1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
|
/* -----------------------------------------------------------------------------
*
* (c) The University of Glasgow 2004-2013
*
* This file is included at the top of all .cmm source files (and
* *only* .cmm files). It defines a collection of useful macros for
* making .cmm code a bit less error-prone to write, and a bit easier
* on the eye for the reader.
*
* For the syntax of .cmm files, see the parser in ghc/compiler/cmm/CmmParse.y.
*
* Accessing fields of structures defined in the RTS header files is
* done via automatically-generated macros in DerivedConstants.h. For
* example, where previously we used
*
* CurrentTSO->what_next = x
*
* in C-- we now use
*
* StgTSO_what_next(CurrentTSO) = x
*
* where the StgTSO_what_next() macro is automatically generated by
* mkDerivedConstants.c. If you need to access a field that doesn't
* already have a macro, edit that file (it's pretty self-explanatory).
*
* -------------------------------------------------------------------------- */
#pragma once
/*
* In files that are included into both C and C-- (and perhaps
* Haskell) sources, we sometimes need to conditionally compile bits
* depending on the language. CMINUSMINUS==1 in .cmm sources:
*/
#define CMINUSMINUS 1
#include "ghcconfig.h"
/* -----------------------------------------------------------------------------
Types
The following synonyms for C-- types are declared here:
I8, I16, I32, I64 MachRep-style names for convenience
W_ is shorthand for the word type (== StgWord)
F_ shorthand for float (F_ == StgFloat == C's float)
D_ shorthand for double (D_ == StgDouble == C's double)
CInt has the same size as an int in C on this platform
CLong has the same size as a long in C on this platform
CBool has the same size as a bool in C on this platform
--------------------------------------------------------------------------- */
#define I8 bits8
#define I16 bits16
#define I32 bits32
#define I64 bits64
#define P_ gcptr
#if SIZEOF_VOID_P == 4
#define W_ bits32
/* Maybe it's better to include MachDeps.h */
#define TAG_BITS 2
#elif SIZEOF_VOID_P == 8
#define W_ bits64
/* Maybe it's better to include MachDeps.h */
#define TAG_BITS 3
#else
#error Unknown word size
#endif
/*
* The RTS must sometimes UNTAG a pointer before dereferencing it.
* See the wiki page commentary/rts/haskell-execution/pointer-tagging
*/
#define TAG_MASK ((1 << TAG_BITS) - 1)
#define UNTAG(p) (p & ~TAG_MASK)
#define GETTAG(p) (p & TAG_MASK)
#if SIZEOF_INT == 4
#define CInt bits32
#elif SIZEOF_INT == 8
#define CInt bits64
#else
#error Unknown int size
#endif
#if SIZEOF_LONG == 4
#define CLong bits32
#elif SIZEOF_LONG == 8
#define CLong bits64
#else
#error Unknown long size
#endif
#define CBool bits8
#define F_ float32
#define D_ float64
#define L_ bits64
#define V16_ bits128
#define V32_ bits256
#define V64_ bits512
#define SIZEOF_StgDouble 8
#define SIZEOF_StgWord64 8
/* -----------------------------------------------------------------------------
Misc useful stuff
-------------------------------------------------------------------------- */
#define ccall foreign "C"
#define NULL (0::W_)
#define STRING(name,str) \
section "rodata" { \
name : bits8[] str; \
} \
#if defined(TABLES_NEXT_TO_CODE)
#define RET_LBL(f) f##_info
#else
#define RET_LBL(f) f##_ret
#endif
#if defined(TABLES_NEXT_TO_CODE)
#define ENTRY_LBL(f) f##_info
#else
#define ENTRY_LBL(f) f##_entry
#endif
/* -----------------------------------------------------------------------------
Byte/word macros
Everything in C-- is in byte offsets (well, most things). We use
some macros to allow us to express offsets in words and to try to
avoid byte/word confusion.
