1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
|
/* -----------------------------------------------------------------------------
*
* (c) The GHC Team 1995-2002
*
* Support for concurrent non-blocking I/O and thread waiting.
*
* ---------------------------------------------------------------------------*/
/* we're outside the realms of POSIX here... */
/* #include "PosixSource.h" */
#include "Rts.h"
#include "Schedule.h"
#include "RtsUtils.h"
#include "RtsFlags.h"
#include "Timer.h"
#include "Itimer.h"
#include "Signals.h"
#include "Capability.h"
#include "posix/Select.h"
# ifdef HAVE_SYS_TYPES_H
# include <sys/types.h>
# endif
# ifdef HAVE_SYS_TIME_H
# include <sys/time.h>
# endif
#include <errno.h>
#include <string.h>
#ifdef HAVE_UNISTD_H
#include <unistd.h>
#endif
#if !defined(THREADED_RTS)
/* last timestamp */
lnat timestamp = 0;
/*
* The threaded RTS uses an IO-manager thread in Haskell instead (see GHC.Conc)
*/
/* There's a clever trick here to avoid problems when the time wraps
* around. Since our maximum delay is smaller than 31 bits of ticks
* (it's actually 31 bits of microseconds), we can safely check
* whether a timer has expired even if our timer will wrap around
* before the target is reached, using the following formula:
*
* (int)((uint)current_time - (uint)target_time) < 0
*
* if this is true, then our time has expired.
* (idea due to Andy Gill).
*/
static rtsBool
wakeUpSleepingThreads(lnat ticks)
{
StgTSO *tso;
rtsBool flag = rtsFalse;
while (sleeping_queue != END_TSO_QUEUE &&
(int)(ticks - sleeping_queue->block_info.target) > 0) {
tso = sleeping_queue;
sleeping_queue = tso->link;
tso->why_blocked = NotBlocked;
tso->link = END_TSO_QUEUE;
IF_DEBUG(scheduler,debugBelch("Waking up sleeping thread %d\n", tso->id));
// MainCapability: this code is !THREADED_RTS
pushOnRunQueue(&MainCapability,tso);
flag = rtsTrue;
}
return flag;
}
/* Argument 'wait' says whether to wait for I/O to become available,
* or whether to just check and return immediately. If there are
* other threads ready to run, we normally do the non-waiting variety,
* otherwise we wait (see Schedule.c).
*
* SMP note: must be called with sched_mutex locked.
*
* Windows: select only works on sockets, so this doesn't really work,
* though it makes things better than before. MsgWaitForMultipleObjects
* should really be used, though it only seems to work for read handles,
* not write handles.
*
*/
void
awaitEvent(rtsBool wait)
{
StgTSO *tso, *prev, *next;
rtsBool ready;
fd_set rfd,wfd;
int numFound;
int maxfd = -1;
rtsBool select_succeeded = rtsTrue;
rtsBool unblock_all = rtsFalse;
struct timeval tv;
lnat min, ticks;
tv.tv_sec = 0;
tv.tv_usec = 0;
IF_DEBUG(scheduler,
debugBelch("scheduler: checking for threads blocked on I/O");
if (wait) {
debugBelch(" (waiting)");
}
debugBelch("\n");
);
/* loop until we've woken up some threads. This loop is needed
* because the select timing isn't accurate, we sometimes sleep
* for a while but not long enough to wake up a thread in
* a threadDelay.
