1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
|
/* -----------------------------------------------------------------------------
*
* (c) The GHC Team, 1998-2009
*
* Top-level include file for everything required when compiling .hc
* code. NOTE: in .hc files, Stg.h must be included *before* any
* other headers, because we define some register variables which must
* be done before any inline functions are defined (some system
* headers have been known to define the odd inline function).
*
* We generally try to keep as little visible as possible when
* compiling .hc files. So for example the definitions of the
* InfoTable structs, closure structs and other RTS types are not
* visible here. The compiler knows enough about the representations
* of these types to generate code which manipulates them directly
* with pointer arithmetic.
*
* In ordinary C code, do not #include this file directly: #include
* "Rts.h" instead.
*
* To understand the structure of the RTS headers, see the wiki:
* https://gitlab.haskell.org/ghc/ghc/wikis/commentary/source-tree/includes
*
* ---------------------------------------------------------------------------*/
#pragma once
#if !(__STDC_VERSION__ >= 199901L) && !(__cplusplus >= 201103L)
# error __STDC_VERSION__ does not advertise C99, C++11 or later
#endif
/*
* If we are compiling a .hc file, then we want all the register
* variables. This is the what happens if you #include "Stg.h" first:
* we assume this is a .hc file, and set IN_STG_CODE==1, which later
* causes the register variables to be enabled in stg/Regs.h.
*
* If instead "Rts.h" is included first, then we are compiling a
* vanilla C file. Everything from Stg.h is provided, except that
* IN_STG_CODE is not defined, and the register variables will not be
* active.
*/
#if !defined(IN_STG_CODE)
# define IN_STG_CODE 1
// Turn on C99 for .hc code. This gives us the INFINITY and NAN
// constants from math.h, which we occasionally need to use in .hc (#1861)
# define _ISOC99_SOURCE
// We need _BSD_SOURCE so that math.h defines things like gamma
// on Linux
# define _BSD_SOURCE
// On AIX we need _BSD defined, otherwise <math.h> includes <stdlib.h>
# if defined(_AIX)
# define _BSD 1
# endif
// '_BSD_SOURCE' is deprecated since glibc-2.20
// in favour of '_DEFAULT_SOURCE'
# define _DEFAULT_SOURCE
#endif
#if IN_STG_CODE == 0 || defined(llvm_CC_FLAVOR)
// C compilers that use an LLVM back end (clang or llvm-gcc) do not
// correctly support global register variables so we make sure that
// we do not declare them for these compilers.
# define NO_GLOBAL_REG_DECLS /* don't define fixed registers */
#endif
/* Configuration */
#include "ghcconfig.h"
/* The code generator calls the math functions directly in .hc code.
NB. after configuration stuff above, because this sets #defines
that depend on config info, such as __USE_FILE_OFFSET64 */
#include <math.h>
// On Solaris, we don't get the INFINITY and NAN constants unless we
// #define _STDC_C99, and we can't do that unless we also use -std=c99,
// because _STDC_C99 causes the headers to use C99 syntax (e.g. restrict).
// We aren't ready for -std=c99 yet, so define INFINITY/NAN by hand using
// the gcc builtins.
#if !defined(INFINITY)
#if defined(__GNUC__)
#define INFINITY __builtin_inf()
#else
#error No definition for INFINITY
#endif
#endif
#if !defined(NAN)
#if defined(__GNUC__)
#define NAN __builtin_nan("")
#else
#error No definition for NAN
#endif
#endif
/* -----------------------------------------------------------------------------
Useful definitions
-------------------------------------------------------------------------- */
/*
* The C backend likes to refer to labels by just mentioning their
* names. However, when a symbol is declared as a variable in C, the
* C compiler will implicitly dereference it when it occurs in source.
* So we must subvert this behaviour for .hc files by declaring
* variables as arrays, which eliminates the implicit dereference.