-------------------------------------------------------------------------- */
#define SIZEOF_W SIZEOF_VOID_P
#define W_MASK (SIZEOF_W-1)
#if SIZEOF_W == 4
#define W_SHIFT 2
#elif SIZEOF_W == 8
#define W_SHIFT 3
#endif
/* Converting quantities of words to bytes */
#define WDS(n) ((n)*SIZEOF_W)
/*
* Converting quantities of bytes to words
* NB. these work on *unsigned* values only
*/
#define BYTES_TO_WDS(n) ((n) / SIZEOF_W)
#define ROUNDUP_BYTES_TO_WDS(n) (((n) + SIZEOF_W - 1) / SIZEOF_W)
/* TO_W_(n) converts n to W_ type from a smaller type */
#if SIZEOF_W == 4
#define TO_I64(x) %sx64(x)
#define TO_W_(x) %sx32(x)
#define HALF_W_(x) %lobits16(x)
#elif SIZEOF_W == 8
#define TO_I64(x) (x)
#define TO_W_(x) %sx64(x)
#define HALF_W_(x) %lobits32(x)
#endif
#if SIZEOF_INT == 4 && SIZEOF_W == 8
#define W_TO_INT(x) %lobits32(x)
#elif SIZEOF_INT == SIZEOF_W
#define W_TO_INT(x) (x)
#endif
#if SIZEOF_LONG == 4 && SIZEOF_W == 8
#define W_TO_LONG(x) %lobits32(x)
#elif SIZEOF_LONG == SIZEOF_W
#define W_TO_LONG(x) (x)
#endif
/* -----------------------------------------------------------------------------
Atomic memory operations.
-------------------------------------------------------------------------- */
#if SIZEOF_W == 4
#define cmpxchgW cmpxchg32
#elif SIZEOF_W == 8
#define cmpxchgW cmpxchg64
#endif
/* -----------------------------------------------------------------------------
Heap/stack access, and adjusting the heap/stack pointers.
-------------------------------------------------------------------------- */
#define Sp(n) W_[Sp + WDS(n)]
#define Hp(n) W_[Hp + WDS(n)]
#define Sp_adj(n) Sp = Sp + WDS(n) /* pronounced "spadge" */
#define Hp_adj(n) Hp = Hp + WDS(n)
/* -----------------------------------------------------------------------------
Assertions and Debuggery
-------------------------------------------------------------------------- */
#if defined(DEBUG)
#define ASSERT(predicate) \
if (predicate) { \
/*null*/; \
} else { \
foreign "C" _assertFail(__FILE__, __LINE__) never returns; \
}
#else
#define ASSERT(p) /* nothing */
#endif
#if defined(DEBUG)
#define DEBUG_ONLY(s) s
#else
#define DEBUG_ONLY(s) /* nothing */
#endif
/*
* The IF_DEBUG macro is useful for debug messages that depend on one
* of the RTS debug options. For example:
*
* IF_DEBUG(RtsFlags_DebugFlags_apply,
* foreign "C" fprintf(stderr, stg_ap_0_ret_str));
*
* Note the syntax is slightly different to the C version of this macro.
*/
#if defined(DEBUG)
#define IF_DEBUG(c,s) if (RtsFlags_DebugFlags_##c(RtsFlags) != 0::CBool) { s; }
#else
#define IF_DEBUG(c,s) /* nothing */
#endif
/* -----------------------------------------------------------------------------
Entering
It isn't safe to "enter" every closure. Functions in particular
have no entry code as such; their entry point contains the code to
apply the function.
ToDo: range should end in N_CLOSURE_TYPES-1, not N_CLOSURE_TYPES,
but switch doesn't allow us to use exprs there yet.
If R1 points to a tagged object it points either to
* A constructor.
* A function with arity <= TAG_MASK.
In both cases the right thing to do is to return.
Note: it is rather lucky that we can use the tag bits to do this
for both objects. Maybe it points to a brittle design?
Indirections can contain tagged pointers, so their tag is checked.
-------------------------------------------------------------------------- */
#if defined(PROFILING)
// When profiling, we cannot shortcut ENTER() by checking the tag,
// because LDV profiling relies on entering closures to mark them as
// "used".
#define LOAD_INFO(ret,x) \
info = %INFO_PTR(UNTAG(x));
#define UNTAG_IF_PROF(x) UNTAG(x)
#else
#define LOAD_INFO(ret,x) \
if (GETTAG(x) != 0) { \
ret(x); \
} \
info = %INFO_PTR(x);
#define UNTAG_IF_PROF(x) (x) /* already untagged */
#endif
// We need two versions of ENTER():
// - ENTER(x) takes the closure as an argument and uses return(),
// for use in civilized code where the stack is handled by GHC
//
// - ENTER_NOSTACK() where the closure is in R1, and returns are
// explicit jumps, for use when we are doing the stack management
// ourselves.
