1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
|
/* ----------------------------------------------------------------------------
*
* (c) The GHC Team, 1998-2012
*
* Macros for building and manipulating closures
*
* -------------------------------------------------------------------------- */
#pragma once
/* -----------------------------------------------------------------------------
Info tables are slammed up against the entry code, and the label
for the info table is at the *end* of the table itself. This
inline function adjusts an info pointer to point to the beginning
of the table, so we can use standard C structure indexing on it.
Note: this works for SRT info tables as long as you don't want to
access the SRT, since they are laid out the same with the SRT
pointer as the first word in the table.
NOTES ABOUT MANGLED C VS. MINI-INTERPRETER:
A couple of definitions:
"info pointer" The first word of the closure. Might point
to either the end or the beginning of the
info table, depending on whether we're using
the mini interpreter or not. GET_INFO(c)
retrieves the info pointer of a closure.
"info table" The info table structure associated with a
closure. This is always a pointer to the
beginning of the structure, so we can
use standard C structure indexing to pull out
the fields. get_itbl(c) returns a pointer to
the info table for closure c.
An address of the form xxxx_info points to the end of the info
table or the beginning of the info table depending on whether we're
mangling or not respectively. So,
c->header.info = xxx_info
makes absolute sense, whether mangling or not.
-------------------------------------------------------------------------- */
INLINE_HEADER void SET_INFO(StgClosure *c, const StgInfoTable *info) {
c->header.info = info;
}
INLINE_HEADER const StgInfoTable *GET_INFO(StgClosure *c) {
return c->header.info;
}
#define GET_ENTRY(c) (ENTRY_CODE(GET_INFO(c)))
#if defined(TABLES_NEXT_TO_CODE)
EXTERN_INLINE StgInfoTable *INFO_PTR_TO_STRUCT(const StgInfoTable *info);
EXTERN_INLINE StgInfoTable *INFO_PTR_TO_STRUCT(const StgInfoTable *info) {return (StgInfoTable *)info - 1;}
EXTERN_INLINE StgRetInfoTable *RET_INFO_PTR_TO_STRUCT(const StgInfoTable *info);
EXTERN_INLINE StgRetInfoTable *RET_INFO_PTR_TO_STRUCT(const StgInfoTable *info) {return (StgRetInfoTable *)info - 1;}
INLINE_HEADER StgFunInfoTable *FUN_INFO_PTR_TO_STRUCT(const StgInfoTable *info) {return (StgFunInfoTable *)info - 1;}
INLINE_HEADER StgThunkInfoTable *THUNK_INFO_PTR_TO_STRUCT(const StgInfoTable *info) {return (StgThunkInfoTable *)info - 1;}
INLINE_HEADER StgConInfoTable *CON_INFO_PTR_TO_STRUCT(const StgInfoTable *info) {return (StgConInfoTable *)info - 1;}
INLINE_HEADER StgFunInfoTable *itbl_to_fun_itbl(const StgInfoTable *i) {return (StgFunInfoTable *)(i + 1) - 1;}
INLINE_HEADER StgRetInfoTable *itbl_to_ret_itbl(const StgInfoTable *i) {return (StgRetInfoTable *)(i + 1) - 1;}
INLINE_HEADER StgThunkInfoTable *itbl_to_thunk_itbl(const StgInfoTable *i) {return (StgThunkInfoTable *)(i + 1) - 1;}
INLINE_HEADER StgConInfoTable *itbl_to_con_itbl(const StgInfoTable *i) {return (StgConInfoTable *)(i + 1) - 1;}
#else
EXTERN_INLINE StgInfoTable *INFO_PTR_TO_STRUCT(const StgInfoTable *info);
EXTERN_INLINE StgInfoTable *INFO_PTR_TO_STRUCT(const StgInfoTable *info) {return (StgInfoTable *)info;}
EXTERN_INLINE StgRetInfoTable *RET_INFO_PTR_TO_STRUCT(const StgInfoTable *info);
EXTERN_INLINE StgRetInfoTable *RET_INFO_PTR_TO_STRUCT(const StgInfoTable *info) {return (StgRetInfoTable *)info;}
