remember, there might
     * be more stuff on this list now that we've done some evacuating!
     * (static_objects is a global)
     */
    p = static_objects;
  }
}

/* -----------------------------------------------------------------------------
   scavenge a chunk of memory described by a bitmap
   -------------------------------------------------------------------------- */

static void
scavenge_large_bitmap( StgPtr p, StgLargeBitmap *large_bitmap, nat size )
{
    nat i, b;
    StgWord bitmap;
    
    b = 0;
    bitmap = large_bitmap->bitmap[b];
    for (i = 0; i < size; ) {
	if ((bitmap & 1) == 0) {
	    *p = (StgWord)(StgPtr)evacuate((StgClosure *)*p);
	}
	i++;
	p++;
	if (i % BITS_IN(W_) == 0) {
	    b++;
	    bitmap = large_bitmap->bitmap[b];
	} else {
	    bitmap = bitmap >> 1;
	}
    }
}

STATIC_INLINE StgPtr
scavenge_small_bitmap (StgPtr p, nat size, StgWord bitmap)
{
    while (size > 0) {
	if ((bitmap & 1) == 0) {
	    *p = (StgWord)(StgPtr)evacuate((StgClosure *)*p);
	}
	p++;
	bitmap = bitmap >> 1;
	size--;
    }
    return p;
}

/* -----------------------------------------------------------------------------
   scavenge_stack walks over a section of stack and evacuates all the
   objects pointed to by it.  We can use the same code for walking
   AP_STACK_UPDs, since these are just sections of copied stack.
   -------------------------------------------------------------------------- */


static void
scavenge_stack(StgPtr p, StgPtr stack_end)
{
  const StgRetInfoTable* info;
  StgWord bitmap;
  nat size;

  //IF_DEBUG(sanity, debugBelch("  scavenging stack between %p and %p", p, stack_end));

  /* 
   * Each time around this loop, we are looking at a chunk of stack
   * that starts with an activation record. 
   */

  while (p < stack_end) {
    info  = get_ret_itbl((StgClosure *)p);
      
    switch (info->i.type) {
	
    case UPDATE_FRAME:
	// In SMP, we can get update frames that point to indirections
	// when two threads evaluate the same thunk.  We do attempt to
	// discover this situation in threadPaused(), but it's
	// possible that the following sequence occurs:
	//
	//        A             B
	//                  enter T
	//     enter T
	//     blackhole T
	//                  update T
	//     GC
	//
	// Now T is an indirection, and the update frame is already
	// marked on A's stack, so we won't traverse it again in
	// threadPaused().  We could traverse the whole stack again
	// before GC, but that seems like overkill.
	//
	// Scavenging this update frame as normal would be disastrous;
	// the updatee would end up pointing to the value.  So we turn
	// the indirection into an IND_PERM, so that evacuate will
	// copy the indirection into the old generation instead of
	// discarding it.
	if (get_itbl(((StgUpdateFrame *)p)->updatee)->type == IND) {
	    ((StgUpdateFrame *)p)->updatee->header.info = 
		(StgInfoTable *)&stg_IND_PERM_info;
	}
	((StgUpdateFrame *)p)->updatee 
	    = evacuate(((StgUpdateFrame *)p)->updatee);
	p += sizeofW(StgUpdateFrame);
	continue;

      // small bitmap (< 32 entries, or 64 on a 64-bit machine) 
    case CATCH_STM_FRAME:
    case CATCH_RETRY_FRAME:
    case ATOMICALLY_FRAME:
    case STOP_FRAME:
    case CATCH_FRAME:
    case RET_SMALL:
    case RET_VEC_SMALL:
	bitmap = BITMAP_BITS(info->i.layout.bitmap);
	size   = BITMAP_SIZE(info->i.layout.bitmap);
	// NOTE: the payload starts immediately after the info-ptr, we
	// don't have an StgHeader in the same sense as a heap closure.
	p++;
	p = scavenge_small_bitmap(p, size, bitmap);

    follow_srt:
	if (major_gc) 
	    scavenge_srt((StgClosure **)GET_SRT(info), info->i.srt_bitmap);
	continue;

    case RET_BCO: {
	StgBCO *bco;
	nat size;

	p++;
	*p = (StgWord)(StgPtr)evacuate((StgClosure *)*p);
	bco = (StgBCO *)*p;
	p++;
	size = BCO_BITMAP_SIZE(bco);
	scavenge_large_bitmap(p, BCO_BITMAP(bco), size);
	p += size;
	continue;
    }