*/
#if IN_STG_CODE
#define RTS_VAR(x) (x)[]
#define RTS_DEREF(x) (*(x))
#else
#define RTS_VAR(x) x
#define RTS_DEREF(x) x
#endif
/* bit macros
*/
#define BITS_PER_BYTE 8
#define BITS_IN(x) (BITS_PER_BYTE * sizeof(x))
/* Compute offsets of struct fields
*/
#define STG_FIELD_OFFSET(s_type, field) ((StgWord)&(((s_type*)0)->field))
/*
* 'Portable' inlining:
* INLINE_HEADER is for inline functions in header files (macros)
* STATIC_INLINE is for inline functions in source files
* EXTERN_INLINE is for functions that we want to inline sometimes
* (we also compile a static version of the function; see Inlines.c)
*/
// We generally assume C99 semantics albeit these two definitions work fine even
// when gnu90 semantics are active (i.e. when __GNUC_GNU_INLINE__ is defined or
// when a GCC older than 4.2 is used)
//
// The problem, however, is with 'extern inline' whose semantics significantly
// differs between gnu90 and C99
#define INLINE_HEADER static inline
#define STATIC_INLINE static inline
// Figure out whether `__attributes__((gnu_inline))` is needed
// to force gnu90-style 'external inline' semantics.
#if defined(FORCE_GNU_INLINE)
// disable auto-detection since HAVE_GNU_INLINE has been defined externally
#elif defined(__GNUC_GNU_INLINE__) && __GNUC__ == 4 && __GNUC_MINOR__ == 2
// GCC 4.2.x didn't properly support C99 inline semantics (GCC 4.3 was the first
// release to properly support C99 inline semantics), and therefore warned when
// using 'extern inline' while in C99 mode unless `__attributes__((gnu_inline))`
// was explicitly set.
# define FORCE_GNU_INLINE 1
#endif
#if defined(FORCE_GNU_INLINE)
// Force compiler into gnu90 semantics
# if defined(KEEP_INLINES)
# define EXTERN_INLINE inline __attribute__((gnu_inline))
# else
# define EXTERN_INLINE extern inline __attribute__((gnu_inline))
# endif
#elif defined(__GNUC_GNU_INLINE__)
// we're currently in gnu90 inline mode by default and
// __attribute__((gnu_inline)) may not be supported, so better leave it off
# if defined(KEEP_INLINES)
# define EXTERN_INLINE inline
# else
# define EXTERN_INLINE extern inline
# endif
#else
// Assume C99 semantics (yes, this curiously results in swapped definitions!)
// This is the preferred branch, and at some point we may drop support for
// compilers not supporting C99 semantics altogether.
# if defined(KEEP_INLINES)
# define EXTERN_INLINE extern inline
# else
# define EXTERN_INLINE inline
# endif
#endif
/*
* GCC attributes
*/
#if defined(__GNUC__)
#define GNU_ATTRIBUTE(at) __attribute__((at))
#else
#define GNU_ATTRIBUTE(at)
#endif
#if __GNUC__ >= 3
#define GNUC3_ATTRIBUTE(at) __attribute__((at))
#else
#define GNUC3_ATTRIBUTE(at)
#endif
/* Used to mark a switch case that falls-through */
#if (defined(__GNUC__) && __GNUC__ >= 7)
// N.B. Don't enable fallthrough annotations when compiling with Clang.
// Apparently clang doesn't enable implicitly fallthrough warnings by default
// http://llvm.org/viewvc/llvm-project?revision=167655&view=revision
// when compiling C and the attribute cause warnings of their own (#16019).
#define FALLTHROUGH GNU_ATTRIBUTE(fallthrough)
#else
#define FALLTHROUGH ((void)0)
#endif /* __GNUC__ >= 7 */
#if !defined(DEBUG) && (__GNUC__ > 4 || (__GNUC__ == 4 && __GNUC_MINOR__ >= 3))
#define GNUC_ATTR_HOT __attribute__((hot))
#else
#define GNUC_ATTR_HOT /* nothing */
#endif
#define STG_UNUSED GNUC3_ATTRIBUTE(__unused__)
/* Prevent functions from being optimized.