INLINE_HEADER StgFunInfoTable *FUN_INFO_PTR_TO_STRUCT(const StgInfoTable *info) {return (StgFunInfoTable *)info;}
INLINE_HEADER StgThunkInfoTable *THUNK_INFO_PTR_TO_STRUCT(const StgInfoTable *info) {return (StgThunkInfoTable *)info;}
INLINE_HEADER StgConInfoTable *CON_INFO_PTR_TO_STRUCT(const StgInfoTable *info) {return (StgConInfoTable *)info;}
INLINE_HEADER StgFunInfoTable *itbl_to_fun_itbl(const StgInfoTable *i) {return (StgFunInfoTable *)i;}
INLINE_HEADER StgRetInfoTable *itbl_to_ret_itbl(const StgInfoTable *i) {return (StgRetInfoTable *)i;}
INLINE_HEADER StgThunkInfoTable *itbl_to_thunk_itbl(const StgInfoTable *i) {return (StgThunkInfoTable *)i;}
INLINE_HEADER StgConInfoTable *itbl_to_con_itbl(const StgInfoTable *i) {return (StgConInfoTable *)i;}
#endif
EXTERN_INLINE const StgInfoTable *get_itbl(const StgClosure *c);
EXTERN_INLINE const StgInfoTable *get_itbl(const StgClosure *c)
{
return INFO_PTR_TO_STRUCT(c->header.info);
}
EXTERN_INLINE const StgRetInfoTable *get_ret_itbl(const StgClosure *c);
EXTERN_INLINE const StgRetInfoTable *get_ret_itbl(const StgClosure *c)
{
return RET_INFO_PTR_TO_STRUCT(c->header.info);
}
INLINE_HEADER const StgFunInfoTable *get_fun_itbl(const StgClosure *c)
{
return FUN_INFO_PTR_TO_STRUCT(c->header.info);
}
INLINE_HEADER const StgThunkInfoTable *get_thunk_itbl(const StgClosure *c)
{
return THUNK_INFO_PTR_TO_STRUCT(c->header.info);
}
INLINE_HEADER const StgConInfoTable *get_con_itbl(const StgClosure *c)
{
return CON_INFO_PTR_TO_STRUCT((c)->header.info);
}
INLINE_HEADER StgHalfWord GET_TAG(const StgClosure *con)
{
return get_itbl(con)->srt;
}
/* -----------------------------------------------------------------------------
Macros for building closures
-------------------------------------------------------------------------- */
#if defined(PROFILING)
/*
The following macro works for both retainer profiling and LDV profiling. For
retainer profiling, 'era' remains 0, so by setting the 'ldvw' field we also set
'rs' to zero.
Note that we don't have to bother handling the 'flip' bit properly[1] since the
retainer profiling code will just set 'rs' to NULL upon visiting a closure with
an invalid 'flip' bit anyways.
See Note [Profiling heap traversal visited bit] for details.
[1]: Technically we should set 'rs' to `NULL | flip`.
*/
#define SET_PROF_HDR(c,ccs_) \
((c)->header.prof.ccs = ccs_, \
LDV_RECORD_CREATE((c)))
#else
#define SET_PROF_HDR(c,ccs)
#endif
#define SET_HDR(c,_info,ccs) \
{ \
(c)->header.info = _info; \
SET_PROF_HDR((StgClosure *)(c),ccs); \
}
#define SET_ARR_HDR(c,info,costCentreStack,n_bytes) \
SET_HDR(c,info,costCentreStack); \
(c)->bytes = n_bytes;
// Use when changing a closure from one kind to another
#define OVERWRITE_INFO(c, new_info) \
OVERWRITING_CLOSURE((StgClosure *)(c)); \
SET_INFO((StgClosure *)(c), (new_info)); \
LDV_RECORD_CREATE(c);
/* -----------------------------------------------------------------------------
How to get hold of the static link field for a static closure.
-------------------------------------------------------------------------- */
/* These are hard-coded. */
#define THUNK_STATIC_LINK(p) (&(p)->payload[1])
#define IND_STATIC_LINK(p) (&(p)->payload[1])
INLINE_HEADER StgClosure **
STATIC_LINK(const StgInfoTable *info, StgClosure *p)
{
switch (info->type) {
case THUNK_STATIC:
return THUNK_STATIC_LINK(p);
case IND_STATIC:
return IND_STATIC_LINK(p);
default:
return &p->payload[info->layout.payload.ptrs +
info->layout.payload.nptrs];
}
}
/* -----------------------------------------------------------------------------
INTLIKE and CHARLIKE closures.
