1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
|
/* ----------------------------------------------------------------------------
*
* (c) The GHC Team, 2005
*
* Macros for THREADED_RTS support
*
* -------------------------------------------------------------------------- */
#ifndef SMP_H
#define SMP_H
/* THREADED_RTS is currently not compatible with the following options:
*
* PROFILING (but only 1 CPU supported)
* TICKY_TICKY
* Unregisterised builds are ok, but only 1 CPU supported.
*/
#ifdef CMINUSMINUS
#define unlockClosure(ptr,info) \
prim %write_barrier() []; \
StgHeader_info(ptr) = info;
#else
#if defined(THREADED_RTS)
#if defined(TICKY_TICKY)
#error Build options incompatible with THREADED_RTS.
#endif
/* ----------------------------------------------------------------------------
Atomic operations
------------------------------------------------------------------------- */
/*
* The atomic exchange operation: xchg(p,w) exchanges the value
* pointed to by p with the value w, returning the old value.
*
* Used for locking closures during updates (see lockClosure() below)
* and the MVar primops.
*/
INLINE_HEADER StgWord xchg(StgPtr p, StgWord w);
/*
* Compare-and-swap. Atomically does this:
*
* cas(p,o,n) {
* r = *p;
* if (r == o) { *p = n };
* return r;
* }
*/
INLINE_HEADER StgWord cas(StgVolatilePtr p, StgWord o, StgWord n);
/*
* Prevents write operations from moving across this call in either
* direction.
*/
INLINE_HEADER void write_barrier(void);
/* ----------------------------------------------------------------------------
Implementations
------------------------------------------------------------------------- */
/*
* NB: the xchg instruction is implicitly locked, so we do not need
* a lock prefix here.
*/
INLINE_HEADER StgWord
xchg(StgPtr p, StgWord w)
{
StgWord result;
#if i386_HOST_ARCH || x86_64_HOST_ARCH
result = w;
__asm__ __volatile__ (
"xchg %1,%0"
:"+r" (result), "+m" (*p)
: /* no input-only operands */
);
#elif powerpc_HOST_ARCH
__asm__ __volatile__ (
"1: lwarx %0, 0, %2\n"
" stwcx. %1, 0, %2\n"
" bne- 1b"
:"=&r" (result)
:"r" (w), "r" (p)
);
#elif sparc_HOST_ARCH
result = w;
__asm__ __volatile__ (
"swap %1,%0"
: "+r" (result), "+m" (*p)
: /* no input-only operands */
);
#elif !defined(WITHSMP)
result = *p;
*p = w;
#else
#error xchg() unimplemented on this architecture
#endif
return result;
}
/*
* CMPXCHG - the single-word atomic compare-and-exchange instruction. Used
* in the STM implementation.
*/
INLINE_HEADER StgWord
cas(StgVolatilePtr p, StgWord o, StgWord n)
{
#if i386_HOST_ARCH || x86_64_HOST_ARCH
__asm__ __volatile__ (
"lock\ncmpxchg %3,%1"
:"=a"(o), "=m" (*(volatile unsigned int *)p)
:"0" (o), "r" (n));
return o;
#elif powerpc_HOST_ARCH
StgWord result;
__asm__ __volatile__ (
"1: lwarx %0, 0, %3\n"
" cmpw %0, %1\n"
" bne 2f\n"
" stwcx. %2, 0, %3\n"
" bne- 1b\n"
"2:"
:"=&r" (result)
:"r" (o), "r" (n), "r" (p)
:"cc", "memory"
);
return result;
#elif sparc_HOST_ARCH
__asm__ __volatile__ (
"cas [%1], %2, %0"
: "+r" (n)
: "r" (p), "r" (o)
: "memory"
);
return n;
#elif !defined(WITHSMP)
StgWord result;
result = *p;
if (result == o) {
*p = n;
}
return result;
#else
#error cas() unimplemented on this architecture
#endif
}
/*
* Write barrier - ensure that all preceding writes have happened
* before all following writes.
*
* We need to tell both the compiler AND the CPU about the barrier.
* This is a brute force solution; better results might be obtained by
* using volatile type declarations to get fine-grained ordering
* control in C, and optionally a memory barrier instruction on CPUs
* that require it (not x86 or x86_64).
*/
INLINE_HEADER void
write_barrier(void) {
#if i386_HOST_ARCH || x86_64_HOST_ARCH
__asm__ __volatile__ ("" : : : "memory");
#elif powerpc_HOST_ARCH
__asm__ __volatile__ ("lwsync" : : : "memory");
#elif sparc_HOST_ARCH
/* Sparc in TSO mode does not require write/write barriers. */
__asm__ __volatile__ ("" : : : "memory");
#elif !defined(WITHSMP)
return;
#else
#error memory barriers unimplemented on this architecture
#endif
}
/* -----------------------------------------------------------------------------
* Locking/unlocking closures
*
* This is used primarily in the implementation of MVars.