See Note [Windows Stack allocations] */
#if defined(__clang__)
#define STG_NO_OPTIMIZE __attribute__((optnone))
#elif defined(__GNUC__) || defined(__GNUG__)
#define STG_NO_OPTIMIZE __attribute__((optimize("O0")))
#else
#define STG_NO_OPTIMIZE /* nothing */
#endif
/* -----------------------------------------------------------------------------
Global type definitions
-------------------------------------------------------------------------- */
#include "MachDeps.h"
#include "stg/Types.h"
/* -----------------------------------------------------------------------------
Shorthand forms
-------------------------------------------------------------------------- */
typedef StgChar C_;
typedef StgWord W_;
typedef StgWord* P_;
typedef StgInt I_;
typedef StgWord StgWordArray[];
typedef StgFunPtr F_;
/* byte arrays (and strings): */
#define EB_(X) extern const char X[]
#define IB_(X) static const char X[]
/* static (non-heap) closures (requires alignment for pointer tagging): */
#define EC_(X) extern StgWordArray (X) GNU_ATTRIBUTE(aligned (8))
#define IC_(X) static StgWordArray (X) GNU_ATTRIBUTE(aligned (8))
/* writable data (does not require alignment): */
#define ERW_(X) extern StgWordArray (X)
#define IRW_(X) static StgWordArray (X)
/* read-only data (does not require alignment): */
#define ERO_(X) extern const StgWordArray (X)
#define IRO_(X) static const StgWordArray (X)
/* stg-native functions: */
#define IF_(f) static StgFunPtr GNUC3_ATTRIBUTE(used) f(void)
#define FN_(f) StgFunPtr f(void)
#define EF_(f) StgFunPtr f(void) /* External Cmm functions */
/* foreign functions: */
#define EFF_(f) void f() /* See Note [External function prototypes] */
/* Note [External function prototypes] See #8965, #11395
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
In generated C code we need to distinct between two types
of external symbols:
1. Cmm functions declared by 'EF_' macro (External Functions)
2. C functions declared by 'EFF_' macro (External Foreign Functions)
Cmm functions are simple as they are internal to GHC.
C functions are trickier:
The external-function macro EFF_(F) used to be defined as
extern StgFunPtr f(void)
i.e a function of zero arguments. On most platforms this doesn't
matter very much: calls to these functions put the parameters in the
usual places anyway, and (with the exception of varargs) things just
work.
However, the ELFv2 ABI on ppc64 optimises stack allocation
(http://gcc.gnu.org/ml/gcc-patches/2013-11/msg01149.html): a call to a
function that has a prototype, is not varargs, and receives all parameters
in registers rather than on the stack does not require the caller to
allocate an argument save area. The incorrect prototypes cause GCC to
believe that all functions declared this way can be called without an
argument save area, but if the callee has sufficiently many arguments then
it will expect that area to be present, and will thus corrupt the caller's
stack. This happens in particular with calls to runInteractiveProcess in
libraries/process/cbits/runProcess.c, and led to #8965.
The simplest fix appears to be to declare these external functions with an
unspecified argument list rather than a void argument list. This is no
worse for platforms that don't care either way, and allows a successful
bootstrap of GHC 7.8 on little-endian Linux ppc64 (which uses the ELFv2
ABI).
Another case is m68k ABI where 'void*' return type is returned by 'a0'
register while 'long' return type is returned by 'd0'. Thus we trick
external prototype return neither of these types to workaround #11395.
*/
/* -----------------------------------------------------------------------------
Tail calls
-------------------------------------------------------------------------- */
#define JMP_(cont) return((StgFunPtr)(cont))
/* -----------------------------------------------------------------------------
Other Stg stuff...
-------------------------------------------------------------------------- */
#include "stg/DLL.h"
#include "stg/RtsMachRegs.h"
#include "stg/Regs.h"
#include "stg/Ticky.h"
#if IN_STG_CODE
/*
* This is included later for RTS sources, after definitions of
* StgInfoTable, StgClosure and so on.
*/
#include "stg/MiscClosures.h"
#endif
#include "stg/Prim.h" /* ghc-prim fallbacks */
#include "stg/SMP.h" // write_barrier() inline is required
/* -----------------------------------------------------------------------------
Moving Floats and Doubles
ASSIGN_FLT is for assigning a float to memory (usually the
stack/heap). The memory address is guaranteed to be
StgWord aligned (currently == sizeof(void *)).