#if defined(PROFILING)
// See Note [Evaluating functions with profiling] in rts/Apply.cmm
#define ENTER(x) jump stg_ap_0_fast(x);
#else
#define ENTER(x) ENTER_(return,x)
#endif
#define ENTER_R1() ENTER_(RET_R1,R1)
#define RET_R1(x) jump %ENTRY_CODE(Sp(0)) [R1]
#define ENTER_(ret,x) \
again: \
W_ info; \
LOAD_INFO(ret,x) \
switch [INVALID_OBJECT .. N_CLOSURE_TYPES] \
(TO_W_( %INFO_TYPE(%STD_INFO(info)) )) { \
case \
IND, \
IND_STATIC: \
{ \
x = StgInd_indirectee(x); \
goto again; \
} \
case \
FUN, \
FUN_1_0, \
FUN_0_1, \
FUN_2_0, \
FUN_1_1, \
FUN_0_2, \
FUN_STATIC, \
BCO, \
PAP: \
{ \
ret(x); \
} \
default: \
{ \
x = UNTAG_IF_PROF(x); \
jump %ENTRY_CODE(info) (x); \
} \
}
// The FUN cases almost never happen: a pointer to a non-static FUN
// should always be tagged. This unfortunately isn't true for the
// interpreter right now, which leaves untagged FUNs on the stack.
/* -----------------------------------------------------------------------------
Constants.
-------------------------------------------------------------------------- */
#include "rts/Constants.h"
#include "DerivedConstants.h"
#include "rts/storage/ClosureTypes.h"
#include "rts/storage/FunTypes.h"
#include "rts/OSThreads.h"
/*
* Need MachRegs, because some of the RTS code is conditionally
* compiled based on REG_R1, REG_R2, etc.
*/
#include "stg/RtsMachRegs.h"
#include "rts/prof/LDV.h"
#undef BLOCK_SIZE
#undef MBLOCK_SIZE
#include "rts/storage/Block.h" /* For Bdescr() */
#define MyCapability() (BaseReg - OFFSET_Capability_r)
/* -------------------------------------------------------------------------
Info tables
------------------------------------------------------------------------- */
#if defined(PROFILING)
#define PROF_HDR_FIELDS(w_,hdr1,hdr2) \
w_ hdr1, \
w_ hdr2,
#else
#define PROF_HDR_FIELDS(w_,hdr1,hdr2) /* nothing */
#endif
/* -------------------------------------------------------------------------
Allocation and garbage collection
------------------------------------------------------------------------- */
/*
* ALLOC_PRIM is for allocating memory on the heap for a primitive
* object. It is used all over PrimOps.cmm.
*
* We make the simplifying assumption that the "admin" part of a
* primitive closure is just the header when calculating sizes for
* ticky-ticky. It's not clear whether eg. the size field of an array
* should be counted as "admin", or the various fields of a BCO.
*/
#define ALLOC_PRIM(bytes) \
HP_CHK_GEN_TICKY(bytes); \
TICK_ALLOC_PRIM(SIZEOF_StgHeader,bytes-SIZEOF_StgHeader,0); \
CCCS_ALLOC(bytes);
#define HEAP_CHECK(bytes,failure) \
TICK_BUMP(HEAP_CHK_ctr); \
Hp = Hp + (bytes); \
if (Hp > HpLim) { HpAlloc = (bytes); failure; } \
TICK_ALLOC_HEAP_NOCTR(bytes);
#define ALLOC_PRIM_WITH_CUSTOM_FAILURE(bytes,failure) \
HEAP_CHECK(bytes,failure) \
TICK_ALLOC_PRIM(SIZEOF_StgHeader,bytes-SIZEOF_StgHeader,0); \
CCCS_ALLOC(bytes);
#define ALLOC_PRIM_(bytes,fun) \
ALLOC_PRIM_WITH_CUSTOM_FAILURE(bytes,GC_PRIM(fun));
#define ALLOC_PRIM_P(bytes,fun,arg) \
ALLOC_PRIM_WITH_CUSTOM_FAILURE(bytes,GC_PRIM_P(fun,arg));
#define ALLOC_PRIM_N(bytes,fun,arg) \
ALLOC_PRIM_WITH_CUSTOM_FAILURE(bytes,GC_PRIM_N(fun,arg));
/* CCS_ALLOC wants the size in words, because ccs->mem_alloc is in words */
#define CCCS_ALLOC(__alloc) CCS_ALLOC(BYTES_TO_WDS(__alloc), CCCS)
#define HP_CHK_GEN_TICKY(bytes) \
HP_CHK_GEN(bytes); \
TICK_ALLOC_HEAP_NOCTR(bytes);
#define HP_CHK_P(bytes, fun, arg) \
HEAP_CHECK(bytes, GC_PRIM_P(fun,arg))
// TODO I'm not seeing where ALLOC_P_TICKY is used; can it be removed?