      // large bitmap (> 32 entries, or > 64 on a 64-bit machine) 
    case RET_BIG:
    case RET_VEC_BIG:
    {
	nat size;

	size = GET_LARGE_BITMAP(&info->i)->size;
	p++;
	scavenge_large_bitmap(p, GET_LARGE_BITMAP(&info->i), size);
	p += size;
	// and don't forget to follow the SRT 
	goto follow_srt;
    }

      // Dynamic bitmap: the mask is stored on the stack, and
      // there are a number of non-pointers followed by a number
      // of pointers above the bitmapped area.  (see StgMacros.h,
      // HEAP_CHK_GEN).
    case RET_DYN:
    {
	StgWord dyn;
	dyn = ((StgRetDyn *)p)->liveness;

	// traverse the bitmap first
	bitmap = RET_DYN_LIVENESS(dyn);
	p      = (P_)&((StgRetDyn *)p)->payload[0];
	size   = RET_DYN_BITMAP_SIZE;
	p = scavenge_small_bitmap(p, size, bitmap);

	// skip over the non-ptr words
	p += RET_DYN_NONPTRS(dyn) + RET_DYN_NONPTR_REGS_SIZE;
	
	// follow the ptr words
	for (size = RET_DYN_PTRS(dyn); size > 0; size--) {
	    *p = (StgWord)(StgPtr)evacuate((StgClosure *)*p);
	    p++;
	}
	continue;
    }

    case RET_FUN:
    {
	StgRetFun *ret_fun = (StgRetFun *)p;
	StgFunInfoTable *fun_info;

	ret_fun->fun = evacuate(ret_fun->fun);
 	fun_info = get_fun_itbl(ret_fun->fun);
	p = scavenge_arg_block(fun_info, ret_fun->payload);
	goto follow_srt;
    }

    default:
	barf("scavenge_stack: weird activation record found on stack: %d", (int)(info->i.type));
    }
  }		     
}

/*-----------------------------------------------------------------------------
  scavenge the large object list.

  evac_gen set by caller; similar games played with evac_gen as with
  scavenge() - see comment at the top of scavenge().  Most large
  objects are (repeatedly) mutable, so most of the time evac_gen will
  be zero.
  --------------------------------------------------------------------------- */

static void
scavenge_large(step *stp)
{
  bdescr *bd;
  StgPtr p;

  bd = stp->new_large_objects;

  for (; bd != NULL; bd = stp->new_large_objects) {

    /* take this object *off* the large objects list and put it on
     * the scavenged large objects list.  This is so that we can
     * treat new_large_objects as a stack and push new objects on
     * the front when evacuating.
     */
    stp->new_large_objects = bd->link;
    dbl_link_onto(bd, &stp->scavenged_large_objects);

    // update the block count in this step.
    stp->n_scavenged_large_blocks += bd->blocks;

    p = bd->start;
    if (scavenge_one(p)) {
	if (stp->gen_no > 0) {
	    recordMutableGen((StgClosure *)p, stp->gen);
	}
    }
  }
}

/* -----------------------------------------------------------------------------
   Initialising the static object & mutable lists
   -------------------------------------------------------------------------- */

static void
zero_static_object_list(StgClosure* first_static)
{
  StgClosure* p;
  StgClosure* link;
  const StgInfoTable *info;

  for (p = first_static; p != END_OF_STATIC_LIST; p = link) {
    info = get_itbl(p);
    link = *STATIC_LINK(info, p);
    *STATIC_LINK(info,p) = NULL;
  }
}