-------------------------------------------------------------------------- */
INLINE_HEADER P_ CHARLIKE_CLOSURE(int n) {
return (P_)&stg_CHARLIKE_closure[(n)-MIN_CHARLIKE];
}
INLINE_HEADER P_ INTLIKE_CLOSURE(int n) {
return (P_)&stg_INTLIKE_closure[(n)-MIN_INTLIKE];
}
/* ----------------------------------------------------------------------------
Macros for untagging and retagging closure pointers
For more information look at the comments in Cmm.h
------------------------------------------------------------------------- */
static inline StgWord
GET_CLOSURE_TAG(const StgClosure * p)
{
return (StgWord)p & TAG_MASK;
}
static inline StgClosure *
UNTAG_CLOSURE(StgClosure * p)
{
return (StgClosure*)((StgWord)p & ~TAG_MASK);
}
static inline const StgClosure *
UNTAG_CONST_CLOSURE(const StgClosure * p)
{
return (const StgClosure*)((StgWord)p & ~TAG_MASK);
}
static inline StgClosure *
TAG_CLOSURE(StgWord tag,StgClosure * p)
{
return (StgClosure*)((StgWord)p | tag);
}
/* -----------------------------------------------------------------------------
Forwarding pointers
-------------------------------------------------------------------------- */
#define IS_FORWARDING_PTR(p) ((((StgWord)p) & 1) != 0)
#define MK_FORWARDING_PTR(p) (((StgWord)p) | 1)
#define UN_FORWARDING_PTR(p) (((StgWord)p) - 1)
/* -----------------------------------------------------------------------------
DEBUGGING predicates for pointers
LOOKS_LIKE_INFO_PTR(p) returns False if p is definitely not an info ptr
LOOKS_LIKE_CLOSURE_PTR(p) returns False if p is definitely not a closure ptr
These macros are complete but not sound. That is, they might
return false positives. Do not rely on them to distinguish info
pointers from closure pointers, for example.
We don't use address-space predicates these days, for portability
reasons, and the fact that code/data can be scattered about the
address space in a dynamically-linked environment. Our best option
is to look at the alleged info table and see whether it seems to
make sense...
-------------------------------------------------------------------------- */
INLINE_HEADER bool LOOKS_LIKE_INFO_PTR_NOT_NULL (StgWord p)
{
StgInfoTable *info = INFO_PTR_TO_STRUCT((StgInfoTable *)p);
return info->type != INVALID_OBJECT && info->type < N_CLOSURE_TYPES;
}
INLINE_HEADER bool LOOKS_LIKE_INFO_PTR (StgWord p)
{
return p && (IS_FORWARDING_PTR(p) || LOOKS_LIKE_INFO_PTR_NOT_NULL(p));
}
INLINE_HEADER bool LOOKS_LIKE_CLOSURE_PTR (const void *p)
{
return LOOKS_LIKE_INFO_PTR((StgWord)
(UNTAG_CONST_CLOSURE((const StgClosure *)(p)))->header.info);
}
/* -----------------------------------------------------------------------------
Macros for calculating the size of a closure
-------------------------------------------------------------------------- */
EXTERN_INLINE StgOffset PAP_sizeW ( uint32_t n_args );
EXTERN_INLINE StgOffset PAP_sizeW ( uint32_t n_args )
{ return sizeofW(StgPAP) + n_args; }
EXTERN_INLINE StgOffset AP_sizeW ( uint32_t n_args );
EXTERN_INLINE StgOffset AP_sizeW ( uint32_t n_args )
{ return sizeofW(StgAP) + n_args; }
EXTERN_INLINE StgOffset AP_STACK_sizeW ( uint32_t size );
EXTERN_INLINE StgOffset AP_STACK_sizeW ( uint32_t size )
