1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
|
/* -----------------------------------------------------------------------------
*
* (c) The GHC Team 2001-2005
*
* The task manager subsystem. Tasks execute STG code, with this
* module providing the API which the Scheduler uses to control their
* creation and destruction.
*
* -------------------------------------------------------------------------*/
#include "Rts.h"
#include "RtsUtils.h"
#include "OSThreads.h"
#include "Task.h"
#include "Capability.h"
#include "Stats.h"
#include "RtsFlags.h"
#include "Schedule.h"
#include "Hash.h"
#if HAVE_SIGNAL_H
#include <signal.h>
#endif
// Task lists and global counters.
// Locks required: sched_mutex.
Task *all_tasks = NULL;
static Task *task_free_list = NULL; // singly-linked
static nat taskCount;
#define DEFAULT_MAX_WORKERS 64
static nat maxWorkers; // we won't create more workers than this
static nat tasksRunning;
static nat workerCount;
/* -----------------------------------------------------------------------------
* Remembering the current thread's Task
* -------------------------------------------------------------------------- */
// A thread-local-storage key that we can use to get access to the
// current thread's Task structure.
#if defined(THREADED_RTS)
ThreadLocalKey currentTaskKey;
#else
Task *my_task;
#endif
/* -----------------------------------------------------------------------------
* Rest of the Task API
* -------------------------------------------------------------------------- */
void
initTaskManager (void)
{
static int initialized = 0;
if (!initialized) {
taskCount = 0;
workerCount = 0;
tasksRunning = 0;
maxWorkers = DEFAULT_MAX_WORKERS;
initialized = 1;
#if defined(THREADED_RTS)
newThreadLocalKey(¤tTaskKey);
#endif
}
}
void
stopTaskManager (void)
{
IF_DEBUG(scheduler, sched_belch("stopping task manager, %d tasks still running", tasksRunning));
}
static Task*
newTask (void)
{
#if defined(THREADED_RTS)
Ticks currentElapsedTime, currentUserTime;
#endif
Task *task;
task = stgMallocBytes(sizeof(Task), "newTask");
task->cap = NULL;
task->stopped = rtsFalse;
task->suspended_tso = NULL;
task->tso = NULL;
task->stat = NoStatus;
task->ret = NULL;
#if defined(THREADED_RTS)
initCondition(&task->cond);
initMutex(&task->lock);
task->wakeup = rtsFalse;
#endif
#if defined(THREADED_RTS)
currentUserTime = getThreadCPUTime();
currentElapsedTime = getProcessElapsedTime();
task->mut_time = 0.0;
task->mut_etime = 0.0;
task->gc_time = 0.0;
task->gc_etime = 0.0;
task->muttimestart = currentUserTime;
task->elapsedtimestart = currentElapsedTime;
#endif
task->prev = NULL;
task->next = NULL;
task->return_link = NULL;
task->all_link = all_tasks;
all_tasks = task;
taskCount++;
workerCount++;
return task;
}
Task *
newBoundTask (void)
{
Task *task;
ASSERT_LOCK_HELD(&sched_mutex);
if (task_free_list == NULL) {
task = newTask();
} else {
task = task_free_list;
task_free_list = task->next;
task->next = NULL;
task->prev = NULL;
task->stopped = rtsFalse;
}
#if defined(THREADED_RTS)
task->id = osThreadId();
#endif
ASSERT(task->cap == NULL);
tasksRunning++;
taskEnter(task);
IF_DEBUG(scheduler,sched_belch("new task (taskCount: %d)", taskCount););
return task;
}
void
boundTaskExiting (Task *task)
{
task->stopped = rtsTrue;
task->cap = NULL;
#if defined(THREADED_RTS)
ASSERT(osThreadId() == task->id);
#endif
ASSERT(myTask() == task);
setMyTask(task->prev_stack);
tasksRunning--;
// sadly, we need a lock around the free task list. Todo: eliminate.
ACQUIRE_LOCK(&sched_mutex);
task->next = task_free_list;
task_free_list = task;
RELEASE_LOCK(&sched_mutex);
IF_DEBUG(scheduler,sched_belch("task exiting"));
}
#ifdef THREADED_RTS
#define TASK_ID(t) (t)->id
#else
#define TASK_ID(t) (t)
#endif
void
discardTask (Task *task)
{
ASSERT_LOCK_HELD(&sched_mutex);
if (!task->stopped) {
IF_DEBUG(scheduler,sched_belch("discarding task %p", TASK_ID(task)));
task->cap = NULL;
task->tso = NULL;
task->stopped = rtsTrue;
tasksRunning--;
task->next = task_free_list;
task_free_list = task;
}
}
void
taskStop (Task *task)
{
#if defined(THREADED_RTS)
OSThreadId id;
Ticks currentElapsedTime, currentUserTime, elapsedGCTime;
id = osThreadId();
ASSERT(task->id == id);
ASSERT(myTask() == task);
currentUserTime = getThreadCPUTime();
currentElapsedTime = getProcessElapsedTime();
// XXX this is wrong; we want elapsed GC time since the
// Task started.
elapsedGCTime = stat_getElapsedGCTime();
task->mut_time =
currentUserTime - task->muttimestart - task->gc_time;
task->mut_etime =
currentElapsedTime - task->elapsedtimestart - elapsedGCTime;
if (task->mut_time < 0.0) { task->mut_time = 0.0; }
if (task->mut_etime < 0.0) { task->mut_etime = 0.0; }
#endif
task->stopped = rtsTrue;
tasksRunning--;
}
void
resetTaskManagerAfterFork (void)
{
#warning TODO!
taskCount = 0;
}
#if defined(THREADED_RTS)
void
startWorkerTask (Capability *cap,
void OSThreadProcAttr (*taskStart)(Task *task))
{
int r;
OSThreadId tid;
Task *task;
if (workerCount >= maxWorkers) {
barf("too many workers; runaway worker creation?");
}
workerCount++;
// A worker always gets a fresh Task structure.
task = newTask();
tasksRunning++;
// The lock here is to synchronise with taskStart(), to make sure
// that we have finished setting up the Task structure before the
// worker thread reads it.
ACQUIRE_LOCK(&task->lock);
task->cap = cap;
// Give the capability directly to the worker; we can't let anyone
// else get in, because the new worker Task has nowhere to go to
// sleep so that it could be woken up again.
ASSERT_LOCK_HELD(&cap->lock);
cap->running_task = task;
r = createOSThread(&tid, (OSThreadProc *)taskStart, task);
if (r != 0) {
barf("startTask: Can't create new task");
}
IF_DEBUG(scheduler,sched_belch("new worker task (taskCount: %d)", taskCount););
task->id = tid;
// ok, finished with the Task struct.
RELEASE_LOCK(&task->lock);
}
#endif /* THREADED_RTS */
#ifdef DEBUG
static void *taskId(Task *task)
{
#ifdef THREADED_RTS
return (void *)task->id;
#else
return (void *)task;
#endif
}
void printAllTasks(void);
void
printAllTasks(void)
{
Task *task;
for (task = all_tasks; task != NULL; task = task->all_link) {
debugBelch("task %p is %s, ", taskId(task), task->stopped ? "stopped" : "alive");
if (!task->stopped) {
if (task->cap) {
debugBelch("on capability %d, ", task->cap->no);
}
if (task->tso) {
debugBelch("bound to thread %d", task->tso->id);
} else {
debugBelch("worker");
}
}
debugBelch("\n");
}
}
#endif
|