blob: 037975268e11b5368d58f365292c0894bfd35afb (
plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
|
/* ----------------------------------------------------------------------------
*
* (c) The GHC Team, 2006-2009
*
* Spin locks
*
* These are simple spin-only locks as opposed to Mutexes which
* probably spin for a while before blocking in the kernel. We use
* these when we are sure that all our threads are actively running on
* a CPU, eg. in the GC.
*
* TODO: measure whether we really need these, or whether Mutexes
* would do (and be a bit safer if a CPU becomes loaded).
*
* Do not #include this file directly: #include "Rts.h" instead.
*
* To understand the structure of the RTS headers, see the wiki:
* https://gitlab.haskell.org/ghc/ghc/wikis/commentary/source-tree/includes
*
* -------------------------------------------------------------------------- */
#pragma once
#if defined(THREADED_RTS)
#if defined(PROF_SPIN)
typedef struct SpinLock_
{
StgWord lock;
StgWord64 spin; // incremented every time we spin in ACQUIRE_SPIN_LOCK
StgWord64 yield; // incremented every time we yield in ACQUIRE_SPIN_LOCK
} SpinLock;
#else
typedef StgWord SpinLock;
#endif
#if defined(PROF_SPIN)
// PROF_SPIN enables counting the number of times we spin on a lock
// acquire spin lock
INLINE_HEADER void ACQUIRE_SPIN_LOCK(SpinLock * p)
{
StgWord32 r = 0;
uint32_t i;
do {
for (i = 0; i < SPIN_COUNT; i++) {
r = cas((StgVolatilePtr)&(p->lock), 1, 0);
if (r != 0) return;
p->spin++;
busy_wait_nop();
}
p->yield++;
yieldThread();
} while (1);
}
// release spin lock
INLINE_HEADER void RELEASE_SPIN_LOCK(SpinLock * p)
{
write_barrier();
p->lock = 1;
}
// initialise spin lock
INLINE_HEADER void initSpinLock(SpinLock * p)
{
write_barrier();
p->lock = 1;
p->spin = 0;
p->yield = 0;
}
#else
// acquire spin lock
INLINE_HEADER void ACQUIRE_SPIN_LOCK(SpinLock * p)
{
StgWord32 r = 0;
uint32_t i;
do {
for (i = 0; i < SPIN_COUNT; i++) {
r = cas((StgVolatilePtr)p, 1, 0);
if (r != 0) return;
busy_wait_nop();
}
yieldThread();
} while (1);
}
// release spin lock
INLINE_HEADER void RELEASE_SPIN_LOCK(SpinLock * p)
{
write_barrier();
(*p) = 1;
}
// init spin lock
INLINE_HEADER void initSpinLock(SpinLock * p)
{
write_barrier();
(*p) = 1;
}
#endif /* PROF_SPIN */
#else /* !THREADED_RTS */
// Using macros here means we don't have to ensure the argument is in scope
#define ACQUIRE_SPIN_LOCK(p) /* nothing */
#define RELEASE_SPIN_LOCK(p) /* nothing */
INLINE_HEADER void initSpinLock(void * p STG_UNUSED)
{ /* nothing */ }
#endif /* THREADED_RTS */
|