{ return sizeofW(StgAP_STACK) + size; }
EXTERN_INLINE StgOffset CONSTR_sizeW( uint32_t p, uint32_t np );
EXTERN_INLINE StgOffset CONSTR_sizeW( uint32_t p, uint32_t np )
{ return sizeofW(StgHeader) + p + np; }
EXTERN_INLINE StgOffset THUNK_SELECTOR_sizeW ( void );
EXTERN_INLINE StgOffset THUNK_SELECTOR_sizeW ( void )
{ return sizeofW(StgSelector); }
EXTERN_INLINE StgOffset BLACKHOLE_sizeW ( void );
EXTERN_INLINE StgOffset BLACKHOLE_sizeW ( void )
{ return sizeofW(StgInd); } // a BLACKHOLE is a kind of indirection
/* --------------------------------------------------------------------------
Sizes of closures
------------------------------------------------------------------------*/
EXTERN_INLINE StgOffset sizeW_fromITBL( const StgInfoTable* itbl );
EXTERN_INLINE StgOffset sizeW_fromITBL( const StgInfoTable* itbl )
{ return sizeofW(StgClosure)
+ sizeofW(StgPtr) * itbl->layout.payload.ptrs
+ sizeofW(StgWord) * itbl->layout.payload.nptrs; }
EXTERN_INLINE StgOffset thunk_sizeW_fromITBL( const StgInfoTable* itbl );
EXTERN_INLINE StgOffset thunk_sizeW_fromITBL( const StgInfoTable* itbl )
{ return sizeofW(StgThunk)
+ sizeofW(StgPtr) * itbl->layout.payload.ptrs
+ sizeofW(StgWord) * itbl->layout.payload.nptrs; }
EXTERN_INLINE StgOffset ap_stack_sizeW( StgAP_STACK* x );
EXTERN_INLINE StgOffset ap_stack_sizeW( StgAP_STACK* x )
{ return AP_STACK_sizeW(x->size); }
EXTERN_INLINE StgOffset ap_sizeW( StgAP* x );
EXTERN_INLINE StgOffset ap_sizeW( StgAP* x )
{ return AP_sizeW(x->n_args); }
EXTERN_INLINE StgOffset pap_sizeW( StgPAP* x );
EXTERN_INLINE StgOffset pap_sizeW( StgPAP* x )
{ return PAP_sizeW(x->n_args); }
EXTERN_INLINE StgWord arr_words_words( StgArrBytes* x);
EXTERN_INLINE StgWord arr_words_words( StgArrBytes* x)
{ return ROUNDUP_BYTES_TO_WDS(x->bytes); }
EXTERN_INLINE StgOffset arr_words_sizeW( StgArrBytes* x );
EXTERN_INLINE StgOffset arr_words_sizeW( StgArrBytes* x )
{ return sizeofW(StgArrBytes) + arr_words_words(x); }
EXTERN_INLINE StgOffset mut_arr_ptrs_sizeW( StgMutArrPtrs* x );
EXTERN_INLINE StgOffset mut_arr_ptrs_sizeW( StgMutArrPtrs* x )
{ return sizeofW(StgMutArrPtrs) + x->size; }
EXTERN_INLINE StgOffset small_mut_arr_ptrs_sizeW( StgSmallMutArrPtrs* x );
EXTERN_INLINE StgOffset small_mut_arr_ptrs_sizeW( StgSmallMutArrPtrs* x )
{ return sizeofW(StgSmallMutArrPtrs) + x->ptrs; }
EXTERN_INLINE StgWord stack_sizeW ( StgStack *stack );
EXTERN_INLINE StgWord stack_sizeW ( StgStack *stack )
{ return sizeofW(StgStack) + stack->stack_size; }
EXTERN_INLINE StgWord bco_sizeW ( StgBCO *bco );
EXTERN_INLINE StgWord bco_sizeW ( StgBCO *bco )
{ return bco->size; }
EXTERN_INLINE StgWord compact_nfdata_full_sizeW ( StgCompactNFData *str );
EXTERN_INLINE StgWord compact_nfdata_full_sizeW ( StgCompactNFData *str )
{ return str->totalW; }
/*
* TODO: Consider to switch return type from 'uint32_t' to 'StgWord' #8742
*
* (Also for 'closure_sizeW' below)
*/
EXTERN_INLINE uint32_t
closure_sizeW_ (const StgClosure *p, const StgInfoTable *info);
EXTERN_INLINE uint32_t
closure_sizeW_ (const StgClosure *p, const StgInfoTable *info)
{
switch (info->type) {
case THUNK_0_1:
case THUNK_1_0:
return sizeofW(StgThunk) + 1;
case FUN_0_1:
case CONSTR_0_1:
case FUN_1_0:
case CONSTR_1_0:
return sizeofW(StgHeader) + 1;
case THUNK_0_2:
case THUNK_1_1:
case THUNK_2_0:
return sizeofW(StgThunk) + 2;
case FUN_0_2:
case CONSTR_0_2:
case FUN_1_1:
case CONSTR_1_1:
case FUN_2_0:
case CONSTR_2_0:
return sizeofW(StgHeader) + 2;
case THUNK:
return thunk_sizeW_fromITBL(info);
case THUNK_SELECTOR:
return THUNK_SELECTOR_sizeW();
case AP_STACK:
return ap_stack_sizeW((StgAP_STACK *)p);
case AP:
return ap_sizeW((StgAP *)p);
case PAP:
return pap_sizeW((StgPAP *)p);
case IND:
return sizeofW(StgInd);
case ARR_WORDS:
return arr_words_sizeW((StgArrBytes *)p);
case MUT_ARR_PTRS_CLEAN:
case MUT_ARR_PTRS_DIRTY:
case MUT_ARR_PTRS_FROZEN_CLEAN:
case MUT_ARR_PTRS_FROZEN_DIRTY:
return mut_arr_ptrs_sizeW((StgMutArrPtrs*)p);
case SMALL_MUT_ARR_PTRS_CLEAN:
case SMALL_MUT_ARR_PTRS_DIRTY:
case SMALL_MUT_ARR_PTRS_FROZEN_CLEAN:
case SMALL_MUT_ARR_PTRS_FROZEN_DIRTY:
return small_mut_arr_ptrs_sizeW((StgSmallMutArrPtrs*)p);
case TSO:
return sizeofW(StgTSO);
case STACK:
return stack_sizeW((StgStack*)p);
case BCO:
return bco_sizeW((StgBCO *)p);
case TREC_CHUNK:
return sizeofW(StgTRecChunk);
default:
return sizeW_fromITBL(info);
}
}
// The definitive way to find the size, in words, of a heap-allocated closure
EXTERN_INLINE uint32_t closure_sizeW (const StgClosure *p);
EXTERN_INLINE uint32_t closure_sizeW (const StgClosure *p)
{
return closure_sizeW_(p, get_itbl(p));
}
/* -----------------------------------------------------------------------------
Sizes of stack frames
-------------------------------------------------------------------------- */
EXTERN_INLINE StgWord stack_frame_sizeW( StgClosure *frame );
EXTERN_INLINE StgWord stack_frame_sizeW( StgClosure *frame )
{
const StgRetInfoTable *info;
info = get_ret_itbl(frame);
switch (info->i.type) {
case RET_FUN:
return sizeofW(StgRetFun) + ((StgRetFun *)frame)->size;
case RET_BIG:
return 1 + GET_LARGE_BITMAP(&info->i)->size;
case RET_BCO:
return 2 + BCO_BITMAP_SIZE((StgBCO *)((P_)frame)[1]);
default:
return 1 + BITMAP_SIZE(info->i.layout.bitmap);
}
}
/* -----------------------------------------------------------------------------
StgMutArrPtrs macros
An StgMutArrPtrs has a card table to indicate which elements are
dirty for the generational GC. The card table is an array of
bytes, where each byte covers (1 << MUT_ARR_PTRS_CARD_BITS)
elements. The card table is directly after the array data itself.
-------------------------------------------------------------------------- */
// The number of card bytes needed
INLINE_HEADER W_ mutArrPtrsCards (W_ elems)
{
return (W_)((elems + (1 << MUT_ARR_PTRS_CARD_BITS) - 1)
>> MUT_ARR_PTRS_CARD_BITS);
}
// The number of words in the card table
INLINE_HEADER W_ mutArrPtrsCardTableSize (W_ elems)
{
return ROUNDUP_BYTES_TO_WDS(mutArrPtrsCards(elems));
}
// The address of the card for a particular card number
INLINE_HEADER StgWord8 *mutArrPtrsCard (StgMutArrPtrs *a, W_ n)
{
return ((StgWord8 *)&(a->payload[a->ptrs]) + n);
}
/* -----------------------------------------------------------------------------
Replacing a closure with a different one. We must call
OVERWRITING_CLOSURE(p) on the old closure that is about to be
overwritten.