// -NSF March 2013
#define ALLOC_P_TICKY(bytes, fun, arg) \
HP_CHK_P(bytes); \
TICK_ALLOC_HEAP_NOCTR(bytes);
#define CHECK_GC() \
(bdescr_link(CurrentNursery) == NULL || \
generation_n_new_large_words(W_[g0]) >= TO_W_(CLong[large_alloc_lim]))
// allocate() allocates from the nursery, so we check to see
// whether the nursery is nearly empty in any function that uses
// allocate() - this includes many of the primops.
//
// HACK alert: the __L__ stuff is here to coax the common-block
// eliminator into commoning up the call stg_gc_noregs() with the same
// code that gets generated by a STK_CHK_GEN() in the same proc. We
// also need an if (0) { goto __L__; } so that the __L__ label isn't
// optimised away by the control-flow optimiser prior to common-block
// elimination (it will be optimised away later).
//
// This saves some code in gmp-wrappers.cmm where we have lots of
// MAYBE_GC() in the same proc as STK_CHK_GEN().
//
#define MAYBE_GC(retry) \
if (CHECK_GC()) { \
HpAlloc = 0; \
goto __L__; \
__L__: \
call stg_gc_noregs(); \
goto retry; \
} \
if (0) { goto __L__; }
#define GC_PRIM(fun) \
jump stg_gc_prim(fun);
// Version of GC_PRIM for use in low-level Cmm. We can call
// stg_gc_prim, because it takes one argument and therefore has a
// platform-independent calling convention (Note [Syntax of .cmm
// files] in CmmParse.y).
#define GC_PRIM_LL(fun) \
R1 = fun; \
jump stg_gc_prim [R1];
// We pass the fun as the second argument, because the arg is
// usually already in the first argument position (R1), so this
// avoids moving it to a different register / stack slot.
#define GC_PRIM_N(fun,arg) \
jump stg_gc_prim_n(arg,fun);
#define GC_PRIM_P(fun,arg) \
jump stg_gc_prim_p(arg,fun);
#define GC_PRIM_P_LL(fun,arg) \
R1 = arg; \
R2 = fun; \
jump stg_gc_prim_p_ll [R1,R2];
#define GC_PRIM_PP(fun,arg1,arg2) \
jump stg_gc_prim_pp(arg1,arg2,fun);
#define MAYBE_GC_(fun) \
if (CHECK_GC()) { \
HpAlloc = 0; \
GC_PRIM(fun) \
}
#define MAYBE_GC_N(fun,arg) \
if (CHECK_GC()) { \
HpAlloc = 0; \
GC_PRIM_N(fun,arg) \
}
#define MAYBE_GC_P(fun,arg) \
if (CHECK_GC()) { \
HpAlloc = 0; \
GC_PRIM_P(fun,arg) \
}
#define MAYBE_GC_PP(fun,arg1,arg2) \
if (CHECK_GC()) { \
HpAlloc = 0; \
GC_PRIM_PP(fun,arg1,arg2) \
}
#define STK_CHK_LL(n, fun) \
TICK_BUMP(STK_CHK_ctr); \
if (Sp - (n) < SpLim) { \
GC_PRIM_LL(fun) \
}
#define STK_CHK_P_LL(n, fun, arg) \
TICK_BUMP(STK_CHK_ctr); \
if (Sp - (n) < SpLim) { \
GC_PRIM_P_LL(fun,arg) \
}
#define STK_CHK_PP(n, fun, arg1, arg2) \
TICK_BUMP(STK_CHK_ctr); \
if (Sp - (n) < SpLim) { \
GC_PRIM_PP(fun,arg1,arg2) \
}
#define STK_CHK_ENTER(n, closure) \
TICK_BUMP(STK_CHK_ctr); \
if (Sp - (n) < SpLim) { \
jump __stg_gc_enter_1(closure); \
}
// A funky heap check used by AutoApply.cmm
#define HP_CHK_NP_ASSIGN_SP0(size,f) \
HEAP_CHECK(size, Sp(0) = f; jump __stg_gc_enter_1 [R1];)
/* -----------------------------------------------------------------------------
Closure headers
-------------------------------------------------------------------------- */
/*
* This is really ugly, since we don't do the rest of StgHeader this
* way. The problem is that values from DerivedConstants.h cannot be
* dependent on the way (SMP, PROF etc.). For SIZEOF_StgHeader we get
* the value from GHC, but it seems like too much trouble to do that
* for StgThunkHeader.
