1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
|
/* AsyncIO.c
*
* Integrating Win32 asynchronous I/O with the GHC RTS.
*
* (c) sof, 2002-2003.
*/
#include "Rts.h"
#include "RtsUtils.h"
#include <windows.h>
#include <stdio.h>
#include "Schedule.h"
#include "win32/AsyncIO.h"
#include "win32/IOManager.h"
/*
* Overview:
*
* Haskell code issue asynchronous I/O requests via the
* asyncRead# and asyncWrite# primops. These cause addIORequest()
* to be invoked, which forwards the request to the underlying
* asynchronous I/O subsystem. Each request is tagged with a unique
* ID.
*
* addIORequest() returns this ID, so that when the blocked CH
* thread is added onto blocked_queue, its TSO is annotated with
* it. Upon completion of an I/O request, the async I/O handling
* code makes a back-call to signal its completion; the local
* onIOComplete() routine. It adds the IO request ID (along with
* its result data) to a queue of completed requests before returning.
*
* The queue of completed IO request is read by the thread operating
* the RTS scheduler. It de-queues the CH threads corresponding
* to the request IDs, making them runnable again.
*
*/
typedef struct CompletedReq {
unsigned int reqID;
int len;
int errCode;
} CompletedReq;
#define MAX_REQUESTS 200
static CRITICAL_SECTION queue_lock;
static HANDLE completed_req_event;
static HANDLE abandon_req_wait;
static HANDLE wait_handles[2];
static CompletedReq completedTable[MAX_REQUESTS];
static int completed_hw;
static int issued_reqs;
static void
onIOComplete(unsigned int reqID,
int fd STG_UNUSED,
int len,
void* buf STG_UNUSED,
int errCode)
{
/* Deposit result of request in queue/table */
EnterCriticalSection(&queue_lock);
if (completed_hw == MAX_REQUESTS) {
/* Not likely */
fprintf(stderr, "Request table overflow (%d); dropping.\n", reqID);
fflush(stderr);
} else {
#if 0
fprintf(stderr, "onCompl: %d %d %d %d %d\n", reqID, len, errCode, issued_reqs, completed_hw); fflush(stderr);
#endif
completedTable[completed_hw].reqID = reqID;
completedTable[completed_hw].len = len;
completedTable[completed_hw].errCode = errCode;
completed_hw++;
issued_reqs--;
if (completed_hw == 1) {
/* The event is used to wake up the scheduler thread should it
* be blocked waiting for requests to complete. It reset once
* that thread has cleared out the request queue/table.
*/
SetEvent(completed_req_event);
}
}
LeaveCriticalSection(&queue_lock);
}
unsigned int
addIORequest(int fd,
int forWriting,
int isSock,
int len,
char* buf)
{
EnterCriticalSection(&queue_lock);
issued_reqs++;
LeaveCriticalSection(&queue_lock);
#if 0
fprintf(stderr, "addIOReq: %d %d %d\n", fd, forWriting, len); fflush(stderr);
#endif
return AddIORequest(fd,forWriting,isSock,len,buf,onIOComplete);
}
unsigned int
addDelayRequest(int msecs)
{
EnterCriticalSection(&queue_lock);
issued_reqs++;
LeaveCriticalSection(&queue_lock);
#if 0
fprintf(stderr, "addDelayReq: %d\n", msecs); fflush(stderr);
#endif
return AddDelayRequest(msecs,onIOComplete);
}
unsigned int
addDoProcRequest(void* proc, void* param)
{
EnterCriticalSection(&queue_lock);
issued_reqs++;
LeaveCriticalSection(&queue_lock);
#if 0
fprintf(stderr, "addProcReq: %p %p\n", proc, param); fflush(stderr);
#endif
return AddProcRequest(proc,param,onIOComplete);
}
int
startupAsyncIO()
{
if (!StartIOManager()) {
return 0;
}
InitializeCriticalSection(&queue_lock);
/* Create a pair of events:
*
* - completed_req_event -- signals the deposit of request result; manual reset.
* - abandon_req_wait -- external OS thread tells current RTS/Scheduler
* thread to abandon wait for IO request completion.
* Auto reset.
*/
completed_req_event = CreateEvent (NULL, TRUE, FALSE, NULL);
abandon_req_wait = CreateEvent (NULL, FALSE, FALSE, NULL);
wait_handles[0] = completed_req_event;
wait_handles[1] = abandon_req_wait;
completed_hw = 0;
return ( completed_req_event != INVALID_HANDLE_VALUE &&
abandon_req_wait != INVALID_HANDLE_VALUE );
}
void
shutdownAsyncIO()
{
CloseHandle(completed_req_event);
ShutdownIOManager();
}
int
awaitRequests(rtsBool wait)
{
start:
#if 0
fprintf(stderr, "awaitRequests: %d %d %d\n", issued_reqs, completed_hw, wait); fflush(stderr);
#endif
EnterCriticalSection(&queue_lock);
/* Nothing immediately available & we won't wait */
if ((!wait && completed_hw == 0) ||
(issued_reqs == 0 && completed_hw == 0)) {
LeaveCriticalSection(&queue_lock);
return 0;
}
if (completed_hw == 0) {
/* empty table, drop lock and wait */
LeaveCriticalSection(&queue_lock);
if (wait) {
DWORD dwRes = WaitForMultipleObjects(2, wait_handles, FALSE, INFINITE);
switch (dwRes) {
case WAIT_OBJECT_0:
break;
case WAIT_OBJECT_0 + 1:
case WAIT_TIMEOUT:
return 0;
default:
fprintf(stderr, "awaitRequests: unexpected wait return code %lu\n", dwRes); fflush(stderr);
return 0;
}
} else {
return 0; /* cannot happen */
}
goto start;
} else {
int i;
StgTSO *tso, *prev;
for (i=0; i < completed_hw; i++) {
unsigned int rID = completedTable[i].reqID;
prev = NULL;
for(tso = blocked_queue_hd ; tso != END_TSO_QUEUE; tso = tso->link) {
switch(tso->why_blocked) {
case BlockedOnRead:
case BlockedOnWrite:
case BlockedOnDoProc:
if (tso->block_info.async_result->reqID == rID) {
/* Found the thread blocked waiting on request; stodgily fill
* in its result block.
*/
tso->block_info.async_result->len = completedTable[i].len;
tso->block_info.async_result->errCode = completedTable[i].errCode;
/* Drop the matched TSO from blocked_queue */
if (prev) {
prev->link = tso->link;
} else {
blocked_queue_hd = tso->link;
}
if (blocked_queue_tl == tso) {
blocked_queue_tl = prev;
}
/* Terminates the run queue + this inner for-loop. */
tso->link = END_TSO_QUEUE;
tso->why_blocked = NotBlocked;
PUSH_ON_RUN_QUEUE(tso);
break;
}
break;
default:
if (tso->why_blocked != NotBlocked) {
barf("awaitRequests: odd thread state");
}
break;
}
prev = tso;
}
}
completed_hw = 0;
ResetEvent(completed_req_event);
LeaveCriticalSection(&queue_lock);
return 1;
}
}
void
abandonRequestWait()
{
/* the event is auto-reset, but in case there's no thread
* already waiting on the event, we want to return it to
* a non-signalled state.
*/
PulseEvent(abandon_req_wait);
}
|