Note [zeroing slop]
In some scenarios we write zero words into "slop"; memory that is
left unoccupied after we overwrite a closure in the heap with a
smaller closure.
Zeroing slop is required for:
- full-heap sanity checks (DEBUG, and +RTS -DS)
- LDV profiling (PROFILING, and +RTS -hb)
Zeroing slop must be disabled for:
- THREADED_RTS with +RTS -N2 and greater, because we cannot
overwrite slop when another thread might be reading it.
Hence, slop is zeroed when either:
- PROFILING && era <= 0 (LDV is on)
- !THREADED_RTS && DEBUG
And additionally:
- LDV profiling and +RTS -N2 are incompatible
- full-heap sanity checks are disabled for THREADED_RTS
-------------------------------------------------------------------------- */
#if defined(PROFILING)
#define ZERO_SLOP_FOR_LDV_PROF 1
#else
#define ZERO_SLOP_FOR_LDV_PROF 0
#endif
#if defined(DEBUG) && !defined(THREADED_RTS)
#define ZERO_SLOP_FOR_SANITY_CHECK 1
#else
#define ZERO_SLOP_FOR_SANITY_CHECK 0
#endif
#if ZERO_SLOP_FOR_LDV_PROF || ZERO_SLOP_FOR_SANITY_CHECK
#define OVERWRITING_CLOSURE(c) overwritingClosure(c)
#define OVERWRITING_CLOSURE_OFS(c,n) overwritingClosureOfs(c,n)
#else
#define OVERWRITING_CLOSURE(c) /* nothing */
#define OVERWRITING_CLOSURE_OFS(c,n) /* nothing */
#endif
#if defined(PROFILING)
void LDV_recordDead (const StgClosure *c, uint32_t size);
#endif
EXTERN_INLINE void overwritingClosure_ (StgClosure *p,
uint32_t offset /* in words */,
uint32_t size /* closure size, in words */,
bool prim /* Whether to call LDV_recordDead */
);
EXTERN_INLINE void overwritingClosure_ (StgClosure *p, uint32_t offset, uint32_t size, bool prim USED_IF_PROFILING)
{
#if ZERO_SLOP_FOR_LDV_PROF && !ZERO_SLOP_FOR_SANITY_CHECK
// see Note [zeroing slop], also #8402
if (era <= 0) return;
#endif
// For LDV profiling, we need to record the closure as dead
#if defined(PROFILING)
if (!prim) { LDV_recordDead(p, size); };
#endif
for (uint32_t i = offset; i < size; i++) {
((StgWord *)p)[i] = 0;
}
}
EXTERN_INLINE void overwritingClosure (StgClosure *p);
EXTERN_INLINE void overwritingClosure (StgClosure *p)
{
overwritingClosure_(p, sizeofW(StgThunkHeader), closure_sizeW(p), false);
}
// Version of 'overwritingClosure' which overwrites only a suffix of a
// closure. The offset is expressed in words relative to 'p' and shall
// be less than or equal to closure_sizeW(p), and usually at least as
// large as the respective thunk header.
//
// Note: As this calls LDV_recordDead() you have to call LDV_RECORD()
// on the final state of the closure at the call-site
EXTERN_INLINE void overwritingClosureOfs (StgClosure *p, uint32_t offset);
EXTERN_INLINE void overwritingClosureOfs (StgClosure *p, uint32_t offset)
{
// Set prim = true because only called on ARR_WORDS with the
// shrinkMutableByteArray# primop
overwritingClosure_(p, offset, closure_sizeW(p), true);
}
// Version of 'overwritingClosure' which takes closure size as argument.
EXTERN_INLINE void overwritingClosureSize (StgClosure *p, uint32_t size /* in words */);
EXTERN_INLINE void overwritingClosureSize (StgClosure *p, uint32_t size)
{
overwritingClosure_(p, sizeofW(StgThunkHeader), size, false);
}
|