PK_FLT is for pulling a float out of memory. The memory is
guaranteed to be StgWord aligned.
-------------------------------------------------------------------------- */
INLINE_HEADER void ASSIGN_FLT (W_ [], StgFloat);
INLINE_HEADER StgFloat PK_FLT (W_ []);
#if ALIGNMENT_FLOAT <= ALIGNMENT_VOID_P
INLINE_HEADER void ASSIGN_FLT(W_ p_dest[], StgFloat src) { *(StgFloat *)p_dest = src; }
INLINE_HEADER StgFloat PK_FLT (W_ p_src[]) { return *(StgFloat *)p_src; }
#else /* ALIGNMENT_FLOAT > ALIGNMENT_UNSIGNED_INT */
INLINE_HEADER void ASSIGN_FLT(W_ p_dest[], StgFloat src)
{
float_thing y;
y.f = src;
*p_dest = y.fu;
}
INLINE_HEADER StgFloat PK_FLT(W_ p_src[])
{
float_thing y;
y.fu = *p_src;
return(y.f);
}
#endif /* ALIGNMENT_FLOAT > ALIGNMENT_VOID_P */
#if ALIGNMENT_DOUBLE <= ALIGNMENT_VOID_P
INLINE_HEADER void ASSIGN_DBL (W_ [], StgDouble);
INLINE_HEADER StgDouble PK_DBL (W_ []);
INLINE_HEADER void ASSIGN_DBL(W_ p_dest[], StgDouble src) { *(StgDouble *)p_dest = src; }
INLINE_HEADER StgDouble PK_DBL (W_ p_src[]) { return *(StgDouble *)p_src; }
#else /* ALIGNMENT_DOUBLE > ALIGNMENT_VOID_P */
/* Sparc uses two floating point registers to hold a double. We can
* write ASSIGN_DBL and PK_DBL by directly accessing the registers
* independently - unfortunately this code isn't writable in C, we
* have to use inline assembler.
*/
#if defined(sparc_HOST_ARCH)
#define ASSIGN_DBL(dst0,src) \
{ StgPtr dst = (StgPtr)(dst0); \
__asm__("st %2,%0\n\tst %R2,%1" : "=m" (((P_)(dst))[0]), \
"=m" (((P_)(dst))[1]) : "f" (src)); \
}
#define PK_DBL(src0) \
( { StgPtr src = (StgPtr)(src0); \
register double d; \
__asm__("ld %1,%0\n\tld %2,%R0" : "=f" (d) : \
"m" (((P_)(src))[0]), "m" (((P_)(src))[1])); d; \
} )
#else /* ! sparc_HOST_ARCH */
INLINE_HEADER void ASSIGN_DBL (W_ [], StgDouble);
INLINE_HEADER StgDouble PK_DBL (W_ []);
typedef struct
{ StgWord dhi;
StgWord dlo;
} unpacked_double;
typedef union
{ StgDouble d;
unpacked_double du;
} double_thing;
INLINE_HEADER void ASSIGN_DBL(W_ p_dest[], StgDouble src)
{
double_thing y;
y.d = src;
p_dest[0] = y.du.dhi;
p_dest[1] = y.du.dlo;
}
/* GCC also works with this version, but it generates
the same code as the previous one, and is not ANSI
#define ASSIGN_DBL( p_dest, src ) \
*p_dest = ((double_thing) src).du.dhi; \
*(p_dest+1) = ((double_thing) src).du.dlo \
*/
INLINE_HEADER StgDouble PK_DBL(W_ p_src[])
{
double_thing y;
y.du.dhi = p_src[0];
y.du.dlo = p_src[1];
return(y.d);
}
#endif /* ! sparc_HOST_ARCH */
#endif /* ALIGNMENT_DOUBLE > ALIGNMENT_UNSIGNED_INT */
/* -----------------------------------------------------------------------------
Moving 64-bit quantities around
ASSIGN_Word64 assign an StgWord64/StgInt64 to a memory location
PK_Word64 load an StgWord64/StgInt64 from a amemory location
In both cases the memory location might not be 64-bit aligned.