/* -----------------------------------------------------------------------------
   Reverting CAFs
   -------------------------------------------------------------------------- */

void
revertCAFs( void )
{
    StgIndStatic *c;

    for (c = (StgIndStatic *)revertible_caf_list; c != NULL; 
	 c = (StgIndStatic *)c->static_link) 
    {
	SET_INFO(c, c->saved_info);
	c->saved_info = NULL;
	// could, but not necessary: c->static_link = NULL; 
    }
    revertible_caf_list = NULL;
}

void
markCAFs( evac_fn evac )
{
    StgIndStatic *c;

    for (c = (StgIndStatic *)caf_list; c != NULL; 
	 c = (StgIndStatic *)c->static_link) 
    {
	evac(&c->indirectee);
    }
    for (c = (StgIndStatic *)revertible_caf_list; c != NULL; 
	 c = (StgIndStatic *)c->static_link) 
    {
	evac(&c->indirectee);
    }
}

/* -----------------------------------------------------------------------------
   Sanity code for CAF garbage collection.

   With DEBUG turned on, we manage a CAF list in addition to the SRT
   mechanism.  After GC, we run down the CAF list and blackhole any
   CAFs which have been garbage collected.  This means we get an error
   whenever the program tries to enter a garbage collected CAF.

   Any garbage collected CAFs are taken off the CAF list at the same
   time. 
   -------------------------------------------------------------------------- */

#if 0 && defined(DEBUG)

static void
gcCAFs(void)
{
  StgClosure*  p;
  StgClosure** pp;
  const StgInfoTable *info;
  nat i;

  i = 0;
  p = caf_list;
  pp = &caf_list;

  while (p != NULL) {
    
    info = get_itbl(p);

    ASSERT(info->type == IND_STATIC);

    if (STATIC_LINK(info,p) == NULL) {
      IF_DEBUG(gccafs, debugBelch("CAF gc'd at 0x%04lx", (long)p));
      // black hole it 
      SET_INFO(p,&stg_BLACKHOLE_info);
      p = STATIC_LINK2(info,p);
      *pp = p;
    }
    else {
      pp = &STATIC_LINK2(info,p);
      p = *pp;
      i++;
    }

  }

  //  debugBelch("%d CAFs live", i); 
}
#endif


/* -----------------------------------------------------------------------------
 * Stack squeezing
 *
 * Code largely pinched from old RTS, then hacked to bits.  We also do
 * lazy black holing here.
 *
 * -------------------------------------------------------------------------- */

struct stack_gap { StgWord gap_size; struct stack_gap *next_gap; };

static void
stackSqueeze(StgTSO *tso, StgPtr bottom)
{
    StgPtr frame;
    rtsBool prev_was_update_frame;
    StgClosure *updatee = NULL;
    StgRetInfoTable *info;
    StgWord current_gap_size;
    struct stack_gap *gap;

    // Stage 1: 
    //    Traverse the stack upwards, replacing adjacent update frames
    //    with a single update frame and a "stack gap".  A stack gap
    //    contains two values: the size of the gap, and the distance
    //    to the next gap (or the stack top).

    frame = tso->sp;

    ASSERT(frame < bottom);
    
    prev_was_update_frame = rtsFalse;
    current_gap_size = 0;
    gap = (struct stack_gap *) (tso->sp - sizeofW(StgUpdateFrame));

    while (frame < bottom) {
	
	info = get_ret_itbl((StgClosure *)frame);
	switch (info->i.type) {

	case UPDATE_FRAME:
	{ 
	    StgUpdateFrame *upd = (StgUpdateFrame *)frame;

	    if (prev_was_update_frame) {

		TICK_UPD_SQUEEZED();
		/* wasn't there something about update squeezing and ticky to be
		 * sorted out?  oh yes: we aren't counting each enter properly
		 * in this case.  See the log somewhere.  KSW 1999-04-21
		 *
		 * Check two things: that the two update frames don't point to
		 * the same object, and that the updatee_bypass isn't already an
		 * indirection.  Both of these cases only happen when we're in a
		 * block hole-style loop (and there are multiple update frames
		 * on the stack pointing to the same closure), but they can both
		 * screw us up if we don't check.
		 */
		if (upd->updatee != updatee && !closure_IND(upd->updatee)) {
		    UPD_IND_NOLOCK(upd->updatee, updatee);
		}