*/
#define SIZEOF_StgThunkHeader SIZEOF_StgHeader+SIZEOF_StgSMPThunkHeader
#define StgThunk_payload(__ptr__,__ix__) \
W_[__ptr__+SIZEOF_StgThunkHeader+ WDS(__ix__)]
/* -----------------------------------------------------------------------------
Closures
-------------------------------------------------------------------------- */
/* The offset of the payload of an array */
#define BYTE_ARR_CTS(arr) ((arr) + SIZEOF_StgArrBytes)
/* The number of words allocated in an array payload */
#define BYTE_ARR_WDS(arr) ROUNDUP_BYTES_TO_WDS(StgArrBytes_bytes(arr))
/* Getting/setting the info pointer of a closure */
#define SET_INFO(p,info) StgHeader_info(p) = info
#define GET_INFO(p) StgHeader_info(p)
/* Determine the size of an ordinary closure from its info table */
#define sizeW_fromITBL(itbl) \
SIZEOF_StgHeader + WDS(%INFO_PTRS(itbl)) + WDS(%INFO_NPTRS(itbl))
/* NB. duplicated from InfoTables.h! */
#define BITMAP_SIZE(bitmap) ((bitmap) & BITMAP_SIZE_MASK)
#define BITMAP_BITS(bitmap) ((bitmap) >> BITMAP_BITS_SHIFT)
/* Debugging macros */
#define LOOKS_LIKE_INFO_PTR(p) \
((p) != NULL && \
LOOKS_LIKE_INFO_PTR_NOT_NULL(p))
#define LOOKS_LIKE_INFO_PTR_NOT_NULL(p) \
( (TO_W_(%INFO_TYPE(%STD_INFO(p))) != INVALID_OBJECT) && \
(TO_W_(%INFO_TYPE(%STD_INFO(p))) < N_CLOSURE_TYPES))
#define LOOKS_LIKE_CLOSURE_PTR(p) (LOOKS_LIKE_INFO_PTR(GET_INFO(UNTAG(p))))
/*
* The layout of the StgFunInfoExtra part of an info table changes
* depending on TABLES_NEXT_TO_CODE. So we define field access
* macros which use the appropriate version here:
*/
#if defined(TABLES_NEXT_TO_CODE)
/*
* when TABLES_NEXT_TO_CODE, slow_apply is stored as an offset
* instead of the normal pointer.
*/
#define StgFunInfoExtra_slow_apply(fun_info) \
(TO_W_(StgFunInfoExtraRev_slow_apply_offset(fun_info)) \
+ (fun_info) + SIZEOF_StgFunInfoExtraRev + SIZEOF_StgInfoTable)
#define StgFunInfoExtra_fun_type(i) StgFunInfoExtraRev_fun_type(i)
#define StgFunInfoExtra_arity(i) StgFunInfoExtraRev_arity(i)
#define StgFunInfoExtra_bitmap(i) StgFunInfoExtraRev_bitmap(i)
#else
#define StgFunInfoExtra_slow_apply(i) StgFunInfoExtraFwd_slow_apply(i)
#define StgFunInfoExtra_fun_type(i) StgFunInfoExtraFwd_fun_type(i)
#define StgFunInfoExtra_arity(i) StgFunInfoExtraFwd_arity(i)
#define StgFunInfoExtra_bitmap(i) StgFunInfoExtraFwd_bitmap(i)
#endif
#define mutArrCardMask ((1 << MUT_ARR_PTRS_CARD_BITS) - 1)
#define mutArrPtrCardDown(i) ((i) >> MUT_ARR_PTRS_CARD_BITS)
#define mutArrPtrCardUp(i) (((i) + mutArrCardMask) >> MUT_ARR_PTRS_CARD_BITS)
#define mutArrPtrsCardWords(n) ROUNDUP_BYTES_TO_WDS(mutArrPtrCardUp(n))
#if defined(PROFILING) || (!defined(THREADED_RTS) && defined(DEBUG))
#define OVERWRITING_CLOSURE_SIZE(c, size) foreign "C" overwritingClosureSize(c "ptr", size)
#define OVERWRITING_CLOSURE(c) foreign "C" overwritingClosure(c "ptr")
#define OVERWRITING_CLOSURE_OFS(c,n) foreign "C" overwritingClosureOfs(c "ptr", n)
#else