* -------------------------------------------------------------------------- */
#define SPIN_COUNT 4000
#ifdef KEEP_LOCKCLOSURE
// We want a callable copy of lockClosure() so that we can refer to it
// from .cmm files compiled using the native codegen.
extern StgInfoTable *lockClosure(StgClosure *p);
INLINE_ME
#else
INLINE_HEADER
#endif
StgInfoTable *
lockClosure(StgClosure *p)
{
StgWord info;
do {
nat i = 0;
do {
info = xchg((P_)(void *)&p->header.info, (W_)&stg_WHITEHOLE_info);
if (info != (W_)&stg_WHITEHOLE_info) return (StgInfoTable *)info;
} while (++i < SPIN_COUNT);
yieldThread();
} while (1);
}
INLINE_HEADER void
unlockClosure(StgClosure *p, StgInfoTable *info)
{
// This is a strictly ordered write, so we need a write_barrier():
write_barrier();
p->header.info = info;
}
/* -----------------------------------------------------------------------------
* Spin locks
*
* These are simple spin-only locks as opposed to Mutexes which
* probably spin for a while before blocking in the kernel. We use
* these when we are sure that all our threads are actively running on
* a CPU, eg. in the GC.
*
* TODO: measure whether we really need these, or whether Mutexes
* would do (and be a bit safer if a CPU becomes loaded).
* -------------------------------------------------------------------------- */
#if defined(DEBUG)
typedef struct StgSync_
{
StgWord32 lock;
StgWord64 spin; // DEBUG version counts how much it spins
} StgSync;
#else
typedef StgWord StgSync;
#endif
typedef lnat StgSyncCount;
#if defined(DEBUG)
// Debug versions of spin locks maintain a spin count
// How to use:
// To use the debug veriosn of the spin locks, a debug version of the program
// can be run under a deugger with a break point on stat_exit. At exit time
// of the program one can examine the state the spin count counts of various
// spin locks to check for contention.
// acquire spin lock
INLINE_HEADER void ACQUIRE_SPIN_LOCK(StgSync * p)
{
StgWord32 r = 0;
do {
p->spin++;
r = cas((StgVolatilePtr)&(p->lock), 1, 0);
} while(r == 0);
p->spin--;
}
// release spin lock
INLINE_HEADER void RELEASE_SPIN_LOCK(StgSync * p)
{
write_barrier();
p->lock = 1;
}
// initialise spin lock
INLINE_HEADER void initSpinLock(StgSync * p)
{
write_barrier();
p->lock = 1;
p->spin = 0;
}
#else
// acquire spin lock
INLINE_HEADER void ACQUIRE_SPIN_LOCK(StgSync * p)
{
StgWord32 r = 0;
do {
r = cas((StgVolatilePtr)p, 1, 0);
} while(r == 0);
}
// release spin lock
INLINE_HEADER void RELEASE_SPIN_LOCK(StgSync * p)
{
write_barrier();
(*p) = 1;
}
// init spin lock
INLINE_HEADER void initSpinLock(StgSync * p)
{
write_barrier();
(*p) = 1;
}
#endif /* DEBUG */
/* ---------------------------------------------------------------------- */
#else /* !THREADED_RTS */
#define write_barrier() /* nothing */
INLINE_HEADER StgWord
xchg(StgPtr p, StgWord w)
{
StgWord old = *p;
*p = w;
return old;
}
INLINE_HEADER StgInfoTable *
lockClosure(StgClosure *p)
{ return (StgInfoTable *)p->header.info; }
INLINE_HEADER void
unlockClosure(StgClosure *p STG_UNUSED, StgInfoTable *info STG_UNUSED)
{ /* nothing */ }
// Using macros here means we don't have to ensure the argument is in scope
#define ACQUIRE_SPIN_LOCK(p) /* nothing */
#define RELEASE_SPIN_LOCK(p) /* nothing */
INLINE_HEADER void initSpinLock(void * p STG_UNUSED)
{ /* nothing */ }
#endif /* !THREADED_RTS */
// Handy specialised versions of lockClosure()/unlockClosure()
INLINE_HEADER void lockTSO(StgTSO *tso)
{ lockClosure((StgClosure *)tso); }
INLINE_HEADER void unlockTSO(StgTSO *tso)
{ unlockClosure((StgClosure*)tso, (StgInfoTable*)&stg_TSO_info); }
#endif /* SMP_H */
#endif /* CMINUSMINUS */
|