		// now mark this update frame as a stack gap.  The gap
		// marker resides in the bottom-most update frame of
		// the series of adjacent frames, and covers all the
		// frames in this series.
		current_gap_size += sizeofW(StgUpdateFrame);
		((struct stack_gap *)frame)->gap_size = current_gap_size;
		((struct stack_gap *)frame)->next_gap = gap;

		frame += sizeofW(StgUpdateFrame);
		continue;
	    } 

	    // single update frame, or the topmost update frame in a series
	    else {
		prev_was_update_frame = rtsTrue;
		updatee = upd->updatee;
		frame += sizeofW(StgUpdateFrame);
		continue;
	    }
	}
	    
	default:
	    prev_was_update_frame = rtsFalse;

	    // we're not in a gap... check whether this is the end of a gap
	    // (an update frame can't be the end of a gap).
	    if (current_gap_size != 0) {
		gap = (struct stack_gap *) (frame - sizeofW(StgUpdateFrame));
	    }
	    current_gap_size = 0;

	    frame += stack_frame_sizeW((StgClosure *)frame);
	    continue;
	}
    }

    if (current_gap_size != 0) {
	gap = (struct stack_gap *) (frame - sizeofW(StgUpdateFrame));
    }

    // Now we have a stack with gaps in it, and we have to walk down
    // shoving the stack up to fill in the gaps.  A diagram might
    // help:
    //
    //    +| ********* |
    //     | ********* | <- sp
    //     |           |
    //     |           | <- gap_start
    //     | ......... |                |
    //     | stack_gap | <- gap         | chunk_size
    //     | ......... |                | 
    //     | ......... | <- gap_end     v
    //     | ********* | 
    //     | ********* | 
    //     | ********* | 
    //    -| ********* | 
    //
    // 'sp'  points the the current top-of-stack
    // 'gap' points to the stack_gap structure inside the gap
    // *****   indicates real stack data
    // .....   indicates gap
    // <empty> indicates unused
    //
    {
	void *sp;
	void *gap_start, *next_gap_start, *gap_end;
	nat chunk_size;

	next_gap_start = (void *)((unsigned char*)gap + sizeof(StgUpdateFrame));
	sp = next_gap_start;

	while ((StgPtr)gap > tso->sp) {

	    // we're working in *bytes* now...
	    gap_start = next_gap_start;
	    gap_end = (void*) ((unsigned char*)gap_start - gap->gap_size * sizeof(W_));

	    gap = gap->next_gap;
	    next_gap_start = (void *)((unsigned char*)gap + sizeof(StgUpdateFrame));

	    chunk_size = (unsigned char*)gap_end - (unsigned char*)next_gap_start;
	    sp -= chunk_size;
	    memmove(sp, next_gap_start, chunk_size);
	}

	tso->sp = (StgPtr)sp;
    }
}    

/* -----------------------------------------------------------------------------
 * Pausing a thread
 * 
 * We have to prepare for GC - this means doing lazy black holing
 * here.  We also take the opportunity to do stack squeezing if it's
 * turned on.
 * -------------------------------------------------------------------------- */
void
threadPaused(Capability *cap, StgTSO *tso)
{
    StgClosure *frame;
    StgRetInfoTable *info;
    StgClosure *bh;
    StgPtr stack_end;
    nat words_to_squeeze = 0;
    nat weight           = 0;
    nat weight_pending   = 0;
    rtsBool prev_was_update_frame;
    
    stack_end = &tso->stack[tso->stack_size];
    
    frame = (StgClosure *)tso->sp;

    while (1) {
	// If we've already marked this frame, then stop here.
	if (frame->header.info == (StgInfoTable *)&stg_marked_upd_frame_info) {
	    goto end;
	}

	info = get_ret_itbl(frame);
	
	switch (info->i.type) {
	    
	case UPDATE_FRAME:

	    SET_INFO(frame, (StgInfoTable *)&stg_marked_upd_frame_info);

	    bh = ((StgUpdateFrame *)frame)->updatee;

	    if (closure_IND(bh) || bh->header.info == &stg_BLACKHOLE_info) {
		IF_DEBUG(squeeze, debugBelch("suspending duplicate work: %ld words of stack\n", (StgPtr)frame - tso->sp));

		// If this closure is already an indirection, then
		// suspend the computation up to this point:
		suspendComputation(cap,tso,(StgPtr)frame);

		// Now drop the update frame, and arrange to return
		// the value to the frame underneath:
		tso->sp = (StgPtr)frame + sizeofW(StgUpdateFrame) - 2;
		tso->sp[1] = (StgWord)bh;
		tso->sp[0] = (W_)&stg_enter_info;

		// And continue with threadPaused; there might be
		// yet more computation to suspend.
		threadPaused(cap,tso);
		return;
	    }

	    if (bh->header.info != &stg_CAF_BLACKHOLE_info) {
#if (!defined(LAZY_BLACKHOLING)) && defined(DEBUG)
		debugBelch("Unexpected lazy BHing required at 0x%04lx\n",(long)bh);
#endif
		// zero out the slop so that the sanity checker can tell
		// where the next closure is.
		DEBUG_FILL_SLOP(bh);
#ifdef PROFILING
		// @LDV profiling
		// We pretend that bh is now dead.
		LDV_recordDead_FILL_SLOP_DYNAMIC((StgClosure *)bh);
#endif
		SET_INFO(bh,&stg_BLACKHOLE_info);

		// We pretend that bh has just been created.
		LDV_RECORD_CREATE(bh);
	    }
	    
	    frame = (StgClosure *) ((StgUpdateFrame *)frame + 1);
	    if (prev_was_update_frame) {
		words_to_squeeze += sizeofW(StgUpdateFrame);
		weight += weight_pending;
		weight_pending = 0;
	    }
	    prev_was_update_frame = rtsTrue;
	    break;
	    
	case STOP_FRAME:
	    goto end;
	    
	    // normal stack frames; do nothing except advance the pointer
	default:
	{
	    nat frame_size = stack_frame_sizeW(frame);
	    weight_pending += frame_size;
	    frame = (StgClosure *)((StgPtr)frame + frame_size);
	    prev_was_update_frame = rtsFalse;
	}
	}
    }

end:
    IF_DEBUG(squeeze, 
	     debugBelch("words_to_squeeze: %d, weight: %d, squeeze: %s\n", 
			words_to_squeeze, weight, 
			weight < words_to_squeeze ? "YES" : "NO"));

    // Should we squeeze or not?  Arbitrary heuristic: we squeeze if
    // the number of words we have to shift down is less than the
    // number of stack words we squeeze away by doing so.
    if (RtsFlags.GcFlags.squeezeUpdFrames == rtsTrue &&
	weight < words_to_squeeze) {
	stackSqueeze(tso, (StgPtr)frame);
    }
}

/* -----------------------------------------------------------------------------
 * Debugging
 * -------------------------------------------------------------------------- */

#if DEBUG
void
printMutableList(generation *gen)
{
    bdescr *bd;
    StgPtr p;

    debugBelch("@@ Mutable list %p: ", gen->mut_list);

    for (bd = gen->mut_list; bd != NULL; bd = bd->link) {
	for (p = bd->start; p < bd->free; p++) {
	    debugBelch("%p (%s), ", (void *)*p, info_type((StgClosure *)*p));
	}
    }
    debugBelch("\n");
}
#endif /* DEBUG */