#define OVERWRITING_CLOSURE_SIZE(c, size) /* nothing */
#define OVERWRITING_CLOSURE(c) /* nothing */
#define OVERWRITING_CLOSURE_OFS(c,n) /* nothing */
#endif
#if defined(THREADED_RTS)
#define prim_write_barrier prim %write_barrier()
#else
#define prim_write_barrier /* nothing */
#endif
/* -----------------------------------------------------------------------------
Ticky macros
-------------------------------------------------------------------------- */
#if defined(TICKY_TICKY)
#define TICK_BUMP_BY(ctr,n) CLong[ctr] = CLong[ctr] + n
#else
#define TICK_BUMP_BY(ctr,n) /* nothing */
#endif
#define TICK_BUMP(ctr) TICK_BUMP_BY(ctr,1)
#define TICK_ENT_DYN_IND() TICK_BUMP(ENT_DYN_IND_ctr)
#define TICK_ENT_DYN_THK() TICK_BUMP(ENT_DYN_THK_ctr)
#define TICK_ENT_VIA_NODE() TICK_BUMP(ENT_VIA_NODE_ctr)
#define TICK_ENT_STATIC_IND() TICK_BUMP(ENT_STATIC_IND_ctr)
#define TICK_ENT_PERM_IND() TICK_BUMP(ENT_PERM_IND_ctr)
#define TICK_ENT_PAP() TICK_BUMP(ENT_PAP_ctr)
#define TICK_ENT_AP() TICK_BUMP(ENT_AP_ctr)
#define TICK_ENT_AP_STACK() TICK_BUMP(ENT_AP_STACK_ctr)
#define TICK_ENT_BH() TICK_BUMP(ENT_BH_ctr)
#define TICK_ENT_LNE() TICK_BUMP(ENT_LNE_ctr)
#define TICK_UNKNOWN_CALL() TICK_BUMP(UNKNOWN_CALL_ctr)
#define TICK_UPDF_PUSHED() TICK_BUMP(UPDF_PUSHED_ctr)
#define TICK_CATCHF_PUSHED() TICK_BUMP(CATCHF_PUSHED_ctr)
#define TICK_UPDF_OMITTED() TICK_BUMP(UPDF_OMITTED_ctr)
#define TICK_UPD_NEW_IND() TICK_BUMP(UPD_NEW_IND_ctr)
#define TICK_UPD_NEW_PERM_IND() TICK_BUMP(UPD_NEW_PERM_IND_ctr)
#define TICK_UPD_OLD_IND() TICK_BUMP(UPD_OLD_IND_ctr)
#define TICK_UPD_OLD_PERM_IND() TICK_BUMP(UPD_OLD_PERM_IND_ctr)
#define TICK_SLOW_CALL_FUN_TOO_FEW() TICK_BUMP(SLOW_CALL_FUN_TOO_FEW_ctr)
#define TICK_SLOW_CALL_FUN_CORRECT() TICK_BUMP(SLOW_CALL_FUN_CORRECT_ctr)
#define TICK_SLOW_CALL_FUN_TOO_MANY() TICK_BUMP(SLOW_CALL_FUN_TOO_MANY_ctr)
#define TICK_SLOW_CALL_PAP_TOO_FEW() TICK_BUMP(SLOW_CALL_PAP_TOO_FEW_ctr)
#define TICK_SLOW_CALL_PAP_CORRECT() TICK_BUMP(SLOW_CALL_PAP_CORRECT_ctr)
#define TICK_SLOW_CALL_PAP_TOO_MANY() TICK_BUMP(SLOW_CALL_PAP_TOO_MANY_ctr)
#define TICK_SLOW_CALL_fast_v16() TICK_BUMP(SLOW_CALL_fast_v16_ctr)
#define TICK_SLOW_CALL_fast_v() TICK_BUMP(SLOW_CALL_fast_v_ctr)
#define TICK_SLOW_CALL_fast_p() TICK_BUMP(SLOW_CALL_fast_p_ctr)
#define TICK_SLOW_CALL_fast_pv() TICK_BUMP(SLOW_CALL_fast_pv_ctr)
#define TICK_SLOW_CALL_fast_pp() TICK_BUMP(SLOW_CALL_fast_pp_ctr)
#define TICK_SLOW_CALL_fast_ppv() TICK_BUMP(SLOW_CALL_fast_ppv_ctr)
#define TICK_SLOW_CALL_fast_ppp() TICK_BUMP(SLOW_CALL_fast_ppp_ctr)
#define TICK_SLOW_CALL_fast_pppv() TICK_BUMP(SLOW_CALL_fast_pppv_ctr)
#define TICK_SLOW_CALL_fast_pppp() TICK_BUMP(SLOW_CALL_fast_pppp_ctr)
#define TICK_SLOW_CALL_fast_ppppp() TICK_BUMP(SLOW_CALL_fast_ppppp_ctr)
#define TICK_SLOW_CALL_fast_pppppp() TICK_BUMP(SLOW_CALL_fast_pppppp_ctr)
#define TICK_VERY_SLOW_CALL() TICK_BUMP(VERY_SLOW_CALL_ctr)
/* NOTE: TICK_HISTO_BY and TICK_HISTO
currently have no effect.