-------------------------------------------------------------------------- */
#if SIZEOF_HSWORD == 4
typedef struct
{ StgWord dhi;
StgWord dlo;
} unpacked_double_word;
typedef union
{ StgInt64 i;
unpacked_double_word iu;
} int64_thing;
typedef union
{ StgWord64 w;
unpacked_double_word wu;
} word64_thing;
INLINE_HEADER void ASSIGN_Word64(W_ p_dest[], StgWord64 src)
{
word64_thing y;
y.w = src;
p_dest[0] = y.wu.dhi;
p_dest[1] = y.wu.dlo;
}
INLINE_HEADER StgWord64 PK_Word64(W_ p_src[])
{
word64_thing y;
y.wu.dhi = p_src[0];
y.wu.dlo = p_src[1];
return(y.w);
}
INLINE_HEADER void ASSIGN_Int64(W_ p_dest[], StgInt64 src)
{
int64_thing y;
y.i = src;
p_dest[0] = y.iu.dhi;
p_dest[1] = y.iu.dlo;
}
INLINE_HEADER StgInt64 PK_Int64(W_ p_src[])
{
int64_thing y;
y.iu.dhi = p_src[0];
y.iu.dlo = p_src[1];
return(y.i);
}
#elif SIZEOF_VOID_P == 8
INLINE_HEADER void ASSIGN_Word64(W_ p_dest[], StgWord64 src)
{
p_dest[0] = src;
}
INLINE_HEADER StgWord64 PK_Word64(W_ p_src[])
{
return p_src[0];
}
INLINE_HEADER void ASSIGN_Int64(W_ p_dest[], StgInt64 src)
{
p_dest[0] = src;
}
INLINE_HEADER StgInt64 PK_Int64(W_ p_src[])
{
return p_src[0];
}
#endif /* SIZEOF_HSWORD == 4 */
/* -----------------------------------------------------------------------------
Integer multiply with overflow
-------------------------------------------------------------------------- */
/* Multiply with overflow checking.
*
* This is tricky - the usual sign rules for add/subtract don't apply.
*
* On 32-bit machines we use gcc's 'long long' types, finding
* overflow with some careful bit-twiddling.
*
* On 64-bit machines where gcc's 'long long' type is also 64-bits,
* we use a crude approximation, testing whether either operand is
* larger than 32-bits; if neither is, then we go ahead with the
* multiplication.
*
* Return non-zero if there is any possibility that the signed multiply
* of a and b might overflow. Return zero only if you are absolutely sure
* that it won't overflow. If in doubt, return non-zero.
*/
#if SIZEOF_VOID_P == 4
#if defined(WORDS_BIGENDIAN)
#define RTS_CARRY_IDX__ 0
#define RTS_REM_IDX__ 1
#else
#define RTS_CARRY_IDX__ 1
#define RTS_REM_IDX__ 0
#endif
typedef union {
StgInt64 l;
StgInt32 i[2];
} long_long_u ;
#define mulIntMayOflo(a,b) \
({ \
StgInt32 r, c; \
long_long_u z; \
z.l = (StgInt64)a * (StgInt64)b; \
r = z.i[RTS_REM_IDX__]; \
c = z.i[RTS_CARRY_IDX__]; \
if (c == 0 || c == -1) { \
c = ((StgWord)((a^b) ^ r)) \
>> (BITS_IN (I_) - 1); \
} \
c; \
})
/* Careful: the carry calculation above is extremely delicate. Make sure
* you test it thoroughly after changing it.
*/
#else
/* Approximate version when we don't have long arithmetic (on 64-bit archs) */
/* If we have n-bit words then we have n-1 bits after accounting for the
* sign bit, so we can fit the result of multiplying 2 (n-1)/2-bit numbers */
#define HALF_POS_INT (((I_)1) << ((BITS_IN (I_) - 1) / 2))
#define HALF_NEG_INT (-HALF_POS_INT)
#define mulIntMayOflo(a,b) \
({ \
I_ c; \
if ((I_)a <= HALF_NEG_INT || a >= HALF_POS_INT \
|| (I_)b <= HALF_NEG_INT || b >= HALF_POS_INT) {\
c = 1; \
} else { \
c = 0; \
} \
c; \
})
#endif
|