*/
do {
ticks = timestamp = getourtimeofday();
if (wakeUpSleepingThreads(ticks)) {
return;
}
if (!wait) {
min = 0;
} else if (sleeping_queue != END_TSO_QUEUE) {
min = (sleeping_queue->block_info.target - ticks)
* TICK_MILLISECS * 1000;
} else {
min = 0x7ffffff;
}
/*
* Collect all of the fd's that we're interested in
*/
FD_ZERO(&rfd);
FD_ZERO(&wfd);
for(tso = blocked_queue_hd; tso != END_TSO_QUEUE; tso = next) {
next = tso->link;
switch (tso->why_blocked) {
case BlockedOnRead:
{
int fd = tso->block_info.fd;
if (fd >= FD_SETSIZE) {
barf("awaitEvent: descriptor out of range");
}
maxfd = (fd > maxfd) ? fd : maxfd;
FD_SET(fd, &rfd);
continue;
}
case BlockedOnWrite:
{
int fd = tso->block_info.fd;
if (fd >= FD_SETSIZE) {
barf("awaitEvent: descriptor out of range");
}
maxfd = (fd > maxfd) ? fd : maxfd;
FD_SET(fd, &wfd);
continue;
}
default:
barf("AwaitEvent");
}
}
/* Check for any interesting events */
tv.tv_sec = min / 1000000;
tv.tv_usec = min % 1000000;
while ((numFound = select(maxfd+1, &rfd, &wfd, NULL, &tv)) < 0) {
if (errno != EINTR) {
/* Handle bad file descriptors by unblocking all the
waiting threads. Why? Because a thread might have been
a bit naughty and closed a file descriptor while another
was blocked waiting. This is less-than-good programming
practice, but having the RTS as a result fall over isn't
acceptable, so we simply unblock all the waiting threads
should we see a bad file descriptor & give the threads
a chance to clean up their act.
Note: assume here that threads becoming unblocked
will try to read/write the file descriptor before trying
to issue a threadWaitRead/threadWaitWrite again (==> an
IOError will result for the thread that's got the bad
file descriptor.) Hence, there's no danger of a bad
file descriptor being repeatedly select()'ed on, so
the RTS won't loop.
*/
if ( errno == EBADF ) {
unblock_all = rtsTrue;
break;
} else {
perror("select");
barf("select failed");
}
}
/* We got a signal; could be one of ours. If so, we need
* to start up the signal handler straight away, otherwise
* we could block for a long time before the signal is
* serviced.
*/
#if defined(RTS_USER_SIGNALS)
if (signals_pending()) {
startSignalHandlers(&MainCapability);
return; /* still hold the lock */
}
#endif
/* we were interrupted, return to the scheduler immediately.
*/
if (sched_state >= SCHED_INTERRUPTING) {
return; /* still hold the lock */
}
/* check for threads that need waking up
*/
wakeUpSleepingThreads(getourtimeofday());
/* If new runnable threads have arrived, stop waiting for
* I/O and run them.
*/
if (!emptyRunQueue(&MainCapability)) {
return; /* still hold the lock */
}
}
/* Step through the waiting queue, unblocking every thread that now has
* a file descriptor in a ready state.
*/
prev = NULL;
if (select_succeeded || unblock_all) {
for(tso = blocked_queue_hd; tso != END_TSO_QUEUE; tso = next) {
next = tso->link;
switch (tso->why_blocked) {
case BlockedOnRead:
ready = unblock_all || FD_ISSET(tso->block_info.fd, &rfd);
break;
case BlockedOnWrite:
ready = unblock_all || FD_ISSET(tso->block_info.fd, &wfd);
break;
default:
barf("awaitEvent");
}
if (ready) {
IF_DEBUG(scheduler,debugBelch("Waking up blocked thread %d\n", tso->id));
tso->why_blocked = NotBlocked;
tso->link = END_TSO_QUEUE;
pushOnRunQueue(&MainCapability,tso);
} else {
if (prev == NULL)
blocked_queue_hd = tso;
else
prev->link = tso;
prev = tso;
}
}
if (prev == NULL)
blocked_queue_hd = blocked_queue_tl = END_TSO_QUEUE;
else {
prev->link = END_TSO_QUEUE;
blocked_queue_tl = prev;
}
}
} while (wait && sched_state == SCHED_RUNNING
&& emptyRunQueue(&MainCapability));
}
#endif /* THREADED_RTS */
|