The old code for it didn't typecheck and I
just commented it out to get ticky to work.
- krc 1/2007 */
#define TICK_HISTO_BY(histo,n,i) /* nothing */
#define TICK_HISTO(histo,n) TICK_HISTO_BY(histo,n,1)
/* An unboxed tuple with n components. */
#define TICK_RET_UNBOXED_TUP(n) \
TICK_BUMP(RET_UNBOXED_TUP_ctr++); \
TICK_HISTO(RET_UNBOXED_TUP,n)
/*
* A slow call with n arguments. In the unevald case, this call has
* already been counted once, so don't count it again.
*/
#define TICK_SLOW_CALL(n) \
TICK_BUMP(SLOW_CALL_ctr); \
TICK_HISTO(SLOW_CALL,n)
/*
* This slow call was found to be to an unevaluated function; undo the
* ticks we did in TICK_SLOW_CALL.
*/
#define TICK_SLOW_CALL_UNEVALD(n) \
TICK_BUMP(SLOW_CALL_UNEVALD_ctr); \
TICK_BUMP_BY(SLOW_CALL_ctr,-1); \
TICK_HISTO_BY(SLOW_CALL,n,-1);
/* Updating a closure with a new CON */
#define TICK_UPD_CON_IN_NEW(n) \
TICK_BUMP(UPD_CON_IN_NEW_ctr); \
TICK_HISTO(UPD_CON_IN_NEW,n)
#define TICK_ALLOC_HEAP_NOCTR(bytes) \
TICK_BUMP(ALLOC_RTS_ctr); \
TICK_BUMP_BY(ALLOC_RTS_tot,bytes)
/* -----------------------------------------------------------------------------
Saving and restoring STG registers
STG registers must be saved around a C call, just in case the STG
register is mapped to a caller-saves machine register. Normally we
don't need to worry about this the code generator has already
loaded any live STG registers into variables for us, but in
hand-written low-level Cmm code where we don't know which registers
are live, we might have to save them all.
-------------------------------------------------------------------------- */
#define SAVE_STGREGS \
W_ r1, r2, r3, r4, r5, r6, r7, r8; \
F_ f1, f2, f3, f4, f5, f6; \
D_ d1, d2, d3, d4, d5, d6; \
L_ l1; \
\
r1 = R1; \
r2 = R2; \
r3 = R3; \
r4 = R4; \
r5 = R5; \
r6 = R6; \
r7 = R7; \
r8 = R8; \
\
f1 = F1; \
f2 = F2; \
f3 = F3; \
f4 = F4; \
f5 = F5; \
f6 = F6; \
\
d1 = D1; \
d2 = D2; \
d3 = D3; \
d4 = D4; \
d5 = D5; \
d6 = D6; \
\
l1 = L1;
#define RESTORE_STGREGS \
R1 = r1; \
R2 = r2; \
R3 = r3; \
R4 = r4; \
R5 = r5; \
R6 = r6; \
R7 = r7; \
R8 = r8; \
\
F1 = f1; \
F2 = f2; \
F3 = f3; \
F4 = f4; \
F5 = f5; \
F6 = f6; \
\
D1 = d1; \
D2 = d2; \
D3 = d3; \
D4 = d4; \
D5 = d5; \
D6 = d6; \
\
L1 = l1;
/* -----------------------------------------------------------------------------
Misc junk
-------------------------------------------------------------------------- */
#define NO_TREC stg_NO_TREC_closure
#define END_TSO_QUEUE stg_END_TSO_QUEUE_closure
#define STM_AWOKEN stg_STM_AWOKEN_closure
#define recordMutableCap(p, gen) \
W_ __bd; \
W_ mut_list; \
mut_list = Capability_mut_lists(MyCapability()) + WDS(gen); \
__bd = W_[mut_list]; \
if (bdescr_free(__bd) >= bdescr_start(__bd) + BLOCK_SIZE) { \
W_ __new_bd; \
("ptr" __new_bd) = foreign "C" allocBlock_lock(); \
bdescr_link(__new_bd) = __bd; \
__bd = __new_bd; \
W_[mut_list] = __bd; \
} \
W_ free; \
free = bdescr_free(__bd); \
W_[free] = p; \
bdescr_free(__bd) = free + WDS(1);
#define recordMutable(p) \
P_ __p; \
W_ __bd; \
W_ __gen; \
__p = p; \
__bd = Bdescr(__p); \
__gen = TO_W_(bdescr_gen_no(__bd)); \
if (__gen > 0) { recordMutableCap(__p, __gen); }
/* -----------------------------------------------------------------------------
Arrays
-------------------------------------------------------------------------- */
/* Complete function body for the clone family of (mutable) array ops.
Defined as a macro to avoid function call overhead or code
duplication. */
#define cloneArray(info, src, offset, n) \
W_ words, size; \
gcptr dst, dst_p, src_p; \
\
again: MAYBE_GC(again); \
\
size = n + mutArrPtrsCardWords(n); \
words = BYTES_TO_WDS(SIZEOF_StgMutArrPtrs) + size; \
("ptr" dst) = ccall allocate(MyCapability() "ptr", words); \
TICK_ALLOC_PRIM(SIZEOF_StgMutArrPtrs, WDS(size), 0); \
\
SET_HDR(dst, info, CCCS); \
StgMutArrPtrs_ptrs(dst) = n; \
StgMutArrPtrs_size(dst) = size; \
\
dst_p = dst + SIZEOF_StgMutArrPtrs; \
src_p = src + SIZEOF_StgMutArrPtrs + WDS(offset); \
prim %memcpy(dst_p, src_p, n * SIZEOF_W, SIZEOF_W); \
\
return (dst);
#define copyArray(src, src_off, dst, dst_off, n) \
W_ dst_elems_p, dst_p, src_p, dst_cards_p, bytes; \
\
if ((n) != 0) { \
SET_HDR(dst, stg_MUT_ARR_PTRS_DIRTY_info, CCCS); \
\
dst_elems_p = (dst) + SIZEOF_StgMutArrPtrs; \
dst_p = dst_elems_p + WDS(dst_off); \
src_p = (src) + SIZEOF_StgMutArrPtrs + WDS(src_off); \
bytes = WDS(n); \
\
prim %memcpy(dst_p, src_p, bytes, SIZEOF_W); \
\
dst_cards_p = dst_elems_p + WDS(StgMutArrPtrs_ptrs(dst)); \
setCards(dst_cards_p, dst_off, n); \
} \
\
return ();
#define copyMutableArray(src, src_off, dst, dst_off, n) \
W_ dst_elems_p, dst_p, src_p, dst_cards_p, bytes; \
\
if ((n) != 0) { \
SET_HDR(dst, stg_MUT_ARR_PTRS_DIRTY_info, CCCS); \
\
dst_elems_p = (dst) + SIZEOF_StgMutArrPtrs; \
dst_p = dst_elems_p + WDS(dst_off); \
src_p = (src) + SIZEOF_StgMutArrPtrs + WDS(src_off); \
bytes = WDS(n); \
\
if ((src) == (dst)) { \
prim %memmove(dst_p, src_p, bytes, SIZEOF_W); \
} else { \
prim %memcpy(dst_p, src_p, bytes, SIZEOF_W); \
} \
\
dst_cards_p = dst_elems_p + WDS(StgMutArrPtrs_ptrs(dst)); \
setCards(dst_cards_p, dst_off, n); \
} \
\
return ();
/*
* Set the cards in the cards table pointed to by dst_cards_p for an
* update to n elements, starting at element dst_off.
*/
#define setCards(dst_cards_p, dst_off, n) \
W_ __start_card, __end_card, __cards; \
__start_card = mutArrPtrCardDown(dst_off); \
__end_card = mutArrPtrCardDown((dst_off) + (n) - 1); \
__cards = __end_card - __start_card + 1; \
prim %memset((dst_cards_p) + __start_card, 1, __cards, 1);
/* Complete function body for the clone family of small (mutable)
array ops. Defined as a macro to avoid function call overhead or
code duplication. */
#define cloneSmallArray(info, src, offset, n) \
W_ words, size; \
gcptr dst, dst_p, src_p; \
\
again: MAYBE_GC(again); \
\
words = BYTES_TO_WDS(SIZEOF_StgSmallMutArrPtrs) + n; \
("ptr" dst) = ccall allocate(MyCapability() "ptr", words); \
TICK_ALLOC_PRIM(SIZEOF_StgSmallMutArrPtrs, WDS(n), 0); \
\
SET_HDR(dst, info, CCCS); \
StgSmallMutArrPtrs_ptrs(dst) = n; \
\
dst_p = dst + SIZEOF_StgSmallMutArrPtrs; \
src_p = src + SIZEOF_StgSmallMutArrPtrs + WDS(offset); \
prim %memcpy(dst_p, src_p, n * SIZEOF_W, SIZEOF_W); \
\
